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Single-cell genotypic and phenotypic analysis of
measurable residual disease in acute myeloid leukemia
Troy M. Robinson1,2, Robert L. Bowman1‡, Sonali Persaud1, Ying Liu3,4, Rosemary Neigenfind1,
Qi Gao3, Jingping Zhang3, Xiaotian Sun3, Linde A. Miles1§¶, Sheng F. Cai1,5,6, Adam Sciambi7,
Aaron Llanso7, Christopher Famulare5, Aaron Goldberg6, Ahmet Dogan3, Mikhail Roshal3†,
Ross L. Levine1,5,6*†, Wenbin Xiao1,3,5*†

Measurable residual disease (MRD), defined as the population of cancer cells that persist following therapy,
serves as the critical reservoir for disease relapse in acute myeloid leukemia and other malignancies. Under-
standing the biology enabling MRD clones to resist therapy is necessary to guide the development of more
effective curative treatments. Discriminating between residual leukemic clones, preleukemic clones, and
normal precursors remains a challenge with current MRD tools. Here, we developed a single-cell MRD
(scMRD) assay by combining flow cytometric enrichment of the targeted precursor/blast population with inte-
grated single-cell DNA sequencing and immunophenotyping. Our scMRD assay shows high sensitivity of ap-
proximately 0.01%, deconvolutes clonal architecture, and provides clone-specific immunophenotypic data. In
summary, our scMRD assay enhances MRD detection and simultaneously illuminates the clonal architecture of
clonal hematopoiesis/preleukemic and leukemic cells surviving acute myeloid leukemia therapy.
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INTRODUCTION
Acute myeloid leukemia (AML) is a heterogeneous set of hemato-
logic malignancies characterized by expansion of immature myeloid
blasts (1). Although most patients with AML show an initial re-
sponse to therapy (60 to 80%), relapse remains the fundamental
challenge to achieving durable cures (1). Measurable residual
disease (MRD) represents a critical, therapy-resistant cancer cell
reservoir responsible for disease recurrence (2). Accurately identi-
fying relevant MRD clones is necessary to risk stratify patients and
to guide further therapy to prevent overt relapse and achieve durable
remissions.

MRD is defined by the presence of residual leukemic cells that
are not detectable by conventional morphologic assessment.
MRD status has notable prognostic value in AML independent of
pretreatment genetics/cytogenetics (2), and the presence of MRD
is associated with adverse outcomes in a spectrum of AML thera-
pies—including chemotherapy, venetoclax-based therapies, and al-
logeneic stem cell transplant (3–6). The most common MRD
detection methods use multicolor flow cytometry (MFC) analysis
of blasts or real-time quantitative polymerase chain reaction (RT-

qPCR) of specific mutations or gene fusions detected at diagnosis.
MFC MRD testing relies on abnormal immunophenotypic profiles
that may not be readily identifiable on all leukemic cells. The
current sensitivity of MFC MRD testing is 0.1%, as defined by Eu-
ropean Leukemia Net MRD guidelines (2). In addition, flow cytom-
etry is frequently unable to distinguish between phenotypic
abnormalities of regenerating precursors, clonal hematopoiesis
(CH), and residual leukemic blasts and therefore cannot fully
predict the leukemic potential of an immunophenotypically abnor-
mal population. RT-qPCR is highly sensitive and specific; however,
the utility of this method is limited as only a small percentage of
patients with AML have a detectable, leukemia-specific mutation
or gene fusion that is informative for molecular tracking (7). More-
over, it is not feasible to simultaneously detect/quantitate the spec-
trum of mutations specific to resistant AML clones.

Recently, bulk-tumor next-generation sequencing (NGS) has
emerged as a promising technology to expand on the arsenal of
MRD monitoring techniques (7). While the sensitivity of bulk
NGS (including error-corrected) and MFC-based MRD testing
may be further improved, the specificity of these analyses faces
both theoretical and empirical barriers due to the clonal complexity
of AML (8).

Despite the utility of these assays, there remains a pressing clin-
ical need for discrimination of residual leukemic cells from the
mutated CH/preleukemic cells that do not invariably portend
relapse (6, 9). Residual subclones may have different leukemic po-
tentials, while ancestral clones may only result in CH rather than
frank AML (10), which cannot be accurately delineated by bulk
MRD assays. In addition, bulk NGS MRD assays may detect muta-
tions in mature populations lacking leukemic potential, which is
often seen in patients receiving differentiation inducing therapies
[e.g. isocitrate dehydrogenase (IDH) 1/2 inhibitors] (11). These bi-
ological complexities require a nuanced interpretation of MRD
assays, ultimately hampering the clinical utility of bulk-sequencing
and MFC-based approaches. With 10 to 30% of MRD-negative and
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40 to 70% of MRD-positive patients ultimately relapsing (12), there
remains a critical need for a sensitive and specific MRD assay to
inform clinical intervention.

Single-cell DNA (scDNA) sequencing technology has recently
been used to study clonal architecture in AML, distinguish CH/pre-
leukemic versus leukemic clones, and detect mutations in remission
samples (8, 13–15). To build upon these pioneer studies and resolve
the challenges associated with both bulk NGS and MFC MRD
testing, we have developed a novel multiplex single-cell MRD
(scMRD) assay by combining flow cytometric enrichment of the
targeted precursor/blast population with integrated scDNA se-
quencing and immunophenotyping. We further developed a
single-nucleotide polymorphism (SNP)–based computational algo-
rithm to deconvolute multiplexed data from samples run in parallel.

RESULTS
Limit of mutation detection with the scMRD assay
We hypothesized that combining precursor/blast enrichment and
scDNA + protein sequencing technology would increase the sensi-
tivity of MRD detection and delineate MRD clonal architecture. We
reasoned that the MRD clones responsible for relapse primarily
reside in immature compartments; thus, we used fluorescence-as-
sisted cell sorting (FACS) to enrich viable CD34+ and/or CD117+
progenitors (including CD34+CD117−, CD34+CD117+, and
CD34−CD117+) before loading cells onto the Mission Bio Tapestri
single-cell sequencing platform (Fig. 1A). As the antibodies (CD45,
CD34, CD117, CD4, and CD8) used for flow sorting were also
present in the protein panel, we specifically tested and selected
the clones that did not block the binding of the same targets recog-
nized by antibodies present in the protein panel (table S1). The

custom scDNA panel contains 109 amplicons covering 31 genes
known to be involved in haematologic malignancies (8). To increase
assay throughput and reduce cost, wemultiplexed samples from dif-
ferent patients into each integrated scDNA + protein run. The
results of the multiplexed runs were then computationally deconvo-
luted and used for both single-sample and aggregated analyses.

To evaluate the sensitivity of the scMRD assay, we performed a
limiting dilution study in which AML blasts from three genetically
distinct AML samples harboring clonal mutations were mixed with
10 million normal bone marrow mononuclear cells before multi-
plexing to test different sensitivity thresholds (10,000 cells, 0.1%;
1000 cells, 0.01%; 500 cells, 0.005%; 200 cells, 0.002%). Normal
bone marrow cells were obtained from patients diagnosed with
early-stage mature B or T cell lymphoma that did not have bone
marrow involved as assessed by morphology and flow cytometry
(table S2). Mutations in AML samples were as follows: patient 1
(AML1), NRAS p.G12D/RUNX1 p.P247fs; patient 2 (AML2),
JAK2 p.V617F/IDH2 p.R140Q/DNMT3A p.F751fs; patient 3
(AML3), IDH2 p.R140Q (table S3). FACS-enriched CD34+ and/or
CD117+ cells were multiplexed, subjected to the Tapestri microflui-
dics platform, and sequenced. Expected pathologic mutations were
identified in all 11 replicates at a limiting dilution threshold of 0.1%
(Fig. 1, B and C, and table S4). Mutations were also identified in 8 of
10 and 1 of 3 replicates at a threshold of 0.01 and 0.005%, respec-
tively, and mutations were not identified in blank controls (0 of 9
replicates) or when present at 0.002% (0 of 3 replicates) (Fig. 1C and
table S4). Limiting dilution analysis (16) estimated a sensitivity of
0.0077% [95% confidence interval (CI), 0.004 to 0.0153%] when
using a threshold of detecting ≥1 mutated cell (see Methods). In-
creasing the threshold to detection of ≥3 cells resulted in an estimat-
ed sensitivity of 0.0578% (95% CI, 0.03 to 0.111%). These data

Fig. 1. Limit of mutation detection with the scMRD assay. (A) Schema of the gating strategy used for flow cytometric enrichment of live CD34+ and/or CD117+ cells
after spiking AML cells into normal bone marrow. For clinical MRD samples included in this study, the abnormal blasts were confirmed to be positive for CD34 and/or
CD117. (B) Representative heatmap showing mutation calling of spiked-in AML blasts in a limiting dilution experiment testing a sensitivity of 0.1%. Each column rep-
resents a single cell. (C) Summary of mutation detection at various sensitivity levels. This plot represents two independent experiments. NA, not applicable.
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demonstrate the high sensitivity of mutation detection using the
scMRD assay.

Application of the scMRD assay to AML patient samples
We next applied our scMRD assay to 30 cryopreserved postinduc-
tion chemotherapy MRD samples obtained from 29 patients with
AML (median age, 71 years old; 15 males and 14 females; see
table S5). Among these, seven samples (from six patients) were ob-
tained post–allogeneic hematopoietic stem cell transplant (allo-
HSCT). The immunophenotype of leukemic blasts at diagnosis
and MRD was confirmed to be CD34+ and/or CD117+ for each
patient/sample used in our study. MRD was scored as negative in
two samples by MFC and in six samples by bulk NGS (table S5).
The median percentage of MRD-positive cells by MFC was 0.3%
(interquartile range, 0.1 to 0.8%). The median cell number of
these samples was 2.6 million (ranging from 0.6 to 14.1 million)
with a viability range of 27 to 55%. FACS-enriched CD34+ and/or
CD117+ viable cells were multiplexed with up to five unique patient
samples per run and processed via the Tapestri platform (50 to 120
thousand cells per run; mean, 77 thousand) (Fig. 2A and table S6).

Given that unique samples frommultiple patients were included
in each scMRD run, we developed a computational approach to

deconvoluting different individuals in each sequencing run at the
single-cell level. Downstream demultiplexing of scMRD sequencing
data used germline SNPs covered by the custom scDNA panel (see
Methods). We filtered our dataset based on genotyping call rate to
include cells with complete genotyping information for the top 10
to 15 SNPs in each run and performed K-means clustering on cells
with nonmissing SNP allele frequencies (Fig. 2B). To identify and
remove doublets within each scMRD run, we implemented a
method to simulate artificial doublet SNP profiles and exclude pu-
tative real doublets based on similarity to an artificial cluster center
(see Methods). We first randomly sampled our dataset to produce a
pool of cells with even representation of each cluster. From this cell
pool, we sampled two cells at a time and averaged their SNP allele
frequency profiles until we generated 10% doublets relative to the
total dataset. After excluding homotypic doublets (i.e., doublets
composed of two cells from the same cluster), we reclustered the
artificial heterotypic doublets with real cells and applied a Euclidean
distance metric to assess the similarity between the SNP profiles of
real cells and artificial cluster centers (Fig. 2, C to G). Following
doublet detection and exclusion, we then classified additional
cells in our dataset according to their germline SNP profile
(Fig. 2, H and I). To achieve this, we calculated a Hamming distance

Fig. 2. Workflow and computational demultiplexing of scMRD data. (A) Schema of scMRD workflow (generated via BioRender). (B) Predoublet exclusion K-means
clustering and UMAP analysis of SNP allele frequencies in cells perfectly genotyped for the top 14 SNPs. (C) UMAP plot showing the results of clustering real cells (blue)
with artificial doublets (red). (D) Distribution of Euclidean distances from real cells to their respective cluster centers. (E) Violin plot showing by-cluster Euclidean distances
of each real cell to the respective cluster center. (F) By-cluster Euclidean distances of each real cell to an artificial doublet cluster center. (G) Postdoublet exclusion K-means
clustering and UMAP analysis of SNP allele frequencies. (H) Heatmap showing SNP genotypes in singlet clusters. (I) Heatmap showing the most common SNP profile for
each cluster. (B) to (I) show a representative example (MRD5) of the computational pipeline output. UMAP, uniform manifold approximation and projection; HOM, ho-
mozygous; HET, heterozygous; WT, wild-type.
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between each cell and the most common SNP profile for each
cluster. Cells were assigned to clusters based on the available SNP
information matching perfectly to one cluster, while being a
Hamming distance of ≥3 to every other cluster. For some multi-
plexed runs, the maximum Hamming distance between clusters
was <3, in which case we reduced the classification filter to accom-
modate this. Cells from each cluster were then queried for any path-
ogenic mutations identified by bulk NGS at diagnosis, remission, or
relapse. This approach enabled us to deconvolute multiplexed
scMRD runs and assign sequenced cells to the specific patient
from which they were derived without the need to leverage
patient-specific somatic mutation information. Using this ap-
proach, we classified an average of 2074 sorted cells per run (1215
to 2777 cells, SD = 585.8), reflecting an average of 36.4% of total cells
in each run (11.5 to 74.4%; table S6). Demultiplexing enabled as-
signment of hotspot mutations (i.e., DNMT3A p.R882H) present
in multiple samples within the same multiplex (Fig. 3).

To assess the misclassification rate of our demultiplexing algo-
rithm, we designed a synthetic multiplexing control experiment
in which the ground-truth identity of each cell was known (fig.
S1). To this end, we sequenced five additional AML patient
samples (unsorted and nonmultiplexed) via the Tapestri platform.
After determining the clonal architecture for these samples, we iso-
lated a single clone from each sample and merged these barcodes to
generate a synthetic dataset composed of 15,542 cells from the five
samples. To better represent real scMRD data, we simulated hetero-
typic doublets and injected them into the dataset at a rate of 7.23%
before subjecting the data to our demultiplexing algorithm. Within
the synthetic multiplex, we identified nine germline SNPs that were
sequenced in each of the five runs and had sufficiently divergent
genotypes between the samples. As described for real scMRD
data, a subset of cells with complete genotyping information for
these nine SNPs (fig. S1A) was subjected to K-means clustering,
which partitioned the samples into five clusters (fig. S1, B and C).
Demulitplexing enabled resolution of each SNP profile after doublet
removal (fig. S1, D and E), and subsequent cell classification based
on Hamming distance filters described in the methods (fig. S1F).
We sought to assess how the rates of cell classification and misclas-
sification were influenced by missing SNP information in perfect
cells (i.e., cells with complete genotyping for all nine SNPs). Our
demultiplexing algorithm classified 87.98% of perfect cells (fig.
S1G) with amisclassification rate of 0.035% (fig. S1H).We then ran-
domly sampled one to eight SNPs over 50 replicates and calculated
the mean percentage of perfect cells classified and misclassified,
which revealed that the loss of SNP information results in a lower
classification rate with minimal effect on cell misclassification (fig.
S1, G and H). Demultiplexing of all possible cells in this control ex-
periment, including those with missing genotypes, resulted in clas-
sification of 49.07% of cells with a misclassification rate of 0.235%
(fig. S1I).

Overall, the results for MRD status and mutation presence were
concordant between bulk NGS and scMRD in 23 of 30 (76.7%)
samples and for 44 of 76 (57.9%) mutations, respectively (fig.
S2A). Among the mutations detected by both scMRD and bulk
NGS, variant allelic frequencies (VAFs) were significantly higher
by scMRD (P = 0.011, paired Wilcoxon signed-rank test) (fig.
S2B). Among the 33 discordant mutations covered by both
scMRD and bulk NGS panels, scMRD identified 17 mutations
that were missed/unreported by bulk NGS, including RUNX1 (n

= 4), NPM1 (n = 3), KRAS (n = 2), IDH2 (n = 2), WT1 (n = 2),
NRAS, JAK2, TP53, and SRSF2 mutations (Fig. 3), 15 (88.2%) of
which were associated with and present at relapse. Conversely,
there were 16 mutations that were detected by bulk NGS but
missed by scMRD, including DNMT3A (n = 4), RUNX1 (n = 4),
NRAS (n = 3), SRSF2 (n = 2), STAG2, TET2, and FLT3TKD muta-
tions (Fig. 3). Only 4 of 16 (25% versus 88.2%, P = 0.0004, Fisher’s
exact test) were present at relapse. There were four MRD samples
with eight mutations (two RUNX1, two DNMT3A, two NRAS,
SRSF2, and STAG2) not detected by scMRD. Although these
samples had slightly lower numbers of starting viable cells and com-
putationally recovered cells compared to others [starting viable cells
per sample, median: 1.5 million versus 2.6 million (P = 0.08); com-
putationally recovered cells per sample, median: 64 versus 413 (P =
0.05); Mann-Whitney test], the cause may be multifactorial includ-
ing that specific mutations (i.e.,NRAS) may reside in mature/differ-
entiated compartments not sampled with our scMRD assay (8).

Resolution of clonal architecture and clone-specific
immunophenotype
We next assessed the ability of scMRD profiling to differentiate
MRD based on clonal architecture, including discrimination
between leukemic clones and single-mutant clones that harbor
CH/preleukemic mutations. We found that scMRD readily decon-
volved CH/preleukemic versus leukemic clonal architecture in de-
multiplexed samples (Fig. 4A and fig. S3). In sample MRD5-S3,
bulk NGS detected DNMT3A p.R882H, DNMT3A p.R736C, and
TET2 p.Q654Kfs (not covered by scMRD panel) mutations at the
remission time point, while scMRD detected both DNMT3Amuta-
tions in distinct clones, with one subclone harboring co-occuring
DNMT3A p.R882H/NPM1 p.W288Cfs (NPM1 scVAF = 1.31%)
mutations and another with a JAK2 p.V617F (JAK2 scVAF =
0.69%) mutation. Bulk NGS at the time of subsequent relapse
(time point R1) revealed the presence of both the NPM1
p.W288Cfs (VAF = 5%) and JAK2 p.V617F (VAF = 2%) mutations
(Fig. 4B). Bulk profiling at a second time point during relapse (R2)
revealed further expansion of theNPM1 p.W288Cfs mutation (VAF
= 11%), while the JAK2 mutation was not detected at this subse-
quent time point. These data demonstrate that scMRD may
enable resolution of residual preleukemic clones (i.e., DNMT3A
alone), bystander clones (i.e., JAK2 clone), and leukemic clones (co-
mutant DNMT3A/NPM1) that persist at relapse.

Integration of scMRD immunophenotypic analysis enabled
identification of mutation and clone-specific expression of key
cell surface proteins (Fig. 5, A and B and fig. S4, A to C). Compared
to wild-type clones, NRAS-mutant clones had decreased expression
of CD34 [log2 fold change (log2FC) = −0.772, P < 8.2 × 10−16] and
CD117 (log2FC = −0.542, P < 3.8 × 10−16), while U2AF1-mutant
clones showed increased expression of CD34 (log2FC = 2.03, P <
0.012). In contrast, NPM1 clones displayed higher CD11b (log2FC
= 0.381, P < 7.7 × 10−8) and CD13 expression (log2FC = 1.43, P <
1.38 × 10−14) compared toDNMT3A clones. This distinct immuno-
phenotype is well described in patients with NPM1-mutated AML
(14).TP53-mutant clones had increased CD71 expression (log2FC =
1.66, P < 4.4 × 10−5) (16). We observed highly similar immunophe-
notypes between wild-type and DNMT3A-mutant cells, suggesting
that CH clones (at least with DNMT3A mutation) may not have
overtly aberrant surface protein expression (Fig. 5, C and D). Dif-
ferential immunophenotypic states were identified when
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comparing CH/preleukemic and leukemic clones within and
between patients (Fig. 5, B to D, and fig. S4, B and C). Comutant
DNMT3A/IDH2 or DNMT3A/NPM1 cells showed consistently ab-
errant immunophenotypes, with DNMT3A/IDH2 cells character-
ized by increased CD34 (log2FC = 0.461, P < 9.6 × 10−8, versus
DNMT3A) and CD117 (log2FC = 1.13, P < 1.7 × 10−29, versus
DNMT3A) expression (Fig. 5, C and D, and fig. S4, B and C) and
DNMT3A/NPM1-comutated cells showed more highly expressed
granulocytic/monocytic markers such as CD11b (log2FC = 0.513,
P < 3.2 × 10−21) and CD16 (log2FC = 0.436, P < 1.1 × 10−34)
(Fig. 5, C and D). These data highlight that integrated genomic/

immunophenotypic analysis at the MRD time point has the poten-
tial to distinguish between CH/preleukemic and leukemic clones
that portend a substantively higher likelihood of relapse.

Identification of donor and host cell origin in post–allo-
HSCT samples
Within our cohort, the seven samples (from six patients) obtained
post–allo-HSCT represent an admixture of donor and recipient
cells. Germline SNP-based deconvolution identified distinct non-
mutant clusters consistent with donor origin, which were con-
firmed as donor samples by matching the SNP profile of paired

Fig. 3. Deconvolution plots for individual scMRD runs. (A to F) Computationally recovered cell number per sample (top) and VAF of mutations detected by scMRD,
bulk NGS, or both assays (bottom). Each plot represents a single multiplexed run, and each column corresponds to a unique patient sample. “Unexpected” detection
denotes mutations detected by scMRD but not reported at any bulk NGS time point (diagnosis, remission, and relapse). For MRD2, we did not detect mutations in two
samples (MRD2-S3 and MRD2-S5) and, thus, could not confirm the identity of these samples. However, these samples had a considerable difference in cell input for
sequencing and cell recovery after deconvolution (see table S5). We reasoned that the sample with higher cell number input corresponded to the sample with much
higher recovery. MRD1-S4, MRD2-S2, MRD3-S3, MRD4-S1/S3/S5, and MRD6-S2 were post–allo-HSCT. MRD3-S3 and MRD6-S2 were from the same patient but obtained at
different time points.
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pretransplant samples. Donor-host pairs were successfully recov-
ered for all seven samples (Figs. 3, A to F, and 6A). Chimerism
was calculated on the basis of recovered host versus donor cells
and correlated with the available results by bulk short tandem
repeat genotyping on unsorted bone marrow samples. The levels
of host cells detected by scMRD assay were higher than those by
short tandem repeat testing in four relapsed patients (median of dif-
ference, 19.7%; P = 0.1, Wilcoxon matched-pairs signed-rank test; P
= 0.02, paired t test), suggesting that host cells show enrichment in
immature compartments and represent an early indicator of relapse.
Integrated immunophenotypic analysis of post–allo-HSCT samples
showed distinct cell surface protein expression between donor and
host cells. Analysis of sample MRD1-S4 revealed clear separation of
donor and NPM1-mutant host cells, with the former containing a
subset of spiked-in CD3+CD8+ T cells and the latter displaying ab-
errant increased expression of CD33 (log2FC = 2.77, P < 1.64 ×
10−2) and CD13 (log2FC = 3.9, P < 1.43 × 10−7) (Fig. 6B). In addi-
tion, expression of the T cell activation marker, CD69, was observed
not only in a subset of donor and host T cells but also unexpectedly
in host leukemic cells, consistent with previous studies showing that
CD69 may be expressed in leukemic stem cells and, thus, may rep-
resent a surface marker for MRD detection (17). Abnormal immu-
nophenotype of these host leukemic blasts identified by MFC was
also detectable by scMRD, with elevated coexpression of CD33 and
CD117 on NPM1-mutant cells and characteristically low levels of
CD34 (Fig. 6C).

DISCUSSION
Our study illustrates the feasibility of single-cell genotypic and im-
munophenotypic profiling at the remission time point to enumerate
and delineate MRD through blast enrichment and scDNA + protein
technology. Our data demonstrate that scMRD profiling readily re-
solves clonal architecture and has the potential to distinguish
between single-mutant CH/preleukemic versus leukemic clones
with multiple co-occurring mutations. As CH/preleukemic clones
do not invariably portend relapse (6, 9), this distinction may be crit-
ical for clinical decision-making. The integration of mutation and
immunophenotypic information further enhances MRD detection

by identifying genotype-specific protein expression patterns. This
can be potentially used to isolate relevant clones for functional val-
idation and studying MRD biology and therapeutic vulnerabilities.
Given the increased use of molecular/cell surface–targeting thera-
peutic modalities for patients with AML patients (18, 19), assessing
expression of surface markers in relevant MRD clones with defined
mutational repertoires may provide further guidance for treatment.
Future integration of scDNA + protein sequencing with clone-level
transcriptional analysis will provide additional insights into themo-
lecular pathways mediating leukemic cell persistence following dif-
ferent AML therapies.

The multiplexing approach implemented in this study is reliable
and cost effective; however, more work is needed to optimize this
assay. While scMRD detected many mutations missed by bulk
NGS, some mutations were also missed by scMRD. There are
several explanations: First, the starting cell numbers of these
samples with mutations missed by scMRD assay were slightly
lower, leading to lower computational cell recovery compared to
clinical profiling performed on fresh samples. In clinical practice,
fresh samples with higher cell numbers should be used for
scMRD testing, which will certainly improve cell recovery and sen-
sitivity. In addition, surface marker expression may change over
time during sample storage, which can limit the ability to call spe-
cific immunophentypic subsets. Second, our use of FACS for blast
enrichment overall can alter mutation allele burden compared to
bulk sequencing, with some mutations being enriched in immature
hematopoietic stem/progenitor cell (HSPC) compartments and
others enriched in differentiated clonal progeny. For example, pre-
vious studies have shown that NRAS-mutated clones express high
levels of CD11b, a marker often indicative of more differentiated
myeloid cells (neutrophils and monocytes) (8). Consistent with
this notion, a subset of NRAS mutations were missed by the
scMRD assay. Notably, only a small portion of mutations missed
by scMRD were associated with relapse. High-purity depletion of
mature compartments, as in our flow enrichment, may theoretically
decrease the burden of these mutations, including those CH muta-
tions present in mature myeloid progeny with reduced/absent leu-
kemic potential. Enrichment for CD34+ and/or CD117+ cells may
not capture MRD cells in a minority of AML patients, particularly

Fig. 4. Clonal analysis of MRD5-S3. (A) Clonal barplot of a patient (MRD5-S3) illustrating scMRD-specific detection of NPM1 and JAK2 mutations that were present at
relapse. (B) Fish plot showing clonal evolution based on bulk NGS at diagnosis, remission (6 month after diagnosis), relapse time point 1 (R1; 7 months after diagnosis),
and relapse time point 2 (R2; 11 months after diagnosis).
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those with the highest level of monocytic differentiation (20). In
clinical practice, magnetic bead depletion of nonleukemic compart-
ments (CD3+ T cells, CD20+ B cells, and CD16+ granulocytes) fol-
lowed by scMRD assessment will allow for more accurate detection
and delineation of MRD in a more cost-effective manner and can
serve as an adjunct to bulk NGS performed before therapy and
at relapse.

Future applications of this approach should also seek to further
optimize computational demultiplexing to maximize the rate of cell
classification while minimizing misclassification. Notably, the syn-
thetic multiplexing control experiment estimated a low misclassifi-
cation rate of 0.235%. While this is encouraging, in practice,
multiplexed single-cell profiling may have higher misclassification
rates. Combining our SNP demultiplexing method with an orthog-
onal technique such as cell hashing may provide the best approach
to excluding doublets and to accurately assigning cells to specific
patients. Allele dropout remains an additional limitation of

scDNA sequencing technology, and, to our knowledge, there is cur-
rently no gold standard approach to correcting for it. In the setting
of scMRD demultiplexing, allele dropout may affect SNP genotypes
and contribute to higher misclassification rates. Inclusion of a larger
amplicon panel, and using more than 10 to 15 SNPs to classify cells/
patients, may help to minimize the deleterious effects of allele
dropout at any given SNP locus. Panel development that accounts
for linkage disequilibrium may represent a viable path forward to
counter allele dropout (21). As scDNA + protein technology
becomes more affordable and widespread, we anticipate rapid im-
provements in experimental design, application, and algorith-
mic support.

Another limitation of scMRD profiling is related to the relatively
small number of cells recovered for sequencing. Only ~3 to 5% of
the cell input into Tapestri was recovered after all processing steps,
including computational analysis. This translates to an average re-
covery of 200 to 500 cells per sample at the MRD time point.

Fig. 5. Clone- and mutation-specific immunophenotype. (A) Clone-specific immunophenotype. (B) Differential surface marker expression between CH/preleukemic
versus leukemic clones. (C andD) UMAP analysis of immunophenotypes of single-mutant versus compound-mutant clones. Distribution of cells in UMAP spacewith cells
colored by genotype (C) and UMAP depiction of cell immunophenotype including markers for T cells (CD3), myeloid cells (CD11b and CD33), stem/progenitors (CD117
and CD34), monocytes (CD14 and CD64), granulocytes (CD16), B cells (CD19), and erythroid cells (CD71) (D). Data are centered log ratio–normalized, centered, and scaled
on a by-run basis.
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Traditionally, a cluster of 20 abnormal cells is deemed adequate for
MFCMRD calling. Although cell loss is likely stochastic on the basis
of our data, additional studies are needed to demonstrate that the
mutations and clonal architecture derived from such a small
sample of cells are representative of the bulk tumor. A direct com-
parison of sensitivity and specificity between MFC, bulk NGS, and
scMRD assays is not straightforward as the following: (i) Enriched
blasts from banked specimens of suboptimal quality were used for
scMRD in our study, and (ii) the amplification methods are differ-
ent between scMRD (amplicon) and bulk NGS (hybrid capture).
Despite our limiting dilution experiments revealing a sensitivity
of approximately 0.01% for the scMRD assay, a prospective study
is needed to compare the clinical utility of scMRD to other MRD
assays such as MFC, droplet digital PCR, and/or error-corrected
NGS. As scDNA profiling improves, including with respect to cell
recovery for single-cell mutational analysis, we will be able to
further enrich our understanding of MRD in AML and other dis-
eases at a single-cell, clonal level.

In conclusion, our scMRD assay not only enables sensitive MRD
detection but also achieves sufficient resolution to characterize the
clonal architecture of preleukemic/leukemic cells that persist after
therapy, which may ultimately increase the specificity of MRD
results. Larger studies are needed to comprehensively elucidate
the clonal architecture of MRD and study the dynamics of clonal
evolution by comparing clonal architecture and immunophenotype
at diagnosis and relapse. Our study paves the road for delineating

the genetic and phenotypic properties of high-risk MRD clones
and better understanding the molecular underpinnings of MRD
in AML.

METHODS
Patient samples
Bone marrow aspirates were received in the clinical laboratory at
Memorial Sloan Kettering Cancer Center (MSKCC). After 5 days
with all necessary clinical tests being completed, the leftover cells
were deemed as medical waste, and mononuclear cells were ob-
tained by centrifugation on Ficoll from bone marrow and viably
frozen. Corresponding MFC MRD was obtained from diagnostic
pathology reports with a reporting sensitivity of 0.1%. Uninvolved
(both morphologically and immunophenotypically) bone marrow
aspirates from patients with an early-stage mature B or T cell lym-
phoma were used as normal controls. AML patient samples under-
went high-throughput genetic sequencing with an Food and Drug
Administration–approved hybrid capture–based targeted deep se-
quencing assay of 500 genes (IMPACT-heme) or by an NGS plat-
form panel composed of 49 genes that are recurrently mutated in
myeloid disorders (RainDance Technologies ThunderBolts
Myeloid Panel) with a reporting VAF cutoff at 2%. Informed
consent was obtained from patients according to protocols ap-
proved by the Institutional Review Boards and in accordance with
the Declaration of Helsinki. This study was approved by MSKCC
Institutional Review Board (#12-245, #13-037, and #16-1591).

Fig. 6. scDNA + protein analysis enables simultaneous identification of donor cells andMRD. (A) Aggregated deconvolution plot showing mutations detected and
host-donor chimerism of post–allo-HSCT samples from six different patients included in the study. MRD6-S2 and MRD3-S3 were from the same patients; therefore, only
the former is shown. MRD2-S2 had nomutations detected by either bulk NGS or scMRD assay. MRD4-S3 had anHDAC1 p.P243Lmutation not covered by the scMRD panel.
Refer to Fig. 4 for multiplex context for each of these samples. (B) Row-scaled heatmap of differential surface maker expression between donor and host cells in MRD1-S4.
(C) Concordance of immunophenotype of MRD cells betweenMFC and scMRD inMRD1-S4. Number of cells analyzed for (B) and (C): donor WT = 97, HostWT = 6, and Host
NPM1-mut = 13.
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Cell enrichment
Patient samples were thawed, washed with FACS buffer, and quan-
tified using a Countess cell counter. Cells (0.5 × 106 to 4.0 × 106
viable cells) were then resuspended in cell staining buffer
(#420201, BioLegend) and incubated with TruStain FcX and 1×
Tapestri blocking buffer for 15 min on ice. Cells were incubated
with antihuman CD4 (clone: OKT4)–Allophycocyanin (APC)/
Cy7 (dilution, 1:30), antihuman CD8 (clone: RPA-T8)–BV711 (di-
lution, 1:30), antihuman CD34 (clone: Qbend)–APC (dilution,
1:10), antihuman CD117 (clone: A3C6E2)–Phycoerythrin (dilu-
tion, 1:75), and antihuman CD45 (clone: Q17A19)–Alexa Flour
488 (dilution, 1:30) for 15 min on ice (table S1). Then, TotalSeq-
D Human Heme Oncology Cocktail, V1.0 (# 399906, BioLegend)
containing the pool of 45 oligo-conjugated antibodies was added
and incubated for an additional 30 min on ice. Cells were then
washed three times with cell staining buffer (#420201, BioLegend),
followed by resuspension of the cells in 40,6-diamidino-2-phenylin-
dole (DAPI) containing FACS buffer. DAPI-negative and CD45-
positive viable cells were gated. After exclusion of CD4- and
CD8-positive lymphocytes, CD34+/CD117−, CD34+/CD117+, and
CD34−/CD117+ populations were combined for sorting using a
SH800S cell sorter. In MRD1 run, 1000 sorted CD4- versus CD8-
positive T cells from two individual samples were spiked in,
respectively.

scDNA and protein library preparation and sequencing
Enriched cells were resuspended in Tapestri cell buffer and quanti-
fied using a Countess cell counter (Invitrogen). Single cells (1000 to
3000 cells/μl) were encapsulated using a Tapestri microfluidics car-
tridge and lysed. A forward primer mix (30 μM each) for the anti-
body tags was added before barcoding. Barcoded samples were then
subjected to targeted PCR amplification of a custom 109 amplicons
covering 31 genes known to be involved in AML. DNA PCR prod-
ucts were then isolated from individual droplets and purified with
Ampure XP beads. The DNA PCR products were then used as a
PCR template for library generation as above and repurified using
Ampure XP beads. Protein PCR products (supernatant from
Ampure XP bead incubation) were incubated with Tapestri
pullout oligo (5 μM) at 96°C for 5 min, followed by incubation on
ice for 5 min. Protein PCR products were then purified using strep-
tavidin C1 beads (Invitrogen), and beads were used as a PCR tem-
plate for the incorporation of i5/i7 Illumina indices, followed by
purification using Ampure XP beads. All libraries, both DNA and
protein, were quantified using an Agilent Bioanalyzer and pooled
for sequencing on an Illumina NovaSeq by the MSKCC Integrated
Genomics Core.

Data processing and variant filtering
FASTQ files from scDNA + protein samples were processed via the
TapestriV2 pipeline as described previously (8). This analytics plat-
form trims adaptor sequences, aligns sequencing reads to the hg19
reference genome, calls cells based on completeness of amplicon se-
quencing reads for each barcode, and calls variants using GATKv3.7
best practices. After pipeline processing, data for each run were ag-
gregated into H5 files, which were downloaded and read into R
using the rhdf5 package. Downstream processing was conducted
using custom scripts in R, which is available at https://github.
com/RobinsonTroy/scMRD. Low-quality variants and cells were
then excluded based on filtering cutoffs for genotype quality score

(<30), read depth (<10) alternate allele frequency (<20%), and pres-
ence in <0.1% of cells. The details of scMRD computational demul-
tiplexing and scMRD protein analysis are included in the
Supplementary Materials.

Limit of detection study analysis
For each multiplexed AML spike-in run, the numerical genotype
matrix was extracted from each respective H5 file in R. Each of
the three AMLs harbored >1 pathogenic mutation, except for
patient 3, which contained a single IDH2 p.R140Qmutation. To in-
crease the confidence in accurate cell calling, two additional hetero-
zygous germline SNPs (CHEK2 p.T387I and TET2 p.P1723S) were
identified as private to patient 3. The curated list of known variants
included mutations/SNPs present in patient 1 (NRAS p.G12D and
RUNX1 p.P247fs), patient 2 (DNMT3A p.F751fs, JAK2 p.V617F,
and IDH2 p.R140Q), and patient 3 (IDH2 p.R140Q, CHEK2
p.T387I, and TET2 p.P1723S). After filtering, all cells were
queried for variants included in this list. Cells harboring the expect-
ed variants were then filtered on the basis of the requirement that
real cells must contain at least two pathogenic mutations (patients 1
and 2) or one pathogenic mutation and two SNPs (patient 3). Lim-
iting dilution analysis was conducted using the Extreme Limiting
Dilution Analysis software (22), where the AML spike-in cell
number was treated as “dose,” and the number of replicates in
which the leukemic fraction was detected was treated as “repsonse.”
Output of the analysis provided an estimated sensitivity with an as-
sociated confidence interval.

scMRD computational demultiplexing
Deconvolution of multiplexed scMRD runs was reliant on the pres-
ence of germline SNPs. Suspected SNPs were verified via referenc-
ing the Ensembl SNP database through the BioMart R package and
were tallied for nonmissing genotyping information within the fil-
tered numerical genotype matrix.

To maximize variability in SNP genotype between patients in
each multiplex, the candidate SNP list was filtered to include
SNPs with a minor allele frequency of <0.5. An additional filter
was applied to only include SNPs that had divergent genotypes
(wild-type or heterozygous, wild-type or homozygous, and hetero-
zygous or homozygous) in a set number of cells, which was defined
by

n required divergent cells ¼ ½ðn cells in multiplexed runÞ

� ðn samples in multiplexÞ�

� ð10� 3Þ

This calculation was based on the reasoning that the fraction of
cells that must be divergent in genotype for demultiplexing is pro-
portional to the size of the dataset and the number of samples in-
cluded in the multiplex. On the basis of an estimated false positive
rate of 10−3 for the Tapestri platform, the product of these two
values is adjusted accordingly. After filtering, the top 20 SNPs
with the lowest percentage of missing genotypes were selected. Prin-
cipal components analysis was then run on cells with complete gen-
otyping information for these 20 SNPs, and the top n SNPs that
explained a proportion of variance ≥0.99 were selected for down-
stream analysis. K-means clustering was performed on a subset of
cells with complete SNP genotypes, where the number of clusters
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for partitioning was set equal to the number of unique patient
samples in a given multiplex. Doublet identification and exclusion
were conducted by first evenly sampling cells from all clusters to
form a pool of cells with equal representation of each cluster. Arti-
ficial doublets were then generated via sampling the cell pool two
cells at random and averaging the SNP profiles until the proportion
of artificial doublets approached 10% of the total number of cells in
the dataset. Homotypic doublets (i.e., those created by within-
cluster mixing) were excluded, and the resulting dataset of hetero-
typic doublets was merged with real cells and reclustered to produce
real and artificial cluster centers. Euclidean distances were then
measured between each real cell and (i) its respective cluster and
(ii) the artificial cluster center. The distribution of distances
between 95% of cells to their respective clusters was used as a
cutoff to exclude cells that were within this distance to the artificial
cluster center. This process was repeated 10 times, with random re-
placement of NA values with allele frequencies of 0, 50, or 100, and
cells were excluded if their distancewas within the doublet gate in all
replicates. After removing doublets and low-quality cells with high
similarity to artificial doublets, the most common SNP profile was
tallied for each cluster. To classify additional cells, Hamming dis-
tance was calculated between all cells and each SNP profile,
without penalizing SNPs with missing genotypes. Cells were as-
signed to clusters based on perfect matching between the available
cell SNP genotypes and the SNP profile of one cluster, while being a
Hamming distance of ≥3 from every other cluster. For SNP profile
comparisons that had a maximum Hamming distance of <3, this
filter was reduced accordingly. After cell classification, each
cluster was quieried for pathogenic mutations detected by bulk
NGS at the diagnosis, remission, and relapse (if applicable) time
points, and the cell number per cluster was tallied. For post–allo-
HSCT samples, we referenced bulk NGS data (when available)
from both donor and host samples used in this study to identify
which scMRD populations were of donor origin.

Synthetic multiplexing
As input for the synthetic multiplexing experiment, five AML
patient samples (labeled samples A to E) were sequenced via the
TapestriV2 scDNA + protein platform independently (unsorted
and nonmultiplexed). Each sample was processed separately to
assess clonal architecture, and a single-mutant clone from each
sample was extracted. Clones from each sample were merged into
a dataset with a total of 15,542 cells (16,754 cells with heterotypic
doublets added). Computational demultiplexing was performed as
described in the “scMRD computational demultiplexing” section on
the synthetic dataset containing simulated doublets. Nine germline
SNPs with sufficiently divergent genotypes across the five samples
were used as input into the algorithm. To assess our algorithm’s per-
formance on classifiying perfect cells, we randomly sampled one to
eight SNPs for 50 replicates and calculated the mean classification
and misclassification rate for each sampling. After removing dupli-
cate samplings, SDs were calculated for the percent of cells classified
or misclassified for each number of available SNPs.

Single-cell protein analysis
For each demultiplexed sample that underwent both scDNA +
protein sequencing, single-cell protein data were extracted from
H5 files as raw counts. With the exception of the five samples in
MRD2, which were not subjected to single-cell protein sequencing,

all other samples (n = 25) were used for aggregate protein analysis.
Each demultiplexed patient sample was analyzed independently for
clonality of mutations and clone-specific immunophenotype. For
samples with detected mutations, the protein count matrices were
filtered for cells classified into high-confidence clones (≥3 cells) and
were used for subsequent aggregate analysis. Protein counts for each
run were converted to a Seurat object using the Seurat R package.
Count data were then normalized using a centered log ratio trans-
formation to normalize for differences in antibody-derived tag se-
quencing depth across cells. Normalized protein data from each run
were merged, then scaled, and centered on a by-run basis. To min-
imize technical variability driven by background signal, we called
the “vars.to.regress” argument set to the included isotype controls
[immunoglobulin G1 (IgG1), IgG2a, and IgG2b] in Seurat’s “Scale-
Data” function. Clone and mutation information was supplied as
metadata and used for downstream aggregate analysis using func-
tions within Seurat. Differential expression of surface markers was
assessed using a Wilcoxon rank sum test in Seurat’s “FindMarkers”
function. P values denote adjusted P values.

Plotting and graphical representation
All bar plots and scatter plots were generated using the ggplot2
package in R. All heatmaps were generated using the pheatmap R
package, except for the heatmap in fig. S1, which was generated
using the Superheat R package. The OncoPrint shown in fig. S2
was produced using the Complex Heatmap package in R. The
uniform manifold approximation and projection (UMAP) plots,
density plots, and violin plots, in Fig. 5 and figs. S4 and S5, were
generated using the Seurat R package. The radar plot displayed in
fig. 4 was produced with the fmsb package in R. The fish plot in
Fig. 4B was generated using the fishplot R package.

Supplementary Materials
This PDF file includes:
Figs. S1 to S6
Legends for tables S1 to S6

Other Supplementary Material for this
manuscript includes the following:
Tables S1 to S6
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