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Abstract

Genome-wide genealogies of multiple species carry detailed information about demo-

graphic and selection processes on individual branches of the phylogeny. Here, we intro-

duce TRAILS, a hidden Markov model that accurately infers time-resolved population

genetics parameters, such as ancestral effective population sizes and speciation times, for

ancestral branches using a multi-species alignment of three species and an outgroup.

TRAILS leverages the information contained in incomplete lineage sorting fragments by

modelling genealogies along the genome as rooted three-leaved trees, each with a topology

and two coalescent events happening in discretized time intervals within the phylogeny.

Posterior decoding of the hidden Markov model can be used to infer the ancestral recombi-

nation graph for the alignment and details on demographic changes within a branch. Since

TRAILS performs posterior decoding at the base-pair level, genome-wide scans based on

the posterior probabilities can be devised to detect deviations from neutrality. Using TRAILS

on a human-chimp-gorilla-orangutan alignment, we recover speciation parameters and

extract information about the topology and coalescent times at high resolution.

Author summary

DNA sequences can be compared to reconstruct the evolutionary history of different spe-

cies. While the ancestral history is usually represented by a single phylogenetic tree, speci-

ation is a more complex process, and, due to the effect of recombination, different parts of

the genome might follow different genealogies. For example, even though humans are

more closely related to chimps than to gorillas, around 15% of our genome is more similar

to the gorilla genome than to the chimp one. Even for those parts of the genome that do

follow the same human-chimp topology, we might encounter a last common ancestor at

different time points in the past for different genomic fragments. Here, we present

TRAILS, a new framework that utilizes the information contained in all these genealogies

to reconstruct the speciation process. TRAILS infers unbiased estimates of the speciation

times and the ancestral effective population sizes, improving the accuracy when compared

to previous methods. TRAILS also reconstructs the genealogy at the highest resolution,

inferring, for example, when common ancestry was found for different parts of the
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genome. This information can also be used to detect deviations from neutrality, effectively

inferring natural selection that happened millions of years ago. We validate the method

using extensive simulations, and we apply TRAILS to a human-chimp-gorilla multiple

genome alignment, from where we recover speciation parameters that are in good agree-

ment with previous estimates.

Introduction

Orthologous sites in two or more sequences share a unique genealogical history, with coales-

cent events happening at certain time points in the past. In the absence of recombination, all

sites along the sequences follow the same genealogy. In reality, however, ancestral recombina-

tion events might have decoupled consecutive sites, generating an array of segments with dif-

ferent yet correlated genealogies, collectively known as the ancestral recombination graph

(ARG) [1, 2]. In principle, if inferred accurately, the ARG contains all available information

about the demography of the samples, and it can be used to estimate population parameters

(such as the recombination rate and the ancestral effective population sizes), historical events

(such as introgression and hybridization), and selective processes [3]. The ARG, however, is

challenging to infer because the underlying genealogies along the genome alignment cannot

be directly observed. Instead, inference of the genealogy along the genome relies on the site

patterns of the accumulated mutations.

The ARG can also be formulated as a spatial process along the genomic alignment [4]. This

process, however, contains a long-range correlation structure because if two recombination events

happen flanking a genomic fragment, the fragment might be surrounded by the exact same gene-

alogy. However, disregarding the fact that the process is non-Markovian in nature, the ARG can

be approximated by a hidden Markov model (HMM), where the genealogy of a certain genomic

position only depends on the genealogy of the previous position [5, 6]. It has been shown that this

approach, commonly referred to as sequentially Markovian coalescent or SMC, is a good approxi-

mation of the true coalescent-with-recombination process [7]. Perhaps the simplest of such mod-

els is the pairwise sequentially Markovian coalescent (PSMC) [8], in which the ARG between two

sequences (typically, the two copies of a diploid individual) is modelled. Here, the hidden states

are coalescent events that happen in discretized time intervals, which correspond to two-leafed

gene trees (Fig 1A). The transition probabilities between pairs of hidden states can be calculated

using standard coalescent theory, parameterized by the recombination rate and the ancestral

effective population sizes (Ne) in each time interval [8]. PSMC, and other SMCs, such as MSMC

[9], MSMC2 [10], ASMC [11], and SMC++ [12], allow the use of standard HMM machinery to

infer population parameters, and are thus also useful for inferring the most plausible coalescent

times from the posterior decoding. However, SMC models are generally restricted to a single coa-

lescent event between a pair of samples, which limits their usefulness. More recently, there have

been new developments to model multiple samples explicitly. For example, ARGweaver [13],

Relate [14], tsinfer+tsdate [15, 16] or ARG-Needle [17] use techniques such as resampling, thread-

ing and mathematical approximations to sequentially build the ARG [18].

These models are typically used to analyze samples from the same species to get within-spe-

cies information about the ancestral process. Analyzing inter-species coalescent events adds

another layer of complexity, since the coalescent events need to be contained within the under-

lying phylogeny or speciation tree [22–24]. Moreover, the models described above typically

use the presence or absence of a certain mutation to construct haplotypes, but ignore or filter

out instances where more than two alleles are observed. This infinite sites model poses a
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problem for inter-species analysis, because recurrent mutation is more likely to happen, gener-

ating instances of sites that have experienced more than a single mutation [25, 26].

Some other models have tried to extend these concepts for the analyses of multiple species.

For example, the coalescent-with-isolation model [19] is conceptually similar to PSMC, but,

backwards in time, the two analyzed samples are kept isolated until the speciation event, after

which they can coalesce (Fig 1B). This model can be used to estimate the speciation time

between the two samples and the Ne of the ancestral species, and an extension of it can be used

to model isolation-with-migration [27]. These models, similar to SMCs, can output a posterior

decoding of the coalescent times.

Fig 1. TRAILS is a HMM that reconstructs the time-resolved multi-species ARG for three genomes. TRAILS extends the isolation model (B) [19] to

three species, by combining the time discretization of PSMC-like models (A) [8] with the topologically aware hidden states of CoalHMM (C) [20, 21]. The

resulting hidden states of TRAILS (D) are three-leaved genealogies with two discretized coalescent events and one of four possible topologies. A full list of

the 27 possible hidden states when nAB = nABC = 3 can be consulted in Fig K in S1 Text.

https://doi.org/10.1371/journal.pgen.1010836.g001
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Beyond two samples, CoalHMM models the coalescent with recombination of three species

[20, 21], where the hidden states are the four possible genealogies that might arise within the

underlying species tree (Fig 1C). Two of the four genealogies differ from the species tree,

which generate incongruencies that might pose a problem for standard phylogenetic recon-

struction. Nevertheless, this phenomenon, commonly referred to as incomplete lineage sorting

or ILS, is very informative about the demographic parameters of the underlying species tree,

and CoalHMM can thus be used to estimate ancestral Ne and two speciation times. Moreover,

CoalHMM uses a substitution model for mutations, so recurrent mutations are allowed. How-

ever, unlike SMCs, CoalHMM does not model coalescent events at discretized time intervals

and, instead, coalescent times are modelled as single time points within an individual branch.

Because of this, some of the parameter estimates of CoalHMM are biased [21], and, although

obtaining accurate estimates is still possible [28], the debiasing procedure involves costly coa-

lescent simulations. Moreover, posterior decoding can only be performed on the topology of

the gene trees, and not on the coalescent times.

Here we present TRAILS, an HMM that combines modelling the information-rich ILS sig-

nal in the style of CoalHMM and the time discretization of SMC-like models to infer unbiased

estimates of the demographic parameters (ancestral Ne and speciation times), and to enable

the posterior decoding of both topology and coalescent times. In TRAILS, the hidden states

are three-leaved gene trees, each with a specified topology and two coalescent events that hap-

pen at discretized time intervals on an underlying speciation tree (Fig 1D and Fig K in S1

Text). The genealogies are rooted by a fourth sample from an outgroup species. The transition

probabilities between the hidden states of TRAILS are calculated using coalescent-with-recom-

bination theory for one, two and three lineages that segregate within the branches of the phy-

logeny. We provide formulas in matrix notation to calculate these transition probabilities for a

varying number of discretized time intervals (see Methods for a short explanation, and S1 Text

for an in-depth description of the theory). The emitted states are sites in a four-way multiple

genome alignment, containing the sequences of the three species and the outgroup. The transi-

tion and emission probabilities are parameterized by two ancestral Ne, speciation times, and

the recombination rate. Keeping the mutation rate at a fixed value, TRAILS allows for the esti-

mation of the other parameters by optimizing the HMM likelihood given the alignment. After

fitting the HMM, TRAILS can perform posterior decoding of the hidden states, inferring a

posterior probability of coalescent events through time within the speciation tree.

Here we derive the transition and emission probabilities, implement the model and demon-

strate its use on simulated and real data. After optimizing the population parameters using

TRAILS on a simulated dataset, we show that increasing the number of discrete coalescence

intervals reduces the bias in the parameter estimation. We also show how the posterior decod-

ing can accurately reconstruct the true ARG, by inferring the topology of gene trees and the

time in which coalescent events occurred. We perform additional simulations to show that the

posterior decoding of TRAILS can be used to detect selective sweeps that happened on ances-

tral branches of the phylogeny. Finally, we analyze a human-chimp-gorilla-orangutan align-

ment, inferring the demographic parameters of the underlying species tree and performing

genome-wide posterior decoding at the base-pair level.

Results

Parameter estimation

The transition and emission probabilities of coalescent hidden Markov models (HMMs) are

parameterized by the demographic model, i.e., by the speciation times, ancestral effective pop-

ulation sizes (Ne) and recombination rate (ρ). This means that using standard HMM
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algorithms, these parameters can be optimized to obtain the model that best explains the

observed data. Both in CoalHMM and in TRAILS, numerical optimization is performed on

the log-likelihood calculated using the forward algorithm, given a four-way genome alignment

of three focal species and an outgroup. The maximum likelihood estimates of the demographic

model are then found using a bound-constrained search algorithm that optimizes the likeli-

hood function by evaluating it directly.

Previous work using coalescent HMMs has shown that the estimation of the demographic

parameters is challenging. In CoalHMM, for example, the parameter estimates are highly

biased [21], especially for the ancestral Ne and the recombination rate. It is possible to obtain

close to unbiased estimates, but this requires a costly simulation procedure [28]. The source of

the bias seems to be the restrictive state space of CoalHMM [21], which includes the topology

of the genealogy but no information on when the coalescents happened within each branch of

the tree (Fig 1C).

TRAILS overcomes this issue by extending the state space to include coalescent events that

can happen in discretized time intervals. To demonstrate that TRAILS can perform unbiased

parameter estimation, we generated twenty 10-Mb four-way alignments using msprime [29]

by choosing a demographic model similar to the human-chimp-gorilla-orangutan speciation

tree (see Methods, Simulations for details). The simulated sequence alignments were analyzed

using TRAILS, estimating the times, ancestral Ne values and recombination rate depicted in

Fig 2A. Parameters were estimated for nAB = nABC = 1 and nAB = nABC = 5, where nAB is the

number of intervals between speciation events and nABC is the number of intervals deep in

time, in the common ancestor of all three species.

In the model where nAB = nABC = 1, which is equivalent to the original CoalHMM model,

parameter estimates deviate from their true values in the simulations, especially for t2, NAB and

Fig 2. Increasing the complexity of TRAILS reduces the bias of the estimated parameters. (A) Diagram (not to scale) of the demographic model with all the

optimized parameters in blue for the non-ultrametric case. In an ultrametric model, t1 would correspond to the time from present to the shallowest speciation event,

where t1 = tA = tB = tC − t2. (B) Relative error of parameter values estimated from 20 simulated msprime genomes for nAB = nABC = 1 (in pink) and nAB = nABC = 5 (in

green). Each independent run corresponds to a dot, vertical lines are median values, and vertical lines correspond to interquartile ranges. Units are normalized as

(estimated-true)/true to ease comparison across parameters.

https://doi.org/10.1371/journal.pgen.1010836.g002
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ρ (Fig 2B, in pink). Using a larger number of intervals (nAB = nABC = 5) improves the accuracy

of the parameter estimation (Fig 2B, in green). An exception to this is the recombination rate,

which is still underestimated (albeit less so), possibly due to recombination events that produce

small changes in the coalescent tree (e.g., not changing in the topology and only moving the

coalescent times by a few generations) and are thus missed from the sequence data. Generally,

however, the simulation results demonstrate that the source of the bias in the parameter esti-

mation in CoalHMM can be alleviated with a more flexible model that includes coalescent

times at discretized time intervals.

Posterior decoding of simulated data

Posterior decoding using the parameters estimated from the alignment can be performed

using the transition and emission probabilities computed by TRAILS for a specific demo-

graphic model. In contrast to other coalescent-based HMMs, the resulting posterior probabili-

ties are, however, hard to visualize, since each hidden state will have its own topology, and first

(or more recent) and second (or more ancient) coalescent time intervals (Fig 1D and Fig K in

S1 Text). To overcome this, we summarize the posterior probabilities by grouping states that

share certain features. For example, the posterior probabilities of all states that share the same

topology can be summed. Similarly, the posteriors of all states with the same first or second

coalescent times can also be summed.

In order to have a ground truth for comparison, the posterior decoding was performed on

100 kb of an alignment simulated using msprime, with a demographic model identical to

that used in Fig 2B (see Methods for a full description of the model). The resulting posteriors

can capture the true topology and the second coalescent time quite accurately (Fig 3A and 3B,

Fig 3. Posterior probability for the topology (A), second coalescent event (B) and first coalescent event (C) of a 100 kb msprime simulation. “First”

and “second” refer to the order in which coalescent events happen, backwards in time. The true empirical topology and coalescent times are plotted as

green lines.

https://doi.org/10.1371/journal.pgen.1010836.g003
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respectively), while the first coalescent time (Fig 3C) is harder to estimate. Additionally, V1

segments (Fig 3A) are easily misclassified as V0 segments, since V0 and V1 only differ in

branch lengths but not in topology (see Fig 3 and Fig I in S1 Text), and, thus, the emitted site

patterns for V0 and V1 are similar.

Posterior decoding from simulated data with selection

To showcase how the posterior decoding could be useful to infer deviations from the standard

coalescent, we simulated a 200 kb alignment using SLiM [30] containing a single positively

selected variant (2Nes = 175) in position 100 kb of the simulated alignment that arises at the

first interval backwards in time, where the first two species merge in the speciation tree (inter-

val S0 in Fig 4A). The site is strongly positively selected, but it lies well within the possible

range of values for selection coefficients recorded in humans, with the lactase gene having up

to 2Nes = 1000 in some human populations [31]. The demographic parameters were the same

as those used for Figs 2 and 3.

Both the true empirical values and the posterior decoding show that there is an overrepre-

sentation of second coalescent events happening in interval S0 (Fig 4A), which is qualitatively

different from the neutral case (Fig 3B). The positively selected variant confers a big advantage

and is fixed rapidly in the population, with an expected fixation time of

4

s lnð2NesÞ þ g � 1

2Nes

� �
¼ 2622 generations or 65,550 years for an Ne = 10, 000 and a genera-

tion time of g = 25 years, where γ� 0.577 is Euler’s constant [32]. In contrast, for a neutrally

Fig 4. The posterior probability can be used to detect deviations from the neutral expectation. (A) Posterior probability of the second coalescent event

for a simulated 200 kb region containing a positively selected variant at position 100 kb that arises in interval S0, represented by a triangle. The true

simulated coalescent times are plotted as green horizontal lines. (B) Mean posterior probability for each second coalescent interval (purple), and the

empirical true proportion of sites for each interval (green) for 20 simulated replicates with a selective sweep, using the same model as in (A). The theoretical

neutral expectation is plotted as a black dashed line, and time intervals are adjusted so that all intervals have equal probability of observing a coalescent

event. Continuous vertical lines represent mean values of the simulations. (C) Same as in (B), but for a neutrally evolving region, using the same model as in

Fig 3.

https://doi.org/10.1371/journal.pgen.1010836.g004
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evolving site, the expected fixation time is 4Ne = 40, 000 generations or 1 million years [33].

The effect of such strong selective force is that whatever polymorphism existed at the selected

locus is quickly purged from the population, and, with it, linked neutral variants are hitchhik-

ing along, causing a selective sweep. As a result, there is an excess of coalescent events happen-

ing in interval S0, which can be discerned from the posterior probabilities.

The signal observed in the posterior decoding can be summarized by computing the mean

posterior probability per time interval and comparing it to the theoretical neutral expectation.

There is a clear excess of coalescent events estimated to happen at the interval where the bene-

ficial mutation arises (S0 in Fig 4B), although there is also an excess of coalescent events

inferred by the posterior in nearby intervals (S1 and S2), where coalescents are misclassified

due to close proximity in time. In any case, the pattern observed for the selective sweep in Fig

4B is in stark contrast with the neutral case shown in Fig 4C, where the posterior falls within

the expected values. This demonstrates that deviations from neutrality can be inferred using

the posterior decoding of TRAILS, and one could devise a windowed genome-wide scan for

selection by summarizing the posterior as proposed in Fig 4B and 4C.

Parameter estimation from a HCGO alignment

ILS happens pervasively on the branches of the tree of life, spanning taxonomically diverse

groups such as marsupials [34], birds [35, 36], fishes [37], plants [38], and mammals [39, 40],

including primates [28, 41, 42]. For example, there is around 32% of ILS in the human-chimp

ancestor, with 16% of the genome grouping human and gorilla, and another 16% grouping

chimp and gorilla [28]. These estimates were obtained using CoalHMM [21], together with

estimates for ancestral Ne and split times, which were debiased using simulations. Here, we

apply TRAILS to a 50 Mb human-chimp-gorilla alignment from chromosome 1 with orangu-

tan as an outgroup to infer population genetics parameters and to gain information about the

coalescent times and the topology through posterior decoding.

Using MafFilter [43], the alignment was first preprocessed to extract the species of interest

(human, chimp, gorilla and orangutan), to merge consecutive alignment blocks, and to filter

out small blocks (see Methods for further details). Using biopython [44], 50 Mb were

extracted from chr1, namely the region from 25 Mb to 75 Mb. This region was used as the

input for TRAILS, choosing the parameter values estimated in Rivas-González et al. [28] as

starting values for the optimized parameters, setting nAB = nABC = 3, and using the L-BFGS-B

algorithm for model fitting [45, 46], although other bound-constrained method can also be

used. To get more accurate parameter estimates, the optimized parameters were used as start-

ing parameters for a second TRAILS run, where nAB = 3 and nABC = 5.

The resulting estimates are displayed in Fig 5A. Assuming a mutation rate of μ =

1.25 × 10−8 per site per generation and a generation time of g = 25 years [47, 48], the speciation

time estimates are in good agreement with previously inferred values. Using the human tip

branch length, we estimate the time until the HC split at 5.51 million years ago (95% CI: [5.43,

5.54], *4–7 MYA from literature [21, 28, 49–51]), the HCG split at 10.40 MYA (95% CI:

[10.27, 10.40], *8–12 from literature [21, 28, 50, 51]), and the HCGO split at 18.55 MYA

(95% CI: [18.37, 18.73], *10–20 from literature [28, 41, 50]). Moreover, ancestral Ne inferred

for the HC ancestor (167,400, 95% CI: [165, 548, 170, 361]) and for the HCG ancestor

(101,290, 95% CI: [100, 467, 101, 492]) are consistent with previous estimates using CoalHMM

(177,368 and 106,702, respectively [28]). Using the estimates for t2 (in generations) and NAB,

we get a probability of ILS equal to

ILS ¼
2

3
expð� t2=ð2NABÞÞ ¼

2

3
expð� 195; 000=ð2� 167; 400ÞÞ ¼ 37%;

PLOS GENETICS TRAILS: Tree reconstruction of ancestry using incomplete lineage sorting

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010836 February 8, 2024 8 / 21

https://doi.org/10.1371/journal.pgen.1010836


Fig 5. TRAILS output for 50 Mb of chromosome 1 of the HCGO alignment. (A) Estimates for the speciation times

(green) and ancestral Ne (purple) of the speciation process, optimized using TRAILS and assuming a mutation rate of μ
= 1.25 × 10−8 per site per generation. To convert time from generations to millions of years, a generation time of g = 25

years per generation was used. (B) Genome-wide variation of ILS, and first and second coalescent times. (C) Posterior

decoding of the topology, and first and second coalescent events for a zoomed-in region in chromosome 1. As in Fig 3,
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so our parameter estimates suggest the ((human, gorilla), chimp) topology in 18.5% of the

genome and the ((chimp, gorilla), human) topology in 18.5% of the genome. Finally, the

recombination rate was estimated to be ρ = 1.19 × 10−8 per site per generation, which matches

the rate estimated for present-day humans [52].

TRAILS allows for the independent estimation of each individual branch length, which is

useful for non-ultrametric trees. Fig 5A shows that the branch leading to chimps is longer than

that leading to humans by around 5.9%, and the gorilla branch is longer than both the human

(12.6%) and the chimp (9.1%) branches (calculated from the second speciation event to pres-

ent). This deviation from the molecular clock is well supported by previous studies [53], and is

likely because of different branches accumulating a different number of mutations per year,

either due to an acceleration or deceleration of the mutational process, changes in the average

time of reproduction, or a combination of these [54–56].

In summary, we have demonstrated that TRAILS is able to infer demographic parameters

that are in agreement with estimates from the literature. More importantly, it does so without

the need for any post-processing or corrections, avoiding the use of fossil calibrations [50] or

debiasing procedures [21, 28].

Posterior decoding of the HCGO alignment

Posterior decoding was then performed using the optimized parameters and setting nAB =

nABC = 5. In order to get an understanding of the genome-wide variation of ILS and coalescent

times, the resulting posterior probabilities were summarized in 100 kb windows along the chr1

region in three different ways. First, the mean posterior probability was calculated for each of

the four possible topologies, by first summing the posteriors of all hidden states sharing the

same topology for each site, and then averaging over all sites on the 100 kb window. The result-

ing probabilities were then used to calculate a proxy for ILS, by summing the probabilities of

observing the ILS topologies (V2 and V3 in Fig 3). Second, using a similar procedure, the

mean posterior probability was calculated for each of the six possible intervals for the first coa-

lescent event, by first summing the posteriors of all hidden states sharing the same first coales-

cent interval for each site, and then averaging over all sites in the 100 kb window. As a proxy

for the first coalescent time, integers from 1 to 6 were assigned to each interval in chronologi-

cal order backwards in time, and a weighted mean of those integers was computed, where the

weights were the mean posterior probabilities per window. Third, the same quantity as for the

first coalescent was computed for the second coalescent.

After filtering outliers smaller than the 1st percentile and larger than the 99th percentile,

these proxies were plotted as heatmaps (Fig 5B). The first coalescent and the ILS proportion

show a very strong correlation (ρ = 0.979), likely reflecting that V2 and V3 can only happen in

the common ancestor of all three species, so when ILS is present, coalescent times are generally

deeper (and vice versa). This signal is also captured, although more weakly, by the correlation

between the second coalescent and the ILS proportion (ρ = 0.483). This can be explained by

knowing that, conditional on ILS, the second coalescent follows a convolution of exponentials

of rates 3 and 1 [57], while, conditional on V0 (i.e., conditional on the first coalescent happen-

ing between speciation events), the second coalescent simply follows an exponential or rate 1.

both V0 and V1 correspond to the species topology (((H,C),G),O);, V2 corresponds to (((H,G),C),O);, and V3 to (((C,

G),H),O);. The LDLRAD1 gene is plotted on top, where exons are represented as boxes, coding regions as filled boxes,

and introns as horizontal lines.

https://doi.org/10.1371/journal.pgen.1010836.g005
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Thus, if more ILS is present in a certain window, then, on average, the second coalescent will

tend to happen deeper in time.

Fig 5B also shows how, at the 100 kb level, the genome displays spatial covariation in the

amount of ILS and the time to coalescence that exceeds stochastic effects of a neutral coales-

cent process. This is in line with previous results [28], where ILS proportions are affected by

genomic features such as gene density, recombination rate, and the effects of linked selection.

A zoomed-in region of around 41 kb is shown in Fig 5C, which shows a long fragment of

the ((chimp, gorilla), human) topology (V3). This fragment is unusually long, spanning 6,800

bp, and it is highly implausible following the demographic model inferred by TRAILS. Thanks

to the posterior decoding of the coalescent times performed by TRAILS, we can observe that,

for this fragment, the first coalescent event backwards in time happens close to the second spe-

ciation time (in interval F5), while the second coalescent event happens in the deepest time

interval (S4).

One explanation for such a long V3 fragment is that it might be influenced by selection,

which would maintain the alternative topology uninterrupted for a long period of time.

Another explanation could be that this fragment is introgressed, especially given that the first

coalescent event is shallow and that the fragment is long. For comparison, another region in

chromosome 1, which also shows an excess of V3 topology, has a much more variable distribu-

tion of coalescent times, and it is more fragmented (Fig Q in S1 Text). Such detailed informa-

tion about the timing of coalescent events is only possible thanks to the time discretization of

TRAILS, and these details would have been missed, for example, in the posterior decoding of

CoalHMM (recall Fig 1C).

The V3 fragment in Fig 5C overlaps with the last exon of the LDLRAD1 gene, which codes

for a lipoprotein receptor (UniProt: Q5T700). LDLRAD1 does not show signals of positive

selection in hominids (based on dN/dS values from Rivas-González et al. [28]). Additionally,

this gene is not particularly constrained in primates, as measured by PhastCons [58] and Phy-

loP [59], and it is not enriched for repeat elements, as retrieved from the UCSC Genome

Browser [60]. While we were unable to point out a specific cause for the pattern observed for

LDLRAD1, Fig 5C showcases how TRAILS can be used to infer the topology and coalescent

times of protein-coding genes at the base-pair level across millions of years of evolution. Com-

paring the posterior decoding with genomic covariates can reveal selective processes affecting

the sorting of lineages [28] or solve cases of phenotypic hemiplasy [34].

Discussion

Coalescent-based approaches for analyzing genomic data are essential tools for understanding

the ancestral history of species. Here, we have introduced TRAILS, an HMM that models the

topology and the two coalescent events for gene genealogies within a phylogeny of three spe-

cies. TRAILS can accurately infer population genetic parameters (ancestral Ne, speciation

times and recombination rate). From the posterior decoding, the three-species ARG can be

inferred at the base-pair level, providing insight into the ancestral history of the species at high

resolution. Deviations from neutrality can be detected by summarizing the posterior decoding

in windows and running genomic scans to find excess of coalescents happening at certain time

intervals, such as proposed in Fig 4. Moreover, more coarse-grained summaries of the poste-

rior decoding spanning several kilobases could be used to infer the genome-wide variation of

ILS or coalescent times, potentially revealing correlations with other genomic features such as

variation in the recombination rate or selection [28, 61].

As demonstrated here, the posterior decoding from TRAILS is a powerful way to infer

details of the ARG in the context of speciation, together with departures from the neutral
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expectation. Recurrent selective sweeps that have happened during the speciation process are

hypothesized to be drivers of speciation, and to greatly influence the genealogical landscape of

present-day genomes. For example, the human X chromosome contains long haplotypes

shared across all non-African populations [62], spanning large genomic regions that are both

lacking Neanderthal introgression [63], and showing very low rates of ILS in the human-

chimp ancestor [64]. This suggests that the X chromosome has a unique evolutionary history

which is greatly affected by gene flow (or lack thereof), and that these low-diversity regions

might be related to genetic incompatibilities that arose during the speciation of ancestral hom-

inids. TRAILS can help locate these ancient sweeps and infer when they occurred, potentially

illuminating when and how genomes were affected by selection during the speciation process.

Using posterior decoding, regions that show unusually high levels of an alternative topology

with very shallow coalescents can also be detected, which could indicate ancient introgression

or hybridization events happening between ancestral branches of the species tree. Such ancient

introgression events have been reported to be pervasive among some branches in the primate

species tree [50], although they can be difficult to distinguish from ILS [65] unless explicitly

modelled. TRAILS could be extended to model introgression more directly by including addi-

tional hidden states representing introgressed genomic fragments. These would have exceed-

ingly short coalescent times compared to the deep coalescent ILS states [28], and TRAILS

provides the mathematical framework to distinguish between these two cases.

TRAILS could also be extended to accommodate variation in Ne along individual ancestral

branches in the species tree, conceptually very similar to what is done in PSMC analyses from

a single extant genome [8]. Modelling variation in Ne can elucidate how speciation events

might have happened. For example, population sizes that are maintained more constant dur-

ing the speciation event might indicate a cleaner split, while increased ancestral Ne just prior to

the estimated time of speciation (here equalled to the total cessation of gene flow) might point

to a period of elevated population structure and a prolonged species separation with migration

[27]. Modelling changes in the demography around speciation events might also help us detect

and characterize instances of complex speciation, as proposed, for example, by Patterson et al.

[49].

The current implementation of TRAILS for calculating the transition probability matrix of

the HMM is restricted to three species and a relatively few number of hidden states (see Fig P

and section 9 in S1 Text for a discussion on the running times). With more efficient algo-

rithms, future extensions of TRAILS could be devised to analyze more than three species, thus

allowing for the inference of the speciation tree and the multi-species ARG for more taxa.

Based on the parameters estimated by TRAILS for the HCGO alignment (Fig 5A), the propor-

tion of ILS between humans (or chimps), gorillas and orangutans would be around 13%.

While this violates one of the assumptions of TRAILS, which is that there should be inappre-

ciable ILS between the outgroup and the rest of the analyzed species, it also showcases the need

for models that are able to accommodate more species (see subsection 2.4 in S1 Text). This

could help us resolve more complex patterns of ILS, which include phenomena such as anom-

aly zones [36, 66, 67].

Methods

The transition probabilities between the hidden states of TRAILS can be calculated from a

series of interconnected continuous-time Markov chains (CTMCs) that model the coalescent

with recombination of two contiguous nucleotides for one, two or three sequences. The

CTMCs are parameterized by the ancestral Ne, speciation times and recombination rate. The

transitions for TRAILS are subsequently calculated by conditioning the CTMCs on the
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topology and coalescent times of the gene trees at those two sites, binning coalescent events

into discretized time intervals along the speciation process. Additionally, the emission proba-

bilities for each hidden state are calculated from a CTMC of the mutational process by choos-

ing a certain substitution model. In this section, we provide a summary of the model, and the

full explanation can be consulted in S1 Text.

Continuous-time Markov chains for the ancestral process

The coalescent with recombination between two sites can be approximated as a continuous-

time Markov chain (CTMC). For one sequence, the left and the right sites can be either linked

or unlinked, so there are only two possible states for the CTMC. Two linked sites become

unlinked when a recombination event happens between them, which happens with a rate of

ρ1. On the other hand, the unlinked left and the right sites become linked when a coalescent

event happens between them, with a rate of γ1. These two transitions can be gathered in a tran-

sition rate matrix

Q1 ¼
� g1 g1

r1 � r1

 !

: ð1Þ

From this transition rate matrix, we can calculate the probability matrix PA as exp(tQ1),

which gives the probability of the sites being unlinked or linked at a certain time t given that

the chain starts in the unlinked state (first row) or unlinked state (second row).

When two sequences are involved, the state-space of the CTMC becomes more complex.

Apart from the coalescent and the recombination events described above, sites can also coa-

lesce irreversibly backwards in time with rate γ2, which happens when two left (or two right)

sites from two different sequences find common ancestry. The resulting rate matrix (Fig E in

S1 Text) for the coalescent with recombination with two sequences then corresponds to a

CTMC with 15 states (Fig D in S1 Text), which was originally described by Simonsen and

Churchill [68]. Due to these irreversible coalescent events, the rate matrix has a block-like

structure, and it contains sets of states in which sequences can freely recombine and coalesce

until an irreversible coalescent event occurs. Ultimately, both the left and the right sites will

have irreversibly coalesced, reaching one of two absorbing states. Note that the matrix is quite

sparse, since most of the transitions are not allowed.

Following a similar reasoning, the coalescent with recombination for three sequences can

also be modelled as a CTMC. In this case, both the left and the right site will eventually

undergo two irreversible coalescent events, which can potentially happen in any order between

the three sequences. This creates 203 possible states (Fig G in S1 Text), the transitions of which

can also be gathered in a rate matrix (Fig H in S1 Text). This matrix also has a block-like struc-

ture, and, given enough time, states will transition into one of the two absorbing states.

If all three sequences belonged to the same species, a three-sequence CTMC would be suffi-

cient to model the coalescent with recombination. However, the sequences belong to three dif-

ferent species, so the speciation process has to be overlaid on top. Subsequently, the coalescent

with recombination along the speciation tree is modelled as a series of interconnected

CTMCs.

Because sequences are sampled in present time, the left and the right sites are fully linked at

time 0, meaning that the starting probability vector for the one-sequence CTMCs is (0, 1).

Backwards in time, each of the sequences will remain isolated for a certain period of time in

which the two sites can recombine and coalesce freely. The sequences for species A and B will

remain isolated until the first speciation event at time tA and tB, respectively. Then, the final
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probabilities of the one-sequence CTMCs for A and B are merged to create the initial probabil-

ities for the two-sequence CTMC. After a certain time, where the two sequences are allowed to

coalesce and recombine, the final probabilities for the two-sequence CTMC and the final prob-

abilities for the one-sequence CTMC of species C will be merged, thus creating the starting

probabilities for the three-sequence CTMC. Finally, given enough time, all sequences for both

the right and the left site will eventually coalesce into one of the two absorbing states of the last

CTMC.

Transition probabilities of the HMM

The hidden states of TRAILS are genealogies which include a topology and two coalescent

events that can happen within discretized time intervals. The breakpoints of the time intervals

can thus be used to transform the CTMCs into a discrete-time Markov chain (DTMC). First,

the joint probability of observing the genealogies and the left and the right loci can be com-

puted by careful bookkeeping of the appropriate paths within the CTMC, defined by the corre-

sponding genealogies and the discretized time intervals. The transition probability matrix of

the DTMC (and the HMM) can then be obtained upon dividing the joint probability by the

discretized marginals. A detailed description of these derivations is given in S1 Text.

Emission probabilities of the HMM

For each hidden state, the emission probabilities are calculated using the Jukes-Cantor muta-

tional model [69]. Instead of calculating the emitted nucleotides for the three species only,

TRAILS also includes the nucleotides emitted by an outgroup, which provides essential infor-

mation about the ancestral state in each site. This additional species must have a sufficient

divergence with the rest of the species such that ILS can be neglected between them.

Parameterization

The transition and emission probabilities are parameterized by the speciation times (tA, tB, tC,

t2, tupper), the effective population sizes (NAB, NABC), and the recombination rate (Fig 2A).

Implicitly, TRAILS is also parameterized by the mutation rate, but this cannot be jointly

inferred with the rest of the parameters because the parameter values can be scaled by any fac-

tor and still produce the same coalescent model [57, 70]. Instead, the mutation rate in the

model is fixed to 1, and all other parameters are rescaled appropriately. The resulting units for

the speciation times are number of generations multiplied by the mutation rate, and, similarly,

the effective population sizes are number of individuals times the mutation rate. Accordingly,

the recombination rate is divided by the mutation rate, so the optimized parameter is the ratio

between the recombination and the mutation rate. After estimating the parameters, parameter

values with more interpretable units can be obtained by choosing an appropriate mutation

rate.

TRAILS allows for two different parameterizations, namely the ultrametric model and the

non-ultrametric model. In the ultrametric model, all sequences are sampled at time 0, so the

molecular clock is assumed (tA = tB = tC − t2 = t1). Instead, in the non-ultrametric model, each

sequence (A, B and C) is allowed to be sampled at a different time. This is useful to model devi-

ations from the molecular clock, for example, when the number of generations for each of the

species from present time until the speciation event is different, or the mutation rate varies

between the species.
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Simulations

Parameter estimation. Simulations to validate the model were performed in msprime
[29]. The underlying demographic model follows a speciation tree with four species, namely

A, B, C and D. The time from present to the first speciation event was set to t1 = 200, 000 gen-

erations. The (haploid) ancestral Ne for the time between speciation events was set to NAB =

80, 000. In order to keep an ILS proportion of 32%, the time between the first and the second

speciation events was set to t2 ¼ � NAB log 3

2
� 0:32

� �
¼ 25; 501 generations. The (haploid)

ancestral Ne earlier than the second speciation event was set to NABC = 70, 000, and the time

between the second speciation event and the speciation event with the outgroup was set to t3 =

1, 000, 000 generations. The recombination rate was set to ρ = 0.5 × 10−8 per site per genera-

tion. The tree was kept ultrametric in number of generations, meaning that all species were

sampled at generation 0, so tA = tB = t1, tC = t1 + t2, and tD = t1 + t2 + t3. Mutations were then

added on top of the simulated genealogies according to the Jukes-Cantor model [69] with a

mutation rate of μ = 1.5 × 10−8 per generation per site.

In order to investigate how the number of intervals in the AB-ancestor (nAB) and the ABC-

ancestor (nABC) affect the parameter estimation, twenty 10-Mb alignments were simulated

using msprime, and then TRAILS was run to estimate the demographic parameters for nAB =

nABC = 1 and for nAB = nABC = 5, using the bound-constrained Nelder-Mead algorithm. The

starting parameters of the optimization were randomly drawn from a normal distribution cen-

tered on the true value and with a standard deviation of the true value divided by 5. Conver-

gence was achieved at around 150 iterations, with a runtime of around 10 hours for nAB =

nABC = 5 per 10-Mb region (see section 9 in S1 Text for further details on the runtime of the

model).

Posterior probability. The demographic model described above was also used to generate

a 100 kb alignment to perform posterior decoding with the true parameters fixed. In TRAILS,

the default way of dividing up the coalescent space into discretized time intervals is by taking

quantiles of a truncated exponential of rate 1 (measured in units of NAB) for the time between

speciation events, while the time previous to the earliest speciation event is divided following

the quantiles of an exponential of rate 1 (measured in units of NABC). This scheme is appropri-

ate for computing the posterior decoding of the first coalescent event when it happens between

speciation events, since it is expected to follow exactly a truncated exponential of rate 1 accord-

ing to the standard coalescent. However, if the first coalescent happens deep in time, then the

coalescent times will follow an exponential with rate 3, since there are 3 lineages present. This

means that most coalescent events happen very fast, and there would be an overrepresentation

of coalescents in the first interval if the default cutpoint scheme is used.

TRAILS is, however, not restricted to a specific discretization, and it can compute the tran-

sition and emission probabilities, and, thus, perform posterior decoding, for user-specified

intervals. For the first coalescent in deep time, posterior decoding was performed using cut-

points from the quantiles of an exponential with rate 3, with nABC = 7 and the true parameters

from the msprime simulation.

Moreover, the second coalescent event will follow a mixture of an exponential with a rate of

1 (for the V0 states) and a convolution of two exponentials with rates 3 and 1 (for the deep coa-

lescent states) [57], which will happen with probability 1 − exp(−t2/NAB) and exp(−t2/NAB),

respectively. Here, t2 is the time between speciation events in number of generations, and NAB

is the effective population population size. The second coalescent time can thus be represented

as a phase-type distribution [71], with sub-intensity matrix S and initial probability vector π,
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such that

S ¼

� 1 0 0

0 � 3 3

0 0 � 1

0

B
B
B
@

1

C
C
C
A

and

π ¼ 1 � exp �
t2
NAB

� �

; exp �
t2
NAB

� �

; 0

� �

:

Therefore, posterior decoding for the second coalescent was performed using the quantiles of

this phase-type distribution using PhaseTypeR [72], with nAB = 5, nABC = 7, and the true

parameters used to generate the msprime simulation.

Selection. Using the same demographic model, a 200-kb alignment was simulated using

SLiM [30], assuming a single positively selected variant in the middle of the region, with popu-

lation-scaled selection parameter 2Nes = 175. Since SLiM is a forward simulator and runs

much slower than backward simulators such as msprime, all the demographic parameters of

the model were rescaled by a factor of 200 in order to increase computational speed. Posterior

decoding was performed on the resulting alignment simulated using the same discretization

scheme as described above, and the resulting posterior probabilities are plotted in Fig 4A.

To showcase how the posterior of TRAILS can be used as a test to detect deviations from

neutrality, SLiM was used to generate twenty 200-kb with and without a selected variant, and

TRAILS was run afterward to calculate the posterior probability for the second coalescent time

in 7 discretized intervals. The signal of the posterior decoding was summarized as the mean

posterior probability for each discretized time interval, plotted in Fig 4B and 4C.

Real data

The chromosome 1 multiz alignment of 30 mammalian species (27 primates) was downloaded

from the UCSC Genome Browser database in MAF format. Using MafFilter [43], the species

of interest were filtered (human, chimp, gorilla and orangutan), syntenic blocks separated by

200 nucleotides or less were merged using human as a reference, and blocks smaller than 2,000

bp were filtered out. The resulting filtered MAF was used as input for TRAILS, using the

parameters estimated in Rivas-González et al. [28] as starting values. The optimization was

performed using a bound-constrained version of the L-BFGS-B algorithm implemented in

numpy [45, 46, 73], by setting nAB = nABC = 3, and using the L-BFGS-B algorithm for model

fitting. To get a more accurate parameter estimation, the optimized estimates were used as

starting values for a second TRAILS run where nABC = 5, optimized using a bound-constrained

Nelder-Mead algorithm [74, 75], which showed better convergence for already-optimized

TRAILS runs.

Confidence intervals for the estimated parameters were computed using parametric boot-

strapping. 20 replicates of 50-Mb regions were simulated from the model fitted with the esti-

mated parameters. Afterward, TRAILS was run on the simulated regions to get optimized

parameters. For each parameter, a normal distribution was fitted for the 20 replicates, and the

95% confidence intervals were calculated from the fitted normal (Fig R and Table B in S1

Text).
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