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Abstract

The borders between cell and developmental biology, always permeable, have largely dissolved. 

One manifestation is the blossoming of cilia biology, with cell and developmental approaches 

(increasingly complemented by human genetics, structural insights, and computational analysis) 

fruitfully advancing understanding of this fascinating, multifunctional organelle. The last 

eukaryotic common ancestor probably possessed a motile cilium, providing evolution with ample 

opportunity to adapt cilia to many jobs. Over the last decades, we have learned how nonmotile, 

primary cilia play important roles in intercellular communication. Reflecting their diverse motility 

and signaling functions, compromised cilia cause a diverse range of diseases collectively called 

ciliopathies. In this Review, we highlight how cilia signal, focusing on how second messengers 

generated in cilia convey distinct information, how cilia are a potential source of signals to other 

cells, how evolution may have shaped ciliary function, and how cilia research may address thorny 

outstanding questions.

Introduction

Eukaryotic cells are compartmentalized, tasking organelles with different functions. 

For example, aerobic respiration occurs in mitochondria and interpretation of genetic 

information occurs in nuclei. Like mitochondria and nuclei, cilia are organelles that are 

specialized, but for the tasks of motility and signal transduction. Here, we use the terms 

cilia and flagella interchangeably, underscoring that our discussion is limited to eukaryotes, 

with prokaryotic flagella being fundamentally different. Moreover, cilia can be divided into 

distinct subsets based on structure and function. Some cilia are motile and transport fluid or 

propel sperm. Other cilia are immotile interpret environmental information or intercellular 

cues (Figure 1A). These sensory immotile cilia were named primary cilia in reference to 

their appearance in lung development before (or primary to) motile cilia1. This nomenclature 

extended to encompass all immotile cilia2. However, as with most definitions in biology, the 
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division of cilia into motile and sensory is not absolute, as motile cilia can have sensory 

functions.

In this review, we highlight emerging understanding of how, like your radio antenna, 

primary cilia function in signal transduction. A complication to receiving information that 

all cells contend with is the lipid bilayer, the scant few nanometers of hydrophobicity that 

separate the highly regulated intracellular environment from the extracellular world. This 

delimiting membrane poses a challenge: to respond to the world, intracellular machinery 

must gain information from the other side of the membrane. Cells have solved this challenge 

in diverse ways, several of which use cilia. Moreover, cilia share a common structure but can 

be tuned to receive different types of information in different cell types.

Different modes of ciliary signaling share some requirements (e.g., diverse ciliary signaling 

pathways rely on a part of the ciliary base called the transition zone to control ciliary 

protein composition) and have some unique requirements (e.g., different ciliary signals are 

transduced via distinct ciliary receptors and effectors). Below, we detail how the cilium, an 

evolutionarily ancient organelle, acts as a dynamic signaling hub for the transduction of both 

intracellular and extracellular cues. We also reflect on the various roles of cilia in human 

physiology, and how evolution may have shaped this functional diversity.

Nothing in ciliary biology makes sense except in the light of evolution

Phylogenetics strongly suggests that the last common eukaryotic ancestor (LECA) was a 

ciliated organism3–5 (Figure 1B). Because of its ancestral origin, much ciliary biology is 

shared among currently existing species, and principles discovered in one organism can 

illuminate biology in others. For example, motor-driven intraflagellar transport (IFT) was 

discovered in the green alga Chlamydomonas6. IFT, critical for both ciliogenesis and ciliary 

maintenance, transports proteins both to the ciliary tip via Kinesin-2 and back to the ciliary 

base via Dynein-2 (Figure 1C). Identification of the Chlamydomonas genes encoding IFT 

components allowed homologs to be recognized and revealed that the IFT machinery is 

conserved across ciliated organisms.

Another evolutionarily ancient ciliary machine is the transition zone, a gate at the base of 

the cilium that helps to regulate ciliary protein composition. Because of the cilium’s deep 

evolutionary conservation, identification of transition zone components in one organism 

predicts transition zone components of other organisms. For example, CEP290 was 

discovered to be a component of the Chlamydomonas transition zone and subsequently 

recognized to be a component of the mammalian transition zone7,8. Many transition zone 

components are co-conserved with CEP290 among ciliated phyla, underscoring how, to 

paraphrase Theodosius Dobzhansky9, nothing makes sense except in the light of evolution. 

Humans are no exception to conservation of ciliary components. For example, human 

mutations in CEP290 can cause Joubert syndrome, which helped spur the realization that 

mutations in other transition zone components also cause Joubert syndrome10–12.

Consistent with the hypothesis that LECA possessed a cilium, many ciliary proteins 

beyond IFT and transition zone components are conserved across diverse extant ciliated 
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organisms. Many of these evolutionarily ancient proteins are centriolar components required 

for ciliogenesis, such as the DISCO complex (including CEP90, OFD1, FOPNL)13.

Other ancient complexes are essential for ciliary motility. These include the axonemal 

dyneins, the outer dynein arm-docking complex (ODA-DC), the nexin-dynein regulatory 

complex (N-DRC) and the radial spokes. In addition, many microtubule inner proteins 

(MIPs) are widely conserved among existing diverse ciliated organisms. MIPs are required 

to strengthen the axonemal microtubules and regenerate ATP to fuel the dyneins14,15.

Additional ancient ciliary proteins include assemblies involved in trafficking proteins to 

or from cilia. These include lipidated protein intraflagellar targeting (LIFT) involved in 

trafficking of lipidated proteins to the ciliary membrane, and an octameric adaptor related to 

Bardet-Biedl syndrome called the BBSome16.

Not all proteins with conserved roles in ciliary function fulfill their role at the cilium 

proper. Despite not localizing to centrioles or cilia, cytoplasmic proteins such as the 

dynein axonemal assembly factors (DNAAFs) co-evolved with cilia and contribute to ciliary 

motility by assembling the axonemal dyneins before their import into cilia17.

Thus, extrapolation from extant organisms allows us to partially reconstruct the ancestral 

cilium of LECA. Most probably, this cilium contained a 9+2 axoneme possessing MIPs 

for structural reinforcement and generation of ATP from AMP and ADP, as well as radial 

spokes. These cilia were motile and used DNAAFs to generate axonemal dyneins, some 

of which docked onto the ODA-DC and were regulated by N-DRC. Within the cilium, 

IFT along the axonemal proteins was powered by Kinesin-2 and Dynein-2. Select lipidated 

proteins were transported to these cilia by LIFT, and proteins were transported out of the 

cilia via the BBSome, both across the transition zone.

While these reconstructions suggest that the LECA had a complex cilium, we should 

remain aware that living organisms may not fully represent the ancestral ciliary protein 

complement. For example, an evolutionarily ancient ciliary protein, EVC3, has been lost by 

extant vertebrates18.

LECA may have used its cilium both for motility and for sensing extracellular cues. Below, 

we describe our current understanding of how animal cilia use three distinct signaling 

systems: Hedgehog, Polycystin and G protein-coupled receptor (GPCR) signaling. These 

three pathways represent distinct modes of ciliary signaling and are associated with cilia 

biology in diverse organisms.

Cilia transduce vertebrate Hedgehog signals

Patterning of tissues during embryonic development depends on a surprisingly small number 

of signaling pathways. One critical means of intercellular communication in developing 

animals is Hedgehog signaling19. Last century witnessed the discovery of Hedgehog 

proteins as secreted lipoproteins sensed by the receptor Patched (PTCH) to regulate the 

central transducer, Smoothened (SMO), thereby controlling the activity of the downstream 

Derderian et al. Page 3

Dev Cell. Author manuscript; available in PMC 2024 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GLI transcription factor effectors20,21. This century has seen a burgeoning understanding of 

how many animals use primary cilia for Hedgehog signal transduction.

How do cilia transduce Hedgehog signals? Central to many signal transduction pathways 

are post-translational modifications (e.g., phosphorylation by receptor tyrosine kinases) 

or changes in protein-protein interactions (e.g., steroid hormone receptor separation 

from HSP90). Certainly, Hedgehog signaling involves post-translational modifications and 

changes in protein-protein interactions. Many of these modifications and changes occur in 

one subcellular locale, the primary cilium, and Hedgehog signaling depends critically on 

regulated changes in the composition of the primary cilium.

Not only are cilia required for vertebrate Hedgehog signaling, but all of the central 

components of the Hedgehog signal transduction pathway (PTCH, SMO, PKA, KIF7, SUFU 

and GLI) spend at least some of their time at the cilium22–25. In the absence of Hedgehog 

stimuli, the cilium possesses PTCH and the GLI proteins are bound to SUFU to prevent 

transcriptional activity (Figure 2). Some GLI proteins are cleaved to generate a truncated 

repressor form (GliR) that keeps the Hedgehog transcriptional program off. Hedgehog 

stimuli induces PTCH ciliary exit and SMO ciliary accumulation, resulting in the formation 

of GLI activators (GliA). When activated, GLI cleavage is prevented, GLI dissociates from 

SUFU26, and GLI turns the Hedgehog transcriptional program on in the nucleus.

How SMO activation leads to GLI activation remains a major gap in understanding. 

In Drosophila, the SMO C-terminus can interact directly with a GLI-containing protein 

complex27. The Drosophila and vertebrate SMO C-termini are highly divergent, indicating 

that vertebrates are likely to activate GLI through a distinct mechanism.

A key intermediary between SMO and GLI is protein kinase A (PKA), which promotes GLI 

conversion into GliR28–30. Vertebrate SMO can bind and inhibit PKA31,32. Thus, vertebrate 

SMO may regulate GLI by blocking PKA-mediated phosphorylation. As Hedgehog signals 

are morphogens capable of specifying multiple different fates depending on concentration 

and duration, GLI proteins may be in more states than on and off, with intermediate states 

transducing the mid-range of the morphogen gradient. How the ciliary machinery parses 

characteristics of the morphogen gradient to direct differentiation along multiple trajectories 

remains unclear.

In addition to its distinct protein composition, cilia possess a distinct lipid composition33. 

Ciliary lipids may also be critical to Hedgehog signal transduction. One subclass of 

lipids are sterols. A diverse group of oxidized sterols called oxysterols bind and activate 

SMO34–36. Several SMO-activating oxysterols are enriched in cilia, suggesting that the 

distinct lipid composition of cilia may be one reason why SMO requires the cilium to 

activate the downstream pathway signaling37. The upstream regulator of SMO, PTCH, 

can transport sterols across the cell membrane38–40. Hedgehog binding to PTCH1 could 

block this transport, potentially increasing sterol concentration and activating SMO. It will 

be interesting to ascertain whether endogenous SMO is regulated by oxysterols and/or 

cholesterol, and whether the regulation of SMO varies by cell type or organism.
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Despite the aforementioned conservation of ciliary machinery, exploration of cilia function 

in diverse organisms has pointed out how evolution has tinkered with ciliary Hedgehog 

signaling. Whereas vertebrates and sea urchins require cilia for Hedgehog signaling, cilia 

are dispensable for Hedgehog signaling in many Drosophila tissues and in planaria41–44. Did 

the animal ancestor use cilia for Hedgehog signaling? Proteomic profiling of cilia from sea 

urchins (an early-branching non-chordate deuterostome), sea anemones (non-bilaterians) and 

choanoflagellates (protists thought to be the closest known relative of animals) revealed that 

Hedgehog signaling components are associated with cilia in sea anemones, suggesting that 

the ancestor of bilateria may have employed cilia for Hedgehog signaling18.

In addition to most known ciliary components, comparing the ciliary proteomes of 

diverse species identified ciliary proteins of unknown function18. For example, this 

comparison indicated that DYRK2 could be a ciliary kinase involved in Hedgehog signaling, 

subsequently validated by mammalian genetics45.

A parsimonious model is that evolution has played with a basal ciliary Hedgehog pathway, 

either by removing its dependence on cilia in one ecdysozoan (Drosophila) or by dispensing 

with it altogether in another (C. elegans). Evolution is most probably continuing to shape 

ciliary Hedgehog signaling in vertebrates, as alterations in ciliary Hedgehog signaling may 

underlie relatively recent changes in the eyes of cavefish, the heads of wolves and dogs, and 

the limbs of flightless birds46–48.

Future comparisons between cilium-dependent and -independent Hedgehog signaling may 

help illuminate which attributes are conveyed by the cilium itself. For example, comparing 

how ciliary and nonciliary Hedgehog signaling differ in kinetics or fidelity may reveal the 

design principles optimized by both forms of information transmission. One possibility is 

that relying on protein trafficking to and from cilia may increase signaling fidelity but 

sacrifice signal transduction speed.

Cilia transduce Polycystin signaling

In addition to their essential role in vertebrate embryonic development, cilia can be 

important in the homeostasis of adult tissues. PKD1 and PKD2 (encoding Polycystin-1 and 

2) are justifiably most famous for being the two genes in which mutations cause autosomal 

dominant polycystic kidney disease (PKD)49,50. PKD is a human disease characterized by 

progressive formation of cysts, leading to kidney failure. Polycystin-1 and 2 are founding 

members of a subfamily of transient receptor potential (TRP) channels.

The TRP superfamily is comprised of a diverse cohort of tetrameric channel-forming 

integral membrane proteins. Compared to other members of the TRP superfamily, the 

Polycystin channel proteins are noncanonical. For example, Polycystin channels are 

heterotetramers comprised of one Polycystin-1 subunit and three Polycystin-2 subunits51 

(Figure 3A).

In the kidney, most cells of the nephron project a primary cilium into the nephron lumen 

(Figure 3B). Although Polycystin-1 and 2 localize to several subcellular locations (e.g., sites 

of membrane protein biosynthesis such as the ER), they prominently localize to cilia52–54. 
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Deletion of cilia in the kidney epithelium is sufficient to induce cystogenesis, suggesting that 

cilia, like Polycystin-1/2 channels, restrain renal epithelial proliferation55–57.

However, cilia play a complex role in kidney cystogenesis. Cysts resulting from loss of cilia 

are smaller than the dramatic cysts caused by loss of Polycystin-1/2 function (with cilia 

present). Moreover, loss of both Polycystin-1/2 function and cilia also results in more mild 

cystogenesis58. One interpretation of these genetic interactions is that cilia act epistatically 

to PKD1/2 channels and that cilia both restrain and promote renal epithelial proliferation 

(Figure 3C).

How should we conceptualize these dual functions of cilia in cystogenesis? A perspective 

comes from understanding of ciliary Hedgehog signaling. Hedgehog signals pattern many 

tissues, including the neural tube and the limb bud. In the neural tube, Hedgehog signals 

induce ventral fates. Loss of Hedgehog signaling causes a dorsalization of the neural tube, 

and gain of Hedgehog signaling causes ventralization of the neural tube. In the limb bud, 

Hedgehog signals specify the number and identity of the digits. Loss of Hedgehog signaling 

causes a reduction in digit number and gain of Hedgehog signaling causes a gain in digit 

number. Unintuitively, loss of cilia causes dorsalization of the neural tube (an apparent 

loss of Hedgehog signaling) and a gain in digit number (an apparent gain of Hedgehog 

signaling)42,59. This apparent paradox is resolved by recognizing that cilia are essential for 

both generating the GLI activator and repressor. In the neural tube, Hedgehog patterning 

is effected by generating GLI activator, whereas in the limb bud, Hedgehog patterning is 

effected by inhibiting GLI repressor. Thus, loss of cilia removes both GLI activator and 

repressor in both tissues, but the phenotypic consequences are distinct because of differential 

reliance on GLI activator or repressor.

As kidney cilia either potentiate or restrain cystogenesis in different genetic contexts, they 

may function similarly to Hedgehog-transducing cilia: instead of generating both GLI 

activators and repressors, kidney cilia may generate cyst activators and repressors. In this 

model, loss of kidney cilia may compromise the formation of a cyst repressor, leading to 

cystogenesis. In addition, cilia may also generate cyst activators, potentially explaining the 

aggressive cystogenesis when Polycystin-1/2 channels are absent but cilia are present.

Fascinatingly, restoration of Polycystin-1/2 function in mouse cysts shrinks kidney cysts and 

reverses associated histological changes such as fibrosis60. Thus, if we could discover how 

Polycystin-1/2 transduces information to control cell proliferation, we might gain insight 

into pharmacologically tractable approaches to reversing polycystic kidney disease.

A different flavor of Polycystin channel is deployed in the left-right organizer early 

in development to specify the vertebrate left-right axis. While Polycystin-2 works with 

Polycystin-1 to limit kidney epithelial cell proliferation, Polycystin-2 collaborates with a 

paralog of Polycystin-1 called Polycystin-1-like-1 to help the embryo tell left from right61–

63.

Even more than with Hedgehog signaling, deep mysteries about Polycystin remain to be 

explored. What are the molecular identities of these hypothesized Polycystin-regulated 

and cilia-dependent cyst activators and repressors? What cations do Polycystin-1/2 flux 
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to influence kidney epithelial growth and morphology? What cues regulate Polycystin-1/2 

activity? In addition to Polycystin-1, Polycystin-1-like-1 and Polycystin-2, we possess 

three more paralogs of Polycystin-1 and two paralogs of Polycystin-2. If Polycystin-2 

paralogs can form functional homomeric channels and productively heterodimerize with all 

Polycystin-1 paralogs, we may possess 18 different flavors of Polycystin channels. Are each 

of these possible combinations formed? If so, what do they sense and what do they do? If 

these other forms of Polycystin channels function in development and physiology, do they 

all function at cilia and do they function through shared or distinct effectors?

It is likely that answers to these questions will depend on insights into Polycystin 

signaling derived from studies in diverse organisms. Homologs of Polycystin-2 are 

present in diverse ciliated organisms, including the green alga Chlamydomonas. In 

Chlamydomonas, Polycystin-2 localizes to two rows along the flagella and organizes a 

ciliary structure required for efficient swimming64. Interestingly, Chlamydomonas lacks 

a clear Polycystin-1 homolog, suggesting that Polycystin-2-type proteins can function 

independently of Polycystin-1 proteins. In Drosophila, a homolog of Polycystin-2 localizes 

to the sperm flagellum and is important for the ability of sperm to navigate the female 

reproductive tract65,66. In C. elegans, Polycystin-2 and an ortholog of Polycystin-1 localize 

to select neuronal cilia and function in male mating52,67. Together, these results reveal that 

Polycystins may have ancient roles in cilia, perhaps dating to the Neoproterozoic Era over 

500 million years ago, and that evolution has subsequently deployed Polycystin channels for 

diverse functions in extant descendants.

Cilia transduce signaling by select GPCRs

Beyond Hedgehog and Polycystin signaling, we have known for decades that select GPCRs 

sense environmental cues at specialized cilia: the photoreceptor outer segment is a highly 

modified primary cilium at which Opsins sense light, and olfactory neurons possess atypical 

cilia adorned by odorant-sensing GPCRs that sense environmental chemicals. The sensitivity 

of these sensory cilia can be near perfect: amazingly, photoreceptor cells can detect single 

photons and olfactory neurons can detect single molecules of pheromone68,69. Ciliary 

signaling can also be blazingly fast with photoreceptor peak dim flash response happening at 

140ms70.

A more recent surprise of cilia biology has been that select GPCRs also localize to the 

primary cilia outside of sensory organs. For example, SSTR3, 5HT6, MCHR1, GPR161, 

GPR88, FFAR4 and MC4R are all GPCRs from different subfamilies that localize to cilia71–

75.

Beyond vision and olfaction, what types of information do ciliary GPCRs communicate? 

Clues from both mouse and human genetics point to critical roles for primary cilia in energy 

homeostasis. In mice, deletion of cilia from adult neurons causes obesity55. Likewise, in 

humans, mutations that disrupt ciliary function cause ciliopathies characterized by obesity, 

including Bardet-Biedl syndrome, Carpenter syndrome, Alström syndrome and MORM76. 

These human diseases are called ciliopathies to denote their common origin in compromised 

ciliary function77.
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The most common monogenic cause of human obesity are mutations in MC4R, encoding 

the ciliary localized GPCR Melanocortin receptor 475,78,79. Thus, an appealing model is 

that ciliopathies cause obesity because cilia are fundamentally required for MC4R-mediated 

control of long-term energy homeostasis (Figure 4A).

Many GPCRs signal through cAMP, and GPCRs can be Gαs-coupled to induce cAMP 

formation (e.g., MC4R) or Gαi-coupled to inhibit cAMP formation (e.g., SSTR3) via 

regulation of adenylyl cyclases. Adenylyl cyclase 3 (ADCY3) exquisitely localizes to 

neuronal cilia and mutations in ADCY3 cause obesity in both mice and humans, suggesting 

that cAMP generation within cilia is key for energy homeostasis80–82. Attenuating cAMP 

generation specifically in mouse hypothalamic cilia causes hyperphagia and obesity83, 

further suggesting that not only does MC4R localize to neuronal cilia, but MC4R regulation 

of ciliary cAMP controls feeding behavior. Thus, it is likely that feeding behavior is 

regulated by MC4R activation of ADCY3 to generate cAMP specifically within cilia. If 

so, MC4R regulation of long-term energy homeostasis can serve as one example of how 

neuronal cilia control mammalian behavior.

The finding that MC4R requires cilia to signal raises the interesting question of whether 

other ciliary GPCRs, such as FFAR4, also require cilia to signal. In preadipocytes, 

FFAR4 localizes to cilia and promotes differentiation84. During differentiation, the nascent 

adipocyte loses its cilium85. After differentiation, FFAR4 localizes to the plasma membrane 

and sensitizes the adipocyte to Insulin86–88. These findings raise the intriguing possibility 

that the same GPCR and ligand may, in one cell state, signal at the cilium with one output 

and, in another cell state, signal at the plasma membrane with a different output. Thus, by 

placing a receptor either at the ciliary membrane or at the plasma membrane, cells may 

respond to the same ligand in two distinct ways, and this choice of placement may be 

dependent on factors such as stage of differentiation.

Interesting questions about the function of GPCRs at cilia include how ligands are delivered 

to neuronal cilia and how cells distinguish closely related GPCRs (e.g., SSTR3 and SSTR1) 

to send one to the cilium and the other to the plasma membrane. For example, if a single 

cilium contains multiple receptor types, can the cell distinguish their outputs or are they 

summed? And, importantly, how do cells distinguish second messengers produced at cilia 

from those produced elsewhere?

The cilium and the cell body can differentially interpret second messengers

The discovery in the 1960s by Sutherland and colleagues that many hormones communicate 

via the second messenger cAMP was critiqued because it was deemed improbable that 

different cues could trigger distinct responses through a single chemical entity89,90. In the 

1980s, Brunton and colleagues proposed that cAMP is compartmentalized within the cell 

such that different hormones produce distinct pools of cAMP that are interpreted in distinct 

ways91,92.

How different cAMP pools communicate different information remains an area of active 

research. As described above, FFAR4 is an example of a GPCR that may signal sequentially 
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at the ciliary membrane and the plasma membrane. What happens when distinct GPCRs 

signal at the ciliary membrane and the plasma membrane simultaneously? One possibility 

is that physically sequestering signaling pathways to different parts of the cell surface 

allows parallel information processing to avoid, in the terminology of information theory, 

intersignal interference. While cells are likely to use many strategies to compartmentalize 

signaling so as not to confuse the information content, one possible strategy would be to take 

advantage of the physical differences of the cilium and cell body to distinguish cAMP in 

each subcellular domain.

To investigate whether the cilium represents a functionally distinct cAMP compartment, 

we and others have developed tools to control the subcellular production of cAMP. 

One optogenetic system to exert temporal control of cAMP production uses bacterial 

photoactivatable adenylyl cyclase (bPAC), which generates cAMP in response to blue 

light93. To distinguish the functions of cilium-generated and cell body-generated cAMP, we 

generated transgenic zebrafish that express bPAC targeted to cilia (Cilia-bPAC) or cytoplasm 

(Cyto-bPAC)94.

Because cAMP and its effector, PKA, negatively regulate the Hedgehog pathway, Hedgehog 

signal transduction is one potential interpreter of ciliary and cytoplasmic cAMP. Among 

the many tissues patterned by Hedgehog signals are somites. Surprisingly, generating 

moderate amounts of cytoplasmic cAMP did not attenuate Hedgehog patterning of somites, 

but generating the same amount of cAMP within cilia did94. Similarly, a ciliary-targeted 

GPCR that generates cAMP affected Hedgehog signaling, but the same GPCR outside the 

cilium did not94. Perhaps these artificial systems mimic the function of GPR161, a ciliary 

Gαs-coupled GPCR that inhibits Hedgehog signaling during embryonic development74. 

Thus, cAMP generated in different subcellular sites imparts different information, and the 

cilium and cell body are functionally distinct cAMP compartments (Figure 4B).

A corollary suggested by the finding that ciliary cAMP inhibits Hedgehog signaling is 

that a ciliary Gαi-coupled GPCR might be able to lower ciliary cAMP and activate 

Hedgehog signaling. Indeed, stimulation of the ciliary Gαi-coupled GPCR, SSTR3, with 

its ligand, somatostatin, can activate the Hedgehog pathway in NIH-3T3 cells94. Given the 

capacity of this ciliary GPCR to activate the Hedgehog signaling pathway when expressed 

heterologously, it will be interesting to assess whether ciliary GPCRs beyond GPR161 

function via GLI modulation.

How might the cilium act as a distinct cAMP compartment? Could there be a barrier 

to prevent the mixing of ciliary and nonciliary cAMP? Unlike mitochondria and most 

other organelles, cilia are not entirely membrane bound and are thus contiguous with the 

cytoplasm. cAMP biosensors revealed that cAMP freely diffuses between the cilium and 

cytoplasm94,95, indicating that there was no barrier preventing the mixing of the two pools 

of cAMP. Similarly, examination of calcium diffusion between the cytoplasm and the cilium 

revealed no barrier between the two96. Thus, two second messengers, cAMP and calcium, 

freely diffuse between the two compartments, raising the vexing question of how cells 

distinguish ciliary and cytoplasmic signals.
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Computational modeling suggested that the narrow entrance and elongated shape of the 

cilium imposes different cAMP dynamics in the cytoplasm and cilium: because of the 

cilium’s low volume and high surface-to-volume ratio relative to the cell body, small 

absolute changes in cAMP within the cilium translate into large increases in ciliary cAMP 

concentration and negligible changes in cytoplasmic cAMP concentration94. Similarly, 

small absolute increases in ciliary calcium can cause large increases in ciliary calcium 

concentration without perturbing cytoplasmic calcium concentration96.

In the sea urchin sperm flagellum, the effectors of cAMP and calcium are probably 

orders of magnitude more abundant than the second messengers themselves97. Thus, 

as long as effectors have sufficient affinity for their second messengers, activation of 

effectors within the flagellum happens before the second messenger has a chance to 

diffuse into the cytoplasm, be exported, or get degraded, a phenomenon termed kinetic 

compartmentalization97. Similar principles may operate within primary cilia to contribute to 

different effects of ciliary and cytosolic second messengers. Additional plausible parameters 

may contribute to functional separation of ciliary and cell body signaling (e.g., degradation 

of cAMP by phosphodiesterases, differential localization of cAMP effectors), but geometry 

alone may be sufficient to explain how cells distinguish ciliary and cytoplasmic second 

messengers.

Distinguishing pools of second messengers is likely to be essential for cellular functioning. 

For example, sperm make use of cAMP and calcium both in the flagellum to control 

swimming direction and in the head to control acrosomal exocytosis98. Mixing the second 

messengers between the two compartments would disrupt fertilization. If the unique 

geometry of the cilium is used to distinguish ciliary and plasma membrane signaling, then 

one might expect that flooding the system with cAMP would erase the ability of the cell to 

make that distinction. Indeed, the production of super-physiological levels of cAMP using 

bPAC erases the distinction and allows cytoplasmically produced cAMP to affect Hedgehog 

signaling94.

Such experiments raise interesting questions about how the functional compartmentalization 

between ciliary and cell body signaling is maintained over different signaling regimes. For 

example, do negative regulators of second messengers (e.g., cAMP phosphodiesterases or 

calcium buffers) help prevent crosstalk between the two compartments? Additionally, if the 

second messengers remain restricted to their compartment of origin, the effectors can be 

in common. However, if signaling within the ciliary compartment must be communicated 

elsewhere within the cell (as exemplified by Hedgehog signaling, which must ultimately 

affect nuclear transcription), second messengers must work via effectors specific to their 

compartment of origin. An ambassador’s effectiveness depends on being identified with 

their country.

The cilium is a source of extracellular signals

Initially observed in Chlamydomonas99,100, a growing body of evidence supports a role 

for the cilium not just as a receiver and interpreter of extracellular information, but also 

as a source. In Chlamydomonas, flagella are the source of proteolytic enzyme-bearing 
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extracellular vesicles that degrade the cell wall to liberate daughter cells following mitosis99. 

Activated Chlamydomonas gametes shed vesicles that specifically bind the flagellae of other 

gametes, hinting at signaling functions101.

Similarly, in C. elegans, ciliated sensory neurons release extracellular vesicles containing 

Polycystins, and purified vesicles trigger mating behaviors in male worms52,67,102. In male 

C. elegans, select neurons release ciliary vesicles into the luminal space that surrounds their 

cilia and then through a pore into the external environment of the animal. Interestingly, 

bbs-8 and rab-28 mutants accumulate extracellular vesicles in the lumen surrounding the 

cilium, but do not show any change in the release of vesicles into the external environment 

(Figure 5). Therefore, there may be two functionally distinct steps for ciliary vesicle 

release in C. elegans: ectocytosis from the neuron and then subsequent expulsion into 

the environment for extracellular communication103. In mammals, RAB28 promotes the 

shedding of the photoreceptor outer segment and RAB28 mutations cause a form of retinal 

degeneration, suggesting that RAB28 may have different roles in the regulation of ciliary 

ectocytosis in nematodes and vertebrates66,104.

The photoreceptor outer segment is a specialized primary cilium containing stacks of 

membrane disks concentrated with Opsins, key to phototransduction. Opsins contain 11-

cis-retinal which absorbs light to undergo isomerization to all-trans-retinal. In addition to 

sensing light, these Opsins are damaged by light. Disks containing photooxidized Opsins 

and all-trans-retinal are shed from the distal outer segment and taken up by the adjoining 

retinal pigmented epithelium, which rejuvenates the 11-cis-retinal and sends it back to the 

photoreceptors105. Defects in outer segment turnover cause forms of retinal degeneration, 

highlighting the importance of this specialized form of ciliary ectocytosis for vision 

maintenance.

Formation of the disks requires branched actin polymerization and a transmembrane protein 

called Peripherin106,107. In the absence of Peripherin, the photoreceptor fails to form 

internalized disks and, instead, sheds them as extracellular vesicles108. These findings 

suggest that photoreceptor disk formation may be a modification of ciliary ectocytosis, a 

variant that accumulates the Opsin-bearing vesicles internally, not externally, to enhance 

light capture. Although photoreceptors are highly specialized, these results raise the question 

of whether other cell types alter ectocytosis to control ciliary membrane topology and 

signaling sensitivity.

Ectocytotic control of ciliary composition may occur outside of photoreceptors. In primary 

ciliated cells, upon SSTR3 stimulation and inhibition of BBSome-mediated retrieval, ciliary 

ectocytosis increases109,110. Similar to photoreceptor disk shedding, ectocytosis requires 

Actin109. The ability of the BBSome to promote GPCR retrieval into the cell body and to 

attenuate ectocytosis suggests that there are at least two mechanisms for controlling ciliary 

GPCR content.

Which proteins are shed in ciliary vesicles? Curiously, in the absence of the BBSome, a 

subset of GPCRs are lost from neuronal cilia111–113. Perhaps only certain neuronal cell types 
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activate ectocytosis in the absence of the BBSome, or perhaps only some types of GPCRs 

exit cilia via ectocytosis.

Ciliation and deciliation -- the cilium as a transient organelle

With very few exceptions (e.g., metazoan oocytes lack centrosomes, red blood cells lack 

nuclei), cellular organelles are present across cell types. But unlike the nucleus, ER and 

Golgi, not all cells have a cilium114. For example, blood cells, both red and white, lack cilia.

Ciliation can vary not just by cell type, but also within a cell type. For example, in the 

skin, many hair follicle cells are ciliated, but few cells in the interfollicular epidermis are 

ciliated115 (Figure 6). The dispensability of the cilium for many cellular functions may 

allow tissues to tune individual cells, even neighboring cells of the same type, to different 

extracellular cues. For example, the few ciliated cells that line the stomach may respond to 

different cues than the rest of the gastric epithelium116.

In addition, some types of cells have cilia only during certain stages of their differentiation. 

For example, during early stages of neural tube development, the neural epithelium lacks 

cilia. Soon thereafter, the neural epithelium acquires cilia and uses them for dorsoventral 

patterning. Conversely, the endodermal epithelium is ciliated early in development but loses 

cilia as it differentiates into the intestinal epithelium117.

Control of the timing of ciliation may participate in the timing of responsiveness to 

extracellular information. A longstanding conundrum has been how cells accurately interpret 

a morphogen gradient when that morphogen gradient must be generated over time. One 

possible solution to this conundrum would be to separate generation of the gradient and 

interpretation of the gradient into different time periods. To pattern the dorsoventral axis 

of the neural tube, SHH and IHH are expressed at the midline from gastrulation stages. 

As the neural tube ciliates after gastrulation, temporal control of ciliation may allow neural 

epithelial cells to ignore Hedgehog cues while the gradient is being created, then, upon 

ciliating, interpret that mature gradient to accurately read out their dorsoventral position 

within the neural tube.

Thus, regulation of ciliation may help regulate cellular responses to cues, both spatially 

and temporally. We do not understand the mechanisms by which cells are ciliated. Some 

insight may come from the fact that almost all cells retract their cilia before entering mitosis. 

Cilia extend from a centriole, so deciliation prior to mitosis releases one of the centrioles so 

that it can become part of the spindle pole. How ciliary disassembly occurs remains poorly 

understood, although Aurora A kinase is part of the process118.

Presumably, ciliary disassembly before mitosis frees up the mother centriole to participate 

in spindle pole formation. Ciliate protists solve the problem of dual roles of centrioles 

in ciliation and spindle function in a different way: they assemble their mitotic spindles 

independently of centrioles and thus the basal bodies remain attached to the cell surface 

throughout the entire lifecycle119,120.
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Do mammalian cells take advantage of the retractability of cilia to shape their responses 

to non-developmental cues? Multiciliated cells that line the upper airway and clear mucus 

out of the lung avoid deciliation altogether by being terminally differentiated. However, 

upon infection by Respiratory syncytial virus (RSV), a serious respiratory pathogen often 

affecting young children, multiciliated cells in the airway lose their cilia121,122. Loss of 

motile cilia compromises airway clearing, promotes the formation of mucus plugs and 

predisposes children to opportunistic infections by other respiratory pathogens123. While 

it is likely that the loss of cilia is caused by virally mediated damage, it is possible that 

aspects of this loss of cilia are adaptive. As respiratory viruses may bud from the ciliary 

membrane124, it is possible that retraction of cilia could attenuate viral production. Are there 

inhibitors of ciliogenesis that cells turn on to negatively regulate ciliogenesis under stressful 

conditions such as RSV infection? Transcriptomic or proteomic analysis of RSV infected 

airway epithelial cells may help identify negative regulators of ciliogenesis.

Deciliation is also employed by the devastating frog-killing chytrid Batrachochytrium 
dendrobatidis125. Batrachochytrium zoospores can swim using a motile cilium126. 

Batrachochytrium sense the mucins secreted by frog skin, triggering a transition called 

encystment during which the cilium is quickly resorbed and the centriole is repurposed for 

the mitotic spindle during nuclear divisions127. Efforts to make chytrid species genetically 

tractable may shed light on how they resorb their cilia126,128.

Other unicellular organisms also are flagellated only part time. Naegleria gruberi is a free-

living protist that can generate two distinct cellular architectures: its feeding, reproducing, 

crawling amoeba-like form can persist indefinitely without flagella and even without 

centrioles129. However, when stressed, it transforms into a flagellated swimmer to search 

out better conditions. Astonishingly, this transformation involves de novo assembly of basal 

bodies and construction of flagella in about an hour. A similar phenomenon occurs in 

Tetramitus, a related free-living amoeba that not only constructs four flagella via de novo 

basal body assembly but can reproduce in both its flagellated and amoeboid states130,131.

Not to be outdone by its distant cousin is Plasmodium, the protist parasite that causes 

malaria. Plasmodium lacks flagella for most of its lifecycle132. In the blood, Plasmodium 
can become a gametocyte which, if swallowed by a feeding mosquito, undergoes three 

lightning-fast rounds of mitosis and flagellogenesis, resulting in eight flagellated gametes 

in just 10–15 minutes. These flagella power Plasmodium mating in the mosquito’s gut. As 

flagella are essential only for this one stage in its lifecycle, it is possible that a Plasmodium 
mutant lacking, for example, an outer arm dynein (e.g., PF3D7_1213600, PF3D7_1020100 

or PF3D7_1114000) could be maintained in its asexual stage in the lab but fail to propagate 

outside the lab133.

Similarly, choanoflagellates can retract their flagella to adopt amoeboid forms134. Thus, it 

is possible that the unicellular ancestor of multicellular animals had evolved the ability to 

adopt either ciliated or unciliated forms, and animals differentially deployed these programs 

for cell specialization. For example, in sponges, ciliated choanocytes may represent 

deployment of the ancestral flagellated program and unciliated archeocytes may represent 

deployment of the ancestral unflagellated program. As noted above, we do not understand 
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how vertebrate cells decide whether to generate a cilium or not. Part of the decision is 

probably made at the level of transcriptional control. Two transcriptional regulators of 

ciliogenesis, RFX and FOXJ1, are providing clues to the evolutionary history of ciliogenesis 

programs.

In C. elegans, an RFX transcription factor is essential for ciliogenesis135. Homologs of RFX 

are required for ciliogenesis in specific cell types in mice: RFX3 is required for motile 

ciliogenesis, RFX4 is required for ciliogenesis in parts of the brain, and RFX2 is required for 

sperm flagellogenesis136–138. In a choanoflagellate, an RFX transcription factor promotes 

ciliogenesis and is necessary for expression of another transcription factor, FOXJ1139. In 

mammals, FOXJ1 regulates genes involved in ciliary motility140,141. Thus, RFX and FOXJ1 

are likely part of an ancient transcriptional network employed by animal ancestors to build 

cilia and subsequently modified in animal lineages142,143.

A more even sampling of the eukaryotic tree will yield a more complete understanding 

of how cilia are built by extant descendants of LECA. For example, are there additional 

conserved nontranscriptional regulators of ciliation? And what additional factors does RFX 

need to induce ciliogenesis in unciliated cells?

Human genetics and disease inform ciliary biology

Among the diverse organisms with conserved ciliary biology are humans. Consequently, 

ciliary dysfunction in people causes disease. Mutations in more than 200 genes cause 35 

distinct ciliopathies, each with partially overlapping phenotypic manifestations. Perhaps 

because clinicians can get to know their patients extremely well and follow them for years, 

clinicians provide perceptive insights into ciliary functions.

Clinicians have often collaborated closely with biologists to uncover how cilia participate 

in human physiology. Perhaps the most famous of these interactions were those that led 

to the first recognized ciliopathy, Primary Ciliary Dyskinesia (PCD). In the early 1970s, 

Bjorn Afzelius was working at the University of Stockholm as a PhD electron microscopist. 

A physician, Rune Eliasson, solicited Dr. Afzelius’s help in analyzing the ultrastructure of 

sperm of infertile men144.

Electron microscopy of these sperm revealed the absence of dynein arms145. In addition 

to infertility, these men had the hallmarks of PCD (then called Kartagener syndrome): 

bronchiectasis, chronic sinusitis and, sometimes, situs inversus. Association of these ciliary 

defects with low or no mucociliary transport in the nose led to the realization that PCD 

is caused by defective ciliary motility146. Thus, cutting-edge experimental approaches and 

clinical insights were complementary in discovering that ciliary motility is essential for lung 

health and left-right axis patterning.

Since the discovery of ciliary motility defects as the cause of PCD, mutations resulting in 

ciliary dysfunction have been uncovered as causes of other human ciliopathies. One example 

is Bardet-Biedl syndrome (BBS), characterized by retinal degeneration, polydactyly, kidney 

cysts, anosmia, cognitive impairment, and obesity. Many of the genes mutated in BBS affect 

the BBSome, involved in exporting membrane-associated proteins from the cilium147,148.
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The ongoing revolution in the cell biological understanding of disease allows for a shift in 

classification, from causative tissue to causative subcellular process. The reclassification of 

diverse inherited diseases as ciliopathies highlights the commonalities between them and 

may serve to point out shared biology and shared therapeutic approaches going forward. 

Similar reclassification of other types of non-ciliary diseases by which subcellular process 

underlies them may help other fields recognize therapeutically exploitable commonalities for 

diseases previously regarded as unrelated. One example may be emerging recognition of the 

role of the integrated stress response (ISR) in a range of neurological diseases for which ISR 

inhibitor ISRIB may be useful149.

Beyond inherited ciliopathies, Hedgehog-associated cancers such as basal cell carcinoma 

and medulloblastoma highlight how cilia can participate in acquired diseases. These 

cancer cells are ciliated and require their cilia to transduce oncogenic Smoothened 

signaling115,150. Another example of how cilia may participate in acquired disease may 

be some forms of Parkinson’s disease, characterized by loss of dopaminergic neurons in 

the brain. Gain-of-function mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are a 

rare cause of Parkinson’s disease151. Increased LRRK2 activity inhibits ciliogenesis152–155. 

Correspondingly, mice bearing Parkinson’s disease-causing mutations in LRRK2 or lacking 

the counteracting PPM1H phosphatase exhibit a disruption of cilia in about half of striatal 

cholinergic neurons and astrocytes153,156. Normally, these cholinergic neurons respond to 

Hedgehog signals to support the survival of dopaminergic neurons157. Thus, an intriguing 

model of how mutations in LRRK2 cause Parkinson’s disease is that they attenuate striatal 

ciliogenesis, limiting Hedgehog signaling, thereby leading to loss of dopaminergic neurons 

(Figure 7). Perhaps because altered ciliary function is limited to a fraction of striatal 

cholinergic neurons and astrocytes, mutant LRRK2 does not cause widespread ciliary 

dysfunction. It will be interesting to discover whether cilia play a role in more common 

forms of Parkinson’s disease, how germline mutations result in cell type-specific ciliary 

disruptions, and what other acquired diseases alter ciliary function.

This discovery of an organelle at the origin of disparate diseases and the coining of the 

term ciliopathy indicates how nosology, the classification of disease, may be changing. 

Nosology reflects progress in our understanding of biology: for example, classical Greek 

physicians recognizing that diabetics produce excess urine, focused their attention on the 

kidney. Not until the eighteenth century did a more sensitive test, tasting urine, allow for 

subclassification of diabetes into two forms: mellitus (“from honey”) and insipidus (“without 

taste”). This modest diagnostic advance helped to move physicians’ focus from the kidney to 

the causative organs, reclassifying diabetes as a pancreatic disease (mellitus) and a pituitary 

disease (insipidus). Similarly, a diverse list of diseases grouped based on their affected 

tissues are now being reclassified based on which organelle underlies their etiology, with 

ciliopathies being one key example.

Conclusion

Cilia are ancient, complex machines comprised of several hundred different components 

that have been evolving for hundreds of millions of years to move and interpret diverse 

environmental and intercellular signals. Investigating cilia will continue to illuminate 
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general principles of subcellular organization and information transmission. For example, 

understanding how cilia are compartmentalized will elucidate how transduction machinery 

is organized within a subcellular space to interpret extracellular cues. Understanding how 

ciliary lipids control signaling will reveal how organelle-specific lipids regulate protein 

function. Understanding how cells distinguish ciliary and plasma membrane signals will 

uncover how the cell holds multiple conversations simultaneously without confusing the 

information. Thus, investigating cilia will help reveal fundamental ways in which cells use 

specialized subcellular compartments to interpret their environments. Studying how cilia are 

constructed and signal will continue to identify human mutations that cause ciliopathies, 

how those mutations cause disease and, perhaps someday, how we can cure those diseases.

Beyond the fascinating field of cilia biology, there has been concern lately about the current 

and future status of the field of developmental biology158–160. Part of the concern stems 

from a perceived reduction in the importance of developmental biology research. Perhaps 

this perception stems from a constricted definition of what developmental biology entails. 

While the traditional domain of “good old God-fearing developmental biology”161 contains 

many important, unanswered questions, a more expansive definition of developmental 

biology might be the study of all biological processes requiring more than one cell and 

relevant to embryogenesis. Under such a definition, stem cell biology, organoids, embryoids, 

regeneration and computational approaches applied to cell populations (e.g., pseudotime 

analysis) are all subdomains or tools within developmental biology. When considered from 

this perspective, developmental biology is experiencing explosive growth.

The recent exciting discoveries in cilia biology described above underscore how 

cell biological tools can help drive discovery of important and general principles in 

developmental biology. Of course, apart from cilia, there are many instances of how 

cell biological approaches have led to fascinating developmental biology discoveries. For 

example, investigating how the actin cytoskeleton is spatially regulated has helped reveal 

how convergent extension drives neural tube closure162 . And investigating how cadherins 

control cell-cell adhesion has shed light on how mechanical forces sculpt cell shape163.

Just as biochemistry and genetics are simultaneously fields in their own rights and the source 

of experimental approaches used by developmental biologists, it is likely that cell biology 

will both remain its own domain and continue to provide insights, approaches and tools that 

inform developmental biology. Blurring of the borders between previously distinct fiefdoms 

of biology can be disorienting as it disrupts long-standing definitions of fields. Still, the 

borders between biochemistry, genetics, cell biology and developmental biology, always 

imprecise, are only becoming more so, with cilia biology being a prime example of how 

synergistic cell and developmental biological perspectives drive discovery164.

The advances detailed in this Review underscore the importance of cilia in evolutionary, 

developmental, cell, and human biology. Evolutionarily conserved machinery hints at 

ancestral ciliary function and continues to inspire avenues of inquiry into ciliary functions in 

animals living today. Hedgehog, Polycystin and GPCR signaling are examples of how ciliary 

signaling shapes embryonic development, maintains adult tissue populations, and provides a 

platform for reception of extracellular sensory cues. The cilium, despite being incompletely 
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membrane bound, also functions as a distinct compartment that responds to local signaling 

molecule concentrations. Beyond its role as a signaling receiver, there is evidence that cilia 

can produce signals to be received by other cells. Additionally, there is great diversity in the 

spatiotemporal dynamics of ciliation amongst species and even amongst tissue types within 

one organism. This variety and complexity can not only be appreciated at the cellular level 

but also at the level of human disease, as ciliary defects cause a wide variety of diseases 

depending on the tissue location and type of the ciliary dysfunction. Ciliary biology lies at 

the boundary between biological disciplines, lending itself beautifully to a diverse range of 

tools, analyses, and inquiries that can be rigorously applied to understanding this complex 

organelle.
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Figure 1 - Motile and immotile cilia differ structurally and LECA possessed a sophisticated 
cilium
A) Most motile cilia (left) have an axoneme comprised of nine circumferential doublets 

and a central pair. Most primary cilia (right) have an axoneme lacking the central pair. B) 
A formulation of the eukaryotic tree of life, depicting major clades. Ciliated lineages are 

depicted with colored lines, unciliated groups are in black and lineages with both are in both. 

While some groups lack cilia (e.g., Rhodophyta), and some groups contain both ciliated 

and unciliated members (e.g., Chloroplastida), ciliated organisms exist in all extant clades. 

Thus, the last eukaryotic common ancestor was probably a ciliated protist. Figure modified 

from reference 164. C) Ciliated lineages share genes encoding ciliary proteins, including 

components of the LIFT system for transporting lipidated proteins. In the cilium, ARL3 

triggers LIFT to deposit cargoes such as ARL13B and INPP5E into the ciliary membrane. 

Other evolutionarily ancient protein complexes involved in ciliary function include DISCO, 

a distal centriolar complex involved in forming distal appendages, DNAAFs involved in 
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assembling dyneins, the transition zone controlling the protein composition of the ciliary 

membrane, IFT driving transport along the ciliary axoneme, the BBSome helping export 

select proteins from the cilium, the MIPs reinforcing the ciliary microtubules, and the central 

pair apparatus, radial spokes, and N-DRC that, together, coordinate the IDAs and ODAs that 

beat the cilia.
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Figure 2 –. Ciliary Hedgehog signaling translates different ciliary protein composition into 
different transcriptional outputs.
In the absence of Hedgehog (HH) signals (left), PTCH is present in the cilium and keeps 

SMO out and inactive. Without active SMO in the cilium, GLI transcription factors are 

converted into a repressive form (GliR), translocate to the nucleus and keep the Hedgehog 

transcription program off. In the presence of HH signals (right), SMO accumulates in 

the cilium and converts GLI into an activator form (GliA) which induces the Hedgehog 

transcriptional program.
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Figure 3 –. Polycystin channels protect the kidney from cystogenesis.
A) Polycystin channels are heterotetramers each comprised of one PKD1 subunit and three 

PKD2 subunits. Image of PDB 6A70 human PKD1/PKD2 complex (Su et al., 2018) created 

with UCSF ChimeraX. B) Almost all nephron epithelial cells project a Polycystin channel-

bearing cilium into the lumen through which filtrate flows. C) Removing cilia from nephron 

epithelial cells causes mild cystogenesis. Removing Polycystin function by abrogating either 

PKD1 or PKD2 causes severe cystogenesis. Removing both cilia and Polycystin function 

causes moderate cystogenesis, revealing cilia-dependent cyst activation (CDCA) (Ma et al., 

2013).
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Figure 4 –. Different ciliary environments facilitate specific signaling cascades
A) Left: When peripheral energy stores are depleted, Leptin levels fall, leading Leptin-

responsive neurons in the hypothalamus to make AgRP, an inverse agonist of MC4R. In 

the absence of MC4R activity, ADCY3 in neuronal cilia does not generate cAMP, spurring 

feeding. Right: When peripheral energy stores are repleted, Leptin triggers hypothalamic 

neurons to make αMSH, an MC4R agonist (green). Stimulating MC4R induces ADCY3 to 

generate ciliary cAMP, suppressing feeding. B) cAMP generated in the cilium activates a 

ciliary pool of PKA to turn off Hedgehog signal transduction.
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Figure 5 - Some C. elegans cephalic male neuronal cilia release extracellular vesicles.
Mutations in rab-28 or bbs-8 increase ectocytosis of extracellular vesicles into the lumen 

surrounding the cilia.
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Figure 6 –. Not all animal cells possess cilia.
For example, the skin is comprised of hair follicles and the interfollicular epidermis. Most 

cells making up the interfollicular epidermis are unciliated. In contrast, most cells of the 

hair follicle are ciliated. What controls which cells are ciliated and which are not remains 

unknown.
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Figure 7 - A model of ciliary involvement in neurological disease.
In Parkinson’s disease, dopaminergic neurons in the substantial nigra of the basal ganglia 

are lost. These neurons are supported by GDNF produced by cholinergic neurons in the 

striatum. A rare form of Parkinson’s disease is caused by gain-of-function mutations (e.g., 

G2019S) in a kinase, LRRK2, that disrupts cilia in the striatum. With compromised cilia, the 

cholinergic neurons do not respond to the Hedgehog signals produced by the dopaminergic 

neurons and, consequently, fail to produce GDNF, perhaps leading to the death of the 

dopaminergic neurons.
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