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Broadband sensory networks with locally stored
responsivities for neuromorphic machine vision
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As themost promising candidates for the implementation of in-sensor computing, retinomorphic vision sensors
can constitute built-in neural networks and directly implement multiply-and-accumulation operations using re-
sponsivities as the weights. However, existing retinomorphic vision sensors mainly use a sustained gate bias to
maintain the responsivity due to its volatile nature. Here, we propose an ion-induced localized-field strategy to
develop retinomorphic vision sensors with nonvolatile tunable responsivity in both positive and negative
regimes and construct a broadband and reconfigurable sensory network with locally stored weights to imple-
ment in-sensor convolutional processing in spectral range of 400 to 1800 nanometers. In addition to in-sensor
computing, this retinomorphic device can implement in-memory computing benefiting from the nonvolatile
tunable conductance, and a complete neuromorphic visual system involving front-end in-sensor computing
and back-end in-memory computing architectures has been constructed, executing supervised and unsuper-
vised learning tasks as demonstrations. This work paves the way for the development of high-speed and low-
power neuromorphic machine vision for time-critical and data-intensive applications.
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INTRODUCTION
Machine vision plays a crucial role in time-critical applications,
which require real-time object recognition and classification, such
as autonomous driving and robotics (1). With the increase of frame
rates and pixel densities of sensors, large quantities of raw and un-
structured data are generated in sensory terminals (2, 3), and image
processing becomes a data-intensive task, which requires high-effi-
ciency and low-power image processing directly at the sensory ter-
minals (2, 4, 5). The emerging in-sensor computing that can
perform low-level and high-level image processing tasks in
sensory networks has attracted numerous attentions in recent
years, and various neuromorphic devices and structures including
optoelectronic synapses (6–11) and one-photosensor–one-memris-
tor arrays (3, 12) have been developed to implement in-sensor com-
puting. In particular, human retina–inspired retinomorphic vision
sensors have demonstrated their great potential in in-sensor com-
puting because they can constitute built-in artificial neural net-
works (ANNs) and implement multiply-and-accumulation
(MAC) operations using tunable responsivities as the weights of
ANNs (1, 13–18). However, these retinomorphic devices still
suffer from the volatile nature of their responsivities, which
require a sustained gate bias to maintain (1, 13, 14, 19, 20). That
is, the weights of ANNs need to be stored remotely and supplied

to each vision sensor via complex external circuits, which would in-
evitably consume additional energies. More seriously, extremely
complex circuits are required for the individual control of each
unit in networks, which is almost impossible and unacceptable
for large-scale sensory networks considering the limited power
and resources available at the edge. In addition, the limited operat-
ing spectra of these retinomorphic devices, mainly in ultraviolet
(UV) and visible (vis) range (1, 13, 15, 16, 19, 20), hinder the imple-
mentation of in-sensor computing in more important infrared
band. It is highly desirable to develop broadband retinomorphic
vision sensors with nonvolatile tunable responsivities to constitute
sensory networks for neuromorphic machine vision.

Here, we propose an ion-induced localized-field modulation
strategy to realize the nonvolatile modulation of responsivity and
develop a broadband retinomorphic vision sensor with operating
spectra covering 400 to 1800 nm based on core-sheath single-
walled carbon nanotube@graphdiyne (SWNT@GDY). The respon-
sivity can be linearly modulated in both positive and negative
regimes by controlling the localized field induced by the trapped
Li+ ions in GDY, enabling the implementation of in-sensor MAC
operation and convolutional processing. A 3 × 3 × 3 sensor array
is fabricated to constitute a reconfigurable convolutional neural
network (CNN) involving three kernels (3 × 3), and low-level and
high-level processing tasks for multiband images, including edge
detection and sharpness of hyperspectral images and classification
of colored letters, are performed as demonstrations. The conduc-
tance of this retinomorphic device can also be linearly modulated,
and, thus, the device array can also implement in-memory comput-
ing tasks. A complete hardware emulation of human visual system
including retina and brain visual cortex is achieved by networking
the front-end in-sensor CNN and back-end in-memory ANN based
on the same device structure, and unsupervised learning (autoen-
coder) is demonstrated. The nonvolatile nature of responsivity
induced by the localized field enables the local storage of weights

1MOE International Joint Laboratory of Materials Microstructure, Institute for New
Energy Materials and Low Carbon Technologies, School of Material Science and
Engineering, Tianjin University of Technology, Tianjin 300384, China. 2The Key Lab-
oratory of Weak Light Nonlinear Photonics, Ministry of Education, School of
Physics, Nankai University, Tianjin 300071, China. 3Key Laboratory of Multifunction-
al Nanomaterials and Smart Systems Division of Advanced Material, Suzhou Insti-
tute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou
215123, China. 4Center for Nanochemistry, Beijing Science and Engineering
Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences,
College of Chemistry and Molecular Engineering, Peking University, Beijing
100871, China.
*Corresponding author. Email: chenxd@nankai.edu.cn (X.-D.C.); lutongbu@tjut.
edu.cn (T.-B.L.); jinzhang@pku.edu.cn (J.Z.)
†These authors contributed equally to this work.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Zhang et al., Sci. Adv. 9, eadi5104 (2023) 15 September 2023 1 of 11

mailto:chenxd@nankai.edu.cn
mailto:lutongbu@tjut.edu.cn
mailto:lutongbu@tjut.edu.cn
mailto:jinzhang@pku.edu.cn


in sensory networks, which is essential for high-efficiency low-
power in-sensor computing at edge.

RESULTS
Broadband retinomorphic vision sensor with nonvolatile
responsivity
Figure 1A illustrates the schematic of human visual system, in which
visual information is sensed and preprocessed in retina, and the ex-
tracted features (encoded data) are then transmitted to visual cortex
in the brain for further processing (21, 22). The front-end retina
plays a crucial role in this system because it can greatly reduce the
delivered data to the brain by executing first-stage processing. In-
spired by human visual system, neuromorphic machine vision com-
posed of front-end in-sensor computing and back-end in-memory

computing architectures (Fig. 1B) provides a high-efficiency and
low-power solution for real-time and data-intensive tasks by pro-
cessing the captured images directly at the sensory terminals. Com-
pared to the well-studied and gradually mature in-memory
computing architecture (23–26), the crucial in-sensor computing,
however, still requires more efforts.

To emulate the functions of human retina and implement in-
sensor computing, retinomorphic vision sensors based on core-
sheath SWNT@GDY nanotubes were fabricated by Aerosol Jet
printing (Fig. 1, C and D; details in Materials and Methods and
figs. S2 and S3). The core-sheath SWNT@GDY nanotubes, which
were synthesized via a solution-phase epitaxial strategy (note S1)
(27–31), were well designed to realize the nonvolatile modulation
of responsivity in both positive and negative regimes. As described
in note S2 and figs. S4 to S10, GDY is crucial for the intercalation of

Fig. 1. Neuromorphic visual systems inspired by human visual system. (A) Schematic of human visual system consisting retina and brain visual cortex. (B) A complete
neuromorphic visual system involving front-end in-sensor computing and back-end in-memory computing. (C) Schematic of sensory networks based on core-sheath
SWNT@GDY nanotubes. The middle and right panels show the structure and high-resolution transmission electron microscopy image of the core-sheath SWNT@GDY
nanotube. Scale bar, 5 nm. (D) Photograph, optical microscopy, and scanning electron microscopy images of a 3 × 3 × 3 sensor array divided into three kernels. Scale bars
(left to right), 50, 2, and 1 μm, respectively.
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Li+ ions and the nonvolatile modulation of conductance and re-
sponsivity, benefiting from its evenly distributed large pores and
high Li+-ion storage capability (32, 33). Li+ ions in electrolyte can
penetrate into GDY layer driven by a small gate bias and store in
GDY even after removing the external gate bias (fig. S4). The thick-
ness of the sheath GDY layer was approximately 1 nm, as a thicker
GDY layer would obstruct the light absorption of core SWNT and
restrict the charge transport between the electrodes and SWNT
channel (note S2).

Figure 2A shows the collective transfer curves of the device with
gate voltage (VG) sweeping from −0.5 to 0.5 V and back to −0.5 V. A
clockwise hysteresis with an on/off ratio of over 103 at VG = 0 V is
observed, which is induced by the intercalation of Li+ ions in GDY
(32). The reduced conductance after sweeping is ascribed to the re-
sidual Li+ ions trapped in GDY, and it can return to its initial state

while prolonging the time for Li+-ion extraction (fig. S12). The
density of Li+ ions in GDY can be precisely controlled by applying
positive or negative VG pulses. As shown in Fig. 2B and fig. S13, the
conductance was linearly modulated from 7.0 to 0.3 nS with 64 dis-
crete states by applying VG pulses (0.5 V, 1 ms). These conductance
states exhibit nonvolatile characteristics with retention time of over
104 s (fig. S14), which indicates the stability of the intercalated Li+
ions in GDY. A reversible and repeatable conductance update with
high linearity and symmetricity was achieved as shown in Fig. 2C,
demonstrating its potential in neuromorphic computing (34, 35).
The energy consumption for each update operation is calculated
as low as 50 aJ (E = VG × IGS × tduration), considering the leakage
current IGS in order of 10−13 A (fig. S15). The cyclic endurance of
the device was measured by alternatively applying positive and neg-
ative VG pulses for 105 cycles (fig. S16), and no degradation was

Fig. 2. Retinomorphic vision sensors with nonvolatile conductance and responsivity. (A) Transfer curves with VG sweeping from −0.5 to 0.5 V and back to −0.5 V. (B)
Sixty-four discrete conductance states realized by applying 0.5-V, 1-ms VG pulses. (C) Linear, symmetric, and repeatable conductance-update curves obtained by alter-
natively applying 64 positive and 64 negative VG pulses (±0.5 V, 1 ms). (D and E) Negative (D) and positive (E) photoresponse triggered by a 532-nm optical pulse. A 0.1-V
read voltage (Vds) was used. (F and G) Band alignments and charge transfer for the SWNT/GDY heterostructure without (F) and with (G) Li+-ion intercalation in GDY layer.
Without Li+ intercalation, the hole-attracting alkyne bonds in GDY induce the transfer of photogenerated holes from SWNT to the charge trapping sites in GDY, resulting in
the decrease of the hole concentration (majority carrier) in SWNT and thus a negative photocurrent. With numerous Li+ intercalation, positively charged Li+ ions attract
photogenerated electrons transfer from SWNT to GDY, inducing the increase of hole concentration in SWNT and thus a positive photocurrent. (H) Symmetric and re-
versible modulation of the responsivity in positive and negative regimes by applying positive and negative VG pulses (±0.5 V, 10 ms). (I) Linear, reversible, and repeatable
modulation of responsivity in range of ±10 mAW−1 by controlling the density of intercalated Li+ ions in GDY.
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observed for both the high- and low-conductance states during the
whole test. All these results demonstrate that frequent and repetitive
intercalation/extraction of Li+ ions would not destroy the structure
and degrade the performance of our device.

The intercalated Li+ ions in GDY also induce a notable modula-
tion of the device photoresponse. As shown in Fig. 2 (D and E), a
negative photoresponse was observed for the device without Li+-ion
intercalation, while a positive photoresponse with comparable am-
plitude can be achieved by intercalating Li+ ions into GDY. This can
be explained by the transition of GDY from hole-attracting to elec-
tron-attracting with the intercalation of Li+ ions. GDY contains nu-
merous alkyne bonds that are quite active as positive-charge–
attracting magnets (36, 37). For the case without Li+-ion intercala-
tion, these positive-charge–attracting magnets facilitate the separa-
tion and transfer of photogenerated holes from SWNT to GDY
(Fig. 2F), leading to a negative photoresponse considering the p-
type nature of SWNT. With the intercalation of Li+ ions, a localized
electrostatic field is formed from GDY to SWNT, preventing the in-
jection of holes and offsetting the hole-attracting of alkyne bonds.
While the electrostatic field is strong enough, the GDY layer will
attract photogenerated electrons and thus induce a positive photo-
response (Fig. 2G). The competition between the hole-attracting of
alkyne bonds and electron-attracting of Li+ ions in GDY makes it
possible to modulate the photoresponse continuously in negative
and positive regimes. As shown in Fig. 2H and fig. S17, by control-
ling the density of intercalated Li+ ions in GDY, a symmetrical, re-
versible, and nonvolatile modulation of responsivity was achieved,
which was almost linear in range of ±10mAW−1 (Fig. 2I). The core-
sheath structure and π-conjugated coupling of the two carbon allo-
tropes, SWNT and GDY, enable the fast transfer of carriers between
SWNT and GDY, and the timescale of the photoresponse is in
several milliseconds (Fig. 2, D and E). The response speed is
mainly limited by the charge trapping/detrapping mechanism of
the device. In addition, given the parasitic capacitance for micro/
nano devices usually in orders of femtofarad to sub-picofarad and
the high resistance of the device (108 to 109 ohms), the resistance-
capacitance (RC) time constant is in orders of microsecond to sub-
millisecond, which is another important factor that limits the
further improvement of response speed.

Linear and identical weight update for sensory network
A 3 × 3 × 3 retinomorphic sensor array (Fig. 1D) was fabricated to
implement in-sensor computing. For neuromorphic hardware
systems, the performance identity and reliability of each element
in the neural network are essential for high computing accuracy.
To minimize the influence of device-to-device variation and
cycle-to-cycle variation for weight update, here, we used a closed-
loop programming operation (25) to program the conductance
states and responsivities of all the 27 vision sensors in the sensory
network (note S3 and figs. S18 to S20). As detailedly described in
note S3, the conductance and responsivity were equally divided
into 32 levels (5 bits) in their linear regions, and all the 27 devices
could be programmed to these states precisely and repeatedly (figs.
S21 and S22). Figure 3 (A and C) depicts the cumulative probability
distribution of the 27 devices with respect to 32 discrete conduc-
tance and responsivity states for 1000 repetitions, where all these
states are separated without any overlap (figs. S23 and S24).
Figure 3B shows the I-V curves of the device measured at the 32
conductance states, with an excellent linearity in ±0.2 V regime.

As well, the light intensity–dependent photocurrents were mea-
sured (fig. S25), demonstrating a linear relationship for all the 32
responsivities (Fig. 3D). The linear bias-voltage and light-intensity
dependence on the drain current and photocurrent enable accurate
analog multiplication operations for in-memory and in-sensor
computing, respectively.

The broadband absorption of SWNT@GDY (fig. S11) enables
the retinomorphic vision sensors to operate in a wide spectral
range. The photoresponse of the device triggered by light with wave-
lengths of 400 to 1800 nm was investigated (fig. S26). The update of
responsivities at these wavelengths were also performed using the
closed-loop programming method. As shown in Fig. 3E, linear
and reversible responsivity updates with 32 discrete levels were
achieved for all the six wavelengths, and fig. S27 presents the distri-
bution of the 32 responsivities for all the 27 devices. The linear re-
lationship between light intensity and photoresponse was also
demonstrated for the six wavelengths (fig. S28). All these results
demonstrate the capability of our retinomorphic vision sensors to
implement in-sensor computing for multiband images.

In-sensor convolutional processing of multiband images
The linear modulation of responsivity and linear light-intensity de-
pendence of photocurrent as demonstrated above make it possible
to construct a reconfigurable retinomorphic sensory network by
connecting the retinomorphic vision sensors in parallel. In-sensor
MAC operation, a fundamental operation for in-sensor computing,
can be realized by performing a real-time multiplication of optically
projected images with responsivity matrix of the sensor array and
summing the photocurrents generated by all the vision sensors
via Kirchhoff’s law. To demonstrate the accuracy of theMAC imple-
mented in our SWNT@GDY-based sensor array, a simple network
containing two sensors was first investigated (Fig. 4A). As shown in
Fig. 4B, two responsivities, R1 and R2, were set to the same and op-
posite values, respectively, and a sequence of optical pulses with dif-
ferent intensities was projected to the sensors. The measured total
photocurrents generated by the two sensors follow the equation of
Iph = R1P1 + R2P2, confirming the validity of MAC.

The broadband characteristics of the SWNT@GDY-based vision
sensors enable the sensing and processing of multiband images, for
example, hyperspectral images captured by aircrafts or satellites.
Here, a 3 × 3 sensor array with reconfigurable responsivities was
used as a convolutional kernel to sense and process hyperspectral
images from Urban datasets (Fig. 4C). The detailed process for
the convolutional processing is described in Materials and
Methods and fig. S29. Three images (100 × 100 pixels) were extract-
ed from the hyperspectral images to represent images in UV, vis,
and near-infrared (NIR) bands, respectively. By setting the kernel
with different responsivity distributions, the sensing and process-
ing, e.g., edge detection and sharpness, of multiband images were
implemented successfully. Figure 4D presents the reconstructed
images obtained by sliding the corresponding kernels on multiband
images. End-members including “roof,” “grass,” “tree,” and “road”
embedded in the multiband images with different wavelengths
(fig. S30) were highlighted by the convolutional processing operated
in corresponding bands. The good agreement of the experimental
results with simulations (fig. S31) verifies the reliability of in-sensor
convolutional processing for multiband images in UV-vis-
NIR bands.
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In-sensor CNN for classification and autoencoding
The successful implementation of MAC operation demonstrates the
potential of this retinomorphic sensor array to constitute a built-in
neural network and perform high-level processing tasks, analogous
to the function of human retina. On the basis of the fabricated 3 × 3
× 3 sensor array, a CNN containing three convolutional kernels (3 ×
3) was constructed to perform color-image classification tasks
(Fig. 5A). Three letters of “n,” “k,” and “u” (3 × 3 pixels) with
mixed colors and Gaussian noises (σ = 0, 0.1, 0.2, and 0.3, respec-
tively) were randomly generated as training and test datasets

(Fig. 5B and figs. S32 and S33). In each training epoch, a set of 20
randomly chosen letters was optically projected to three kernels (fig.
S34), and the corresponding output photocurrents of each kernel Im
(m = 1, 2, and 3 representing the kernel index) were further non-
linearly activated by the Softmax function. The outputs f1, f2, and
f3 after activation represent the probabilities for letters n, k, and u,
respectively. The weights (responsivities) of each kernel were
updated by backpropagating the gradients of loss function (here,
cross-entropy function). Figure 5C and fig. S35 present the weight
distribution of the three kernels before and after 30 epochs, and fig.

Fig. 3. Linear and identical conductive and photoresponse characteristics for the sensory network. (A) Cumulative probability distribution of the whole 27 devices
with respect to 32 discrete conductance states for 1000 repetitions. (B) I-V curves of the device at the 32 conductance states with Vds sweeping from −0.2 to 0.2 V. (C)
Cumulative probability distribution of the whole 27 devices with respect to 32 discrete responsivity states for 1000 repetitions. (D) Light-intensity dependence of the
photocurrents for the device with 32 different responsivities, under irradiation of 532 nm and read voltage of 0.1 V. (E) Linear and reversible responsivity updates with 32
discrete states for wavelengths of 405, 532, 633, 980, 1550, and 1800 nm, respectively. The conductance and responsivity in this figurewere updated using the close-loop
programming method.
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S36 depicts the evolution of the loss during training. The accuracy of
the network was estimated by classifying 100 letters chosen from the
test datasets. Although the wavelength-dependent photoresponse
would induce slightly degradation in recognition efficiency for
mixed-color images (fig. S37), the recognition accuracy still
quickly reaches 100% within 10 epochs for σ = 0 and 0.1, and ap-
proximately 20 epochs are required for color images with larger
noises of σ = 0.2 and 0.3 (Fig. 5D). Figure 5E depicts the evolution
of outputs f1, f2, and f3 for letters of n, k, and u with σ = 0.2, and the
target image is well separated from the other two letters after 10
epochs, demonstrating the successful classification of color
images. Although the wide operation spectral range of the vision
sensor enables the recognition of color images, it can just recognize
what the letter is (n, k, or u) but still lack the ability to distinguish
the color of each pixel. As we emphasized above, the key feature of
this retinomorphic vision sensor is the nonvolatile responsivity,

and, thus, the weights can be locally stored in the CNN without ex-
ternal field. Figure S38 presents the evolution of theweights after the
last training, and the degradation of the responsivity for each device
was approximately 5% in 10 hours. This level of degradation would
not influence the classification accuracy of the classifier, which still
kept 100% even after 10 hours (fig. S39).

In addition to in-sensor computing, the linear and nonvolatile
modulation of the conductance states enables the implementation
of in-memory computing. A complete neuromorphic visual
system involving front-end in-sensor computing and back-end in-
memory computing, analogous to human visual system including
retina and visual cortex, was constructed by networking a 3 × 3 ×
3 in-sensor CNN with a 3 × 9 in-memory ANN. As a demonstra-
tion, unsupervised autoencoding tasks were implemented using the
sensory network and ANN to act as encoder and decoder, respec-
tively (Fig. 5F). Grayscale images (3 × 3 pixels) with Gaussian noises

Fig. 4. In-sensor MAC operation and convolutional processing for multiband images. (A) Schematic circuit diagram of a sensory network containing two retino-
morphic vision sensors for implementation of in-sensor MAC operation. R1 and R2 represent the responsivities of the two sensors, while P1 and P2 are the corresponding
light intensities. (B) The output total photocurrent generated by the two sensors by applying irradiation with different intensities. Top: The responsivities of the two
sensors were both set as 6.0 mAW−1. Bottom: The responsivities were set as 6.0 and −6.0 mAW−1, respectively. (C) Hyperspectral image of Urban (https://rslab.ut.ac.ir/
data) (40). (D) Demonstration of different convolutional processing operations (image sensing, edge detection, and sharpness) in UV, vis, and NIR bands by setting
different responsivity distributions of the 3 × 3 kernel.
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(σ = 0.2 and 0.3) were generated as the training and test datasets for
the autoencoding task (fig. S40). The grayscale images were project-
ed into the sensory kernels, and the total photocurrents of each
kernel Im were activated by the Sigmoid function, outputting a (3
× 1) encoded data. The encoded data were transformed to a
vector of voltage signals and fed into the in-memory ANN for de-
coding. After the in-memory MAC operation, the currents

measured from each output neurons In (n = 1, 2, …, 9) were
further nonlinearly activated (Sigmoid function), and the corre-
sponding outputs P0n were used to reconstructed a 3 × 3 pixel
image. The network was trained, and backpropagation was per-
formed to update the weights of the encoder and decoder (figs.
S41 and S42); the loss evolution during the training is shown in
fig. S43. Figure 5G presents the corresponding outputs of the

Fig. 5. Implementation of in-sensor CNN for
classification and autoencoding. (A) Schematic of
an in-sensor classifier containing three 3 × 3 kernels
for color-image classification. (B) Color images of
letters n, k, and u with randomly generated colors
and Gaussian noises (σ = 0, 0.1, 0.2, and 0.3, re-
spectively). (C) Responsivity distributions of the
classifier before (initial) and after (final) training for
σ = 0.2. (D) Classification accuracy of the classifier
during training for datasets with different noise
levels. (E) Average output signals ( f1, f2, and f3) for
each projected letter, measured during each train-
ing epochwith a noise level of σ = 0.2. (F) Schematic
of an autoencoder using a 3 × 3 × 3 sensory
network (in-sensor computing) and a 3 × 9 ANN (in-
memory computing) as the encoder and decoder,
respectively. (G) Autoencoding process using gray-
scale images with noise level of σ = 0.2 as demon-
stration. Each input image was translated into a
current code with three elements, which were
further nonlinearly activated to a set of encoded
data approximately in binary and finally recon-
structed to a 3 × 3 image by the decoder. (H) Re-
constructed images of the pretrained autoencoder
with locally stored weights (responsivity for
encoder and conductance for decoder) for input
images with noise levels of σ = 0.2 and 0.3. t rep-
resents the time after the last weight update, and
autoencoding tasks were implemented with
different t values.
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trained autoencoder for input images of n, k, and u. After in-sensor
computing, each letter generates a unique encoded data close to
binary, and the following in-memory computing can decode it
into an image. The reconstructed images interpret the inputs cor-
rectly, with reduced noises and enhanced contrast. Figure 5H and
fig. S44 depict the reconstructed images produced by the trained
autoencoder with different times after the last training. The
almost unchanged images undoubtedly demonstrate the local
storage of the responsivities and conductance states in the networks,
and, thus, the neuromorphic visual system can perform image
sensing and processing tasks without external field.

DISCUSSION
Table S1 compares the parameters of the existing retinomorphic
vision sensors with our device. The most important advantage of
our device is that it can realize the nonvolatile modulation of the
responsivity in a quite wide spectral range, which enables the imple-
mentation of in-sensor computing for broadband images. Of
course, this device still suffers from some limitations for practical
applications. (i) A drain bias is still required during the read
process, inducing a high dark current and consuming more
energy. (ii) The response speed is limited to milliseconds due to
the charge trapping/detrapping mechanism, restricting its potential
for high-speed image processing. (iii) Although it can operate in a
wide spectral range, the discrimination of colors (wavelengths) is
still a great challenge, and thewavelength-dependent photoresponse
will affect the processing accuracy of the sensory network for color
images. (iv) The scale of the sensory network is still limited, which is
difficult in meeting the requirements of machine vision for millions
of pixels and tens of categories in real scenarios. In the future, we
will pay more efforts to solve these challenges. Fortunately, the pho-
tovoltaic effect provides a feasible approach to realize high-speed
photoresponse in nanosecond timescale (1), and no drain bias is re-
quired for devices based on the photovoltaic effect. The RC delay,
however, should also be fully considered for high-speed devices
because the parasitic capacitance, together with the large resistance
of the device, would induce a nonnegligible RC time constant,
which limits the further improvement of the processing speed.
Mimicking the various human cone cells (short-wave, middle-
wave, and long-wave cones) that respond to specific wavelengths
(38) might provide a possible approach to realize color discrimina-
tion. In addition, the compatibility of the device with modern com-
plementary metal-oxide semiconductor (CMOS) technology is
crucial for the large-scale fabrication of the sensory network. The
polymer electrolyte used in this work is considered to be the
main obstacle for CMOS process due to its poor thermodynamical
stability and processability. Nevertheless, inorganic solid electrolyte
(e.g., Li3PO4 and LixSiO2) provides a promising candidate to replace
the polymer electrolyte (39), which can improve the CMOS compat-
ibility of our device. High-speed, low-power, and large-scale retino-
morphic vision sensors with nonvolatile modulation of responsivity
and color discrimination ability should be further developed in
the future.

In conclusion, we have proposed a strategy that uses localized
field induced by captured Li+ ions instead of the externally con-
trolled gate bias to realize nonvolatile modulation of responsivity.
Moreover, correspondingly, retinomorphic vision sensors based
on specially designed core-sheath SWNT@GDY have been

developed to constitute built-in neural networks with locally
stored weights, which can implement in-sensor convolutional pro-
cessing in a wide spectral range covering 400 to 1800 nm. Closely
analogous to human visual system, neuromorphic machine vision
involving front-end in-sensor CNN and back-end in-memory
ANN is constructed to implement supervised and unsupervised
learning tasks. It is a great breakthrough for the development of
in-sensor neural networks with locally stored responsivities, provid-
ing a feasible strategy to develop high-speed and low-power neuro-
morphic machine vision for real-time object recognition and
classification.

MATERIALS AND METHODS
Device fabrication
Core-sheath SWNT@GDY nanotubes were synthesized via a solu-
tion-phase epitaxial strategy as described in note S1. The prepat-
terned source, drain, and side-gate electrodes (Cr/Au, 10/50 nm)
of the device array were fabricated on an oxygen plasma–pretreated
SiO2/Si substrate (300-nm SiO2) by photolithography, thermal
evaporation, and liftoff processes. The SWNT@GDY channels
with a thickness of approximately 10 nm were directly printed by
an Aerosol Jet printer using core-sheath SWNT@GDY solution as
inks, followed by an annealing process at 120°C for 30 min. An in-
sulated polymethyl methacrylate (PMMA) layer was spin-coated on
the device surface to protect the source and drain electrodes from
contact with the electrolyte, and specific reaction windows on top of
the channels and side gates were selectively exposed by electron-
beam lithography. The ion-gel electrolyte was prepared by dissolv-
ing 30 mg of LiClO4 (Sigma-Aldrich) and 100 mg of polyethylene
oxide powders [weight-average molecular weight (Mw) = 100,000,
Sigma-Aldrich] into 20 ml of anhydrous methanol. The mixture
was stirred for 24 hours at 50°C. After that, the polymer electrolyte
with a thickness of 1.2 μm was spin-coated on top of the PMMA
layer, connecting the exposed SWNT@GDY channel and side-
gate electrode (32). The electrolytes of each device were separated
via selective etching to avoid interference between adjacent
devices. Last, the device array was mounted and wire-bonded to a
chip carrier for measurement.

Measurement setup
For electrical measurements, basic electrical characteristics were
measured by a semiconductor analyzer (Keithley, 4200A-SCS).
The gate pulses were applied by an arbitrary waveform generator
(Tektronix, AFG31052). During the implementation of in-sensor
and in-memory computing, drain voltages and corresponding
output currents (photocurrents) were applied and measured using
a set of source-measurement units (Keithley). For optical inputs,
fiber lasers with tunable intensities and wavelengths of 405, 532,
633, 980, 1550, and 1800 nm were used. The 3 × 3 images generated
by nine aligned lasers with corresponding wavelengths and intensi-
ties were projected onto the device array using a microscope
(fig. S34).

Convolutional processing for hyperspectral images
Hyperspectral images with band numbers of 1, 60, and 130 were
selected as images with spectra of UV, vis, and NIR, respectively.
For simplicity, all these images were first compressed to 100 ×
100 pixels. Each image was divided into a series of 3 × 3–pixel
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subimages with a sliding step of 1 (fig. S29). The pixel values (0 to
255) of these subimages were converted to voltages that were used to
control the intensity of input lasers with corresponding wavelengths
(405 nm for UV, 633 nm for vis, and 1800 nm for NIR). These sub-
images were optically projected to a 3 × 3 sensor array in sequence,
and the total photocurrents were measured by applying a drain
voltage of 0.1 V. The responsivity distribution of the sensor array
was set using a closed-loop programming method (fig. S20) one
device by one device. The dark currents of the sensor array were
measured before and after optical projection to calibrate the photo-
currents. Through in-sensor MAC operations, each subimage was
converted to a photocurrent value, and processed images were re-
constructed by ranking the measured photocurrents in sequence.

Preparation of datasets
The training and test datasets used for classification and autoencod-
ing were generated by Python. For classification task, we prepared
four sets of training and test datasets with different Gaussian noises
(σ = 0, 0.1, 0.2, and 0.3). For each training dataset, 200 images cor-
responding to letters of n, k, and u were randomly generated, and,
then, colors (blue, green, and red) and noises (with corresponding
σ) were randomly added to prepare color images. Test datasets con-
taining 100 images were prepared in the same way. For autoencod-
ing task, grayscale training and test datasets with different Gaussian
noises (σ = 0.2 and 0.3) were prepared similarly, just remove the step
of adding colors.

Implementation of image classification
The initial weights (responsivities) of the sensory network were ran-
domly chosen with a Gaussian distribution. For each training
epoch, a set of 20 color images was randomly chosen from the train-
ing dataset with corresponding noise level. These images were op-
tically projected to three kernels (3 × 3), and the output
photocurrents of each kernel Im was given by

Im ¼
X3

i¼1

X3

j¼1
Im;ij ¼

X3

i¼1

X3

j¼1
Pij � Rm;ij ð1Þ

where i and j represent the row and column indices, respectively.
The above-described processes were executed on the sensor array
hardware, and the following activation and backpropagation pro-
cesses were performed on software. In detail, the measured Im
was activated by the Softmax function

f mðImÞ ¼ eImξ=
XM

k¼1
eIkξ ð2Þ

where ξ = 109 A−1 is the scaling factor for normalization, andM = 3
here corresponds to the number of classes. The output after activa-
tion fm represents the predicted probability ŷm corresponding to
letters of n, k, and u, respectively, and the letter with the largest
ŷm is regarded as the classification result. There is only one convolu-
tional layer and no pooling layer in this CNN network. After each
epoch, the loss was calculated using the cross-entropy loss function

L ¼ �
XM

k¼1
yklogŷk ð3Þ

where yk and ŷk were the label and prediction, respectively. To

update the weights of the neural network, the gradients of the loss
function L was backpropagated

ΔRm;ij ¼
η
S

XS

k¼1
rRm;ijLk ð4Þ

with learning rate η = 0.2 and the size of batch S = 20. The updated
weights were programmed to the sensor array one device by one
device, using the closed-loop programming method (note S3).
The classification accuracies were measured by projecting 100 test
images to the network in each epoch. The distributions of weights
during and after training were measured one device by one device as
shown in fig. S34E.

Implementation of autoencoding
The initial weights of the front-end CNN and back-end ANN net-
works were randomly chosen with a Gaussian distribution. The
training of the autoencoder was performed by feeding 20 randomly
chosen grayscale images to the CNN kernels for each epoch. The
images were projected into the sensor array using 3 × 3 laser
array (532 nm), and the responsivities in the three kernels were pro-
grammed to the corresponding values for 532-nm wavelength. The
output photocurrents of each kernel Im were measured and further
nonlinearly activated using the Sigmoid function [ fm(Im) = (1 +
e−Imξ)−1, where ξ = 5 × 109 A−1]. The encoded data were converted
to sequential voltage pulses (6-bit precision) with six time intervals
(t1, t2, …, t6) (7, 25), and the total output currents were summed by
In ¼

P6
k¼1ðIk � 2k� 1Þ (fig. S45). The nine output currents In were

also activated by the Sigmoid function (scaling factor ξ = 3 × 108

A−1). The mean square loss function L ¼
P9

n¼1 ðPn � P0nÞ
2 was

used for backpropagation and weight update, where Pn and P0n cor-
respond to the intensity of the nth pixel in original and reconstruct-
ed images. The nonlinear activation and backpropagation processes
in classification and autoencoding tasks were performed by soft-
ware. After the last training, the weights (responsivity for encoder
and conductance for decoder) and autoencoding tasks were mea-
sured every 1 hour.

Supplementary Materials
This PDF file includes:
Supplementary Notes 1 to 3
Figs. S1 to S45
Table S1
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