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Abstract

Accelerometers provide an opportunity to expand standing balance assessments outside of the 

laboratory. The purpose of this narrative review is to show that accelerometers are accurate, 

objective, and accessible tools for balance assessment. Accelerometry has been validated against 

current gold standard technology, such as optical motion capture systems and force plates. Many 

studies have been conducted to show how accelerometers can be useful for clinical examinations. 

Recent studies have begun to apply classification algorithms to accelerometry balance measures 

to discriminate populations at risk for falls. In addition to healthy older adults, accelerometry 

can monitor balance in patient populations such as Parkinson’s disease, multiple sclerosis, and 

traumatic brain injury. The lack of software packages or easy-to-use applications have hindered the 

shift into the clinical space. Lack of consensus on outcome metrics has also slowed the clinical 

adoption of accelerometer-based balance assessments. Future studies should focus on metrics 

that are most helpful to evaluate balance in specific populations and protocols that are clinically 

efficacious.

Keywords

accelerometry; balance; fall risk; accessibility

*Corresponding Author: ervin.sejdic@utoronto.ca.
Author Contributions
The authors confirm contribution to the paper as follows: review conception and design: K. Bohlke, E. Sejdic, A. L. Rosso; data 
collection, analysis, and interpretation of literature: K. Bohlke; draft manuscript preparation: K. Bohlke, A. L. Rosso, M. S. Redfern, 
E. Sejdic. All authors reviewed the results and approved the final version of the manuscript.

The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Aging Clin Exp Res. Author manuscript; available in PMC 2024 October 01.

Published in final edited form as:
Aging Clin Exp Res. 2023 October ; 35(10): 1991–2007. doi:10.1007/s40520-023-02503-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Over one quarter of adults over the age of 65 fall every year; and of those falls, 10% of them 

result in injury (Moreland et al., 2020). The highest rates of injury-related hospitalizations 

and death for older adults are due to falls (Stevens et al., 2006). Annually, $50 billion is 

spent on fall-related healthcare costs in the United States (Florence et al., 2018). Further, 

many older adults develop a fear of falling, whether or not they have a history of falls. Fear 

of falling can lead to decreases in socialization, independence, mobility, quality of life, and 

life expectancy (Segev-Jacubovski et al., 2011). With the national population of older adults 

expected to increase by 40% by 2030 (Moreland et al., 2020), the impact of falls will only 

increase without better detection and prevention. Declines in static balance performance 

have been associated with falls (Rogers et al., 2003). While many studies examine gait 

of individuals to assess fall risk, standing balance assessment is easier to perform and 

administer, requiring less of the individual and of the testing environment. Static, standing 

balance only requires the individual to keep their center of gravity over an immobile base of 

support, meaning the feet are not moving. Standing balance measurements have the potential 

to minimize burden on the patient and the clinician. Using accelerometry will additionally 

reduce that burden by providing objective measurements in a noninvasive manner. Recent 

systematic reviews have explored accelerometry for balance assessment in older adults 

as a method of early diagnosis (Leirós-Rodríguez et al., 2019), in children to monitor 

psychomotor development (García-Soidán et al., 2021), in patient populations (Anderson et 

al., 2018; Valenciano et al., 2022), as well as for comparisons to alternative cost-effective 

devices for gait assessment (Zhong & Rau, 2020). This narrative review provides a broader 

exploration of how accelerometry is currently used for measuring balance characteristics, 

comparisons to laboratory technology and clinical assessments, and brief explorations into 

different applications for various patient populations.

Accelerometry is becoming more ever-present in society as most people carry around at 

least one smart device that has embedded accelerometers. This highlights the potential of 

accelerometry to be better utilized in clinical settings for balance assessments. With every 

smart device such as phones, tablets, and watches having pre-installed accelerometers, these 

sensors have never been more available or more affordable. Technological advancements 

have led to increased sensitivity of these devices (Whitney et al., 2011). Accelerometers 

have been used to measure standing balance through the recording and processing of sway 

accelerations. Most studies have been conducted in the laboratory setting; however, there is 

now the potential to transition this methodology to the clinic. Current clinical evaluations of 

balance are heavily reliant on subjective observations by a physician and often suffer from 

ceiling and floor effects. Accelerometers can provide objective measurements with higher 

granularity for diagnostic tests and patient monitoring.

Accelerometers are portable, opening the possibility to move beyond a laboratory setting. 

They also allow for more freedom of movement for the subject. In contrast, traditional 

methods of evaluating balance with motion capture systems and force plates require a fixed 

environment and only allow for minimal subject movement (Whitney et al., 2011). This 

portability allows for more freedom in experimental design and provides the opportunity 

for assessments to take place in less controlled settings. Increasingly, accelerometers have 
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been implemented to assess fall risk, detect falls, and diagnose and monitor changes in 

mobility conditions (Bet et al., 2019; Buckley et al., 2019; Islam et al., 2019; Lippi et 

al., 2023; Montesinos et al., 2018; Wilson et al., 2021). Incorporating technology, like 

sensory biofeedback or exergames, into fall prevention and mobility interventions is also 

an area of expanding research (Calafiore et al., 2021; Choi et al., 2017; Valenzuela et 

al., 2018). Developing and implementing new technologies for early detection, diagnosis, 

and fall prevention are important steps in reducing falls. In addition to their portability, 

accelerometers are affordable, easy to use, and allow for more continuous and close 

monitoring of changes over time.

We propose that accelerometers have an advantage over current standard practices as they 

provide objective quantification of balance that is highly correlated with several clinical and 

laboratory balance assessments while also being economical and accessible. Here we review 

the emerging literature on the use of accelerometers to assess balance to demonstrate their 

potential for clinical use.

This review focuses on accelerometry methods for standing balance. The different metrics 

calculated from the collected acceleration time-series are described, including emerging data 

analytic techniques used to classify high and low fall risk. We discuss the different patient 

populations where accelerometry measures of standing balance are being used. We conclude 

with a discussion of current limitations and future applications.

2 Methods

Publications for this narrative review were obtained using Google Scholar, PubMed, and 

Web of Sciences databases. Groups of search terms were used to find publications that 

focused on accelerometry to assess balance in older adults. The following groups of 

search terms were used: 1) “accelerometry” “postural control” and 2) “accelerometry” 

“community” “balance” “older adults”. Publications were included if they were 

experimental studies using accelerometry to measure balance published in English. Other 

inclusion criteria were: 1) outcome metrics were derived from acceleration signals; AND 2) 

study population performed static, standing balance tasks which includes standing on one or 

both legs, in any stance, on compliant surfaces; AND either 3) study population focused on 

older adults or mobility-limited, adult, patient populations; OR 4) accelerometers or smart 

devices using accelerometry were compared to force plates, motion capture systems. We 

also included publications that used accelerometers or smart devices using accelerometry 

to 5) compare or predict scores of clinical balance assessments OR 6) provide sensory 

(e.g., auditory, visual, vibrotactile) feedback of balance performance. If these criteria were 

not met, publications were excluded. Publications that focused on gait assessment were 

not considered unless the study included postural control assessments as well. The data 

collection, analysis, and interpretation of the included publications were conducted by a 

single reviewer (K.Bohlke). The search was completed on May 26th of 2023.
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3 Standing Balance Overview

Balance is defined as the ability to keep the center of gravity over the base of support. Good 

balance means that your body’s position can be controlled and well maintained in static and 

dynamic conditions (Meyer & Ayalon, 2006). Static balance is defined by having a base of 

support that is not moving, but postural adjustments are still required to keep the center of 

gravity over the base of support. Upright standing is the most common posture. Walking, 

on the other hand, is defined as a “dynamic” balance task that requires postural adjustments 

to keep the center of gravity over a moving base of support (Meyer & Ayalon, 2006). 

Postural control requires several neural systems to work together. The motor system and 

several sensory systems form the control pathway for balance, as well as other deeper motor 

systems like the basal ganglia and the cerebellum (Mierau et al., 2017). Somatosensory, 

visual, and vestibular information combine to help the nervous system maintain balance. 

The sensory systems detect the status of the body, monitoring the current state of balance. 

This information undergoes sensory integration within the brain. The sensory feedback 

helps inform motor commands that are sent back to the body (Zampogna et al., 2020). 

Breakdowns in any aspect of this control system can lead to balance deficits and increase the 

risk of falling.

As adults age, they are more likely to fall due to various reasons: muscle weakness, joint 

pain, poor vision, neuropathy, and pathologies like vestibular disorders, Parkinson’s disease, 

and dementia. However, postural stability declines with age, even without overt disease 

pathology (Rosso et al., 2017). This age-related decline is being studied in various ways 

to see how balance becomes less automatic, requiring more cognitive resources to perform 

what was once automatic (Holtzer et al., 2007; Rosso et al., 2017; Woollacott & Shumway-

Cook, 2002). Additionally, research has indicated that older adults may have deficits in 

sensory integration, or an inability to reweight sensory inputs (Redfern et al., 2019). 

Detecting balance changes early enough is imperative to develop effective preventative care. 

There are many different balance assessments, some relying only on clinicians and others 

requiring laboratory equipment. With an increasingly aging population, fall prevention 

will become that much more important, necessitating an increase in balance assessment 

accessibility.

Modeling the body as a single inverted pendulum is the basis for most static balance 

measurements, particularly when using force plates. This model also assumes that the body 

acts as a single link about the ankle. The center of mass (CoM) of that link is defined 

by the anthropometry of the individual and is approximately at the level of the navel. The 

center of pressure (CoP), measured using force plates, is reflective of the torques about the 

angle that control the position of the CoM against gravity (Whitney et al., 2011). Force 

plates track under-foot CoP by measuring the location of the resultant vertical ground 

reaction force vector (Moe-Nilssen & Helbostad, 2002). The difference between CoP and 

CoM is proportional to CoM movement (Moe-Nilssen, 1998; Winter, 1995). The difference 

between CoP and CoM is reflective of the torque response required to maintain upright 

balance. In this inverted pendulum model, the sensory systems involved in balance (vision, 

proprioception, and vestibular) are used to establish the position and velocity of movement 
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of the body about the ankle and ankle torques are generated (reflected in the CoP) to control 

the CoM position to maintain stability (Moe-Nilssen, 1998; Winter, 1995).

The single inverted pendulum model is an approximation. In reality, the other joints of 

the body (e.g., hip, knee) also can play a role. For example, movement about the hip as 

well as the ankle can be used to control upright stance. Different balance strategies, ankle 

strategy versus hip strategy, result in different movement relationships (Panzer et al., 1995). 

Ankle strategy, i.e. control about the ankle, is more likely to be used by younger, healthier 

individuals, whereas hip strategy is more common in older adults and in pathological cases 

like vestibular problems, peripheral neuropathy (Manchester et al., 1989), or ankle sprains 

(Abe et al., 2014).

4 Accelerometry

A uniaxial accelerometer measures acceleration in one direction. Tri-axial accelerometers 

measure acceleration in three orthogonal directions which are commonly aligned 

along medial-lateral, vertical, and anterior-posterior axes respectively. Most modern 

accelerometers are developed using micro-electromechanical systems (MEMS) technology 

(Martínez et al., 2021). MEMS accelerometers can be classified by how acceleration is 

sensed: capacitive, piezoresistive, piezoelectric, optical, inductive, etc. (Niu et al., 2018). 

These methods for measuring acceleration are all based on simple mass-spring systems and 

Hooke’s Law (Mathie et al., 2004) (Fig. 1a). Fig. 1b shows a simplified example of how 

this mass-spring system would look in a capacitive MEMS accelerometer. As the mass 

in the system moves, the distance between electrodes changes. The difference between 

in the capacitance of the two capacitors is proportional to the acceleration the sensor is 

experiencing (Martínez et al., 2021).

Accelerometry can monitor the approximate accelerations of the CoM of the human body 

when affixed to the low back. Many studies have used the lower back as the location for 

their accelerometer placement, with several describing the location as the L3 level of the 

spine (Adlerton et al., 2003; Bohlke et al., 2021; Cerrito et al., 2015; D’Silva et al., 2017; 

Ihira et al., 2016; Kosse et al., 2015; Lamoth & van Heuvelen, 2012; Makizako et al., 

2013; Martínez-Ramírez et al., 2011; McManus et al., 2022; Moe-Nilssen & Helbostad, 

2002; O’Sullivan et al., 2009; Saunders et al., 2015). However, some researchers also use 

the L4 (Alsubaie et al., 2022; Armstrong et al., 2010; Caña-Pino et al., 2021, 2023; T. 

Chen et al., 2018; Cruz-Montecinos, Carrasco, et al., 2020; Dasgupta et al., 2022; Doheny 

et al., 2012; Johnston et al., 2020; Mansson et al., 2021; Pau et al., 2017), L5 (Chiari et 

al., 2005; Del Din et al., 2016; Flood et al., 2020; Fuschillo et al., 2012; Godfrey et al., 

2015; Greene et al., 2014; Halická et al., 2014; Heebner et al., 2015; Huisinga et al., 2018; 

Kegelmeyer et al., 2017; King et al., 2014; Lindemann et al., 2012; Mancini et al., 2011; 

Mancini, Carlson-Kuhta, et al., 2012; Mancini, Salarian, et al., 2012; Neville et al., 2015; 

Pantall, Suresparan, et al., 2018; Pirini et al., 2011; Porciuncula et al., 2020), or S2 (Cho & 

Kamen, 1998; De Groote et al., 2021; Ibara et al., 2021; Schelldorfer et al., 2015) levels. 

Other studies use a range from L3-L5 (Lee et al., 2016; Shahzad et al., 2017; Weiss et al., 

2011; Wu et al., 2019; Yu et al., 2021), L5-S1 (Olsen et al., 2023; Turcot et al., 2009), or 

describe the sensor placement as the lower back (Alberts et al., 2015; Alqahtani et al., 2017, 
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2020; Buchman et al., 2020; Dawe et al., 2018; Doherty et al., 2017; Fuschillo et al., 2012; 

Hasegawa et al., 2021; Helbostad et al., 2004; Howcroft et al., 2016; Howell et al., 2019; 

Najafi et al., 2010; Narayanan et al., 2010; Pantall, Del Din, et al., 2018; Similä et al., 2014, 

2017; Wall & Weinberg, 2003), waist (Furman et al., 2013; Kasser et al., 2015; Liu et al., 

2011; Marchetti et al., 2013; Navarrete-Opazo et al., 2017; Suttanon et al., 2020; Whitney 

et al., 2011), or sacrum (Matheron et al., 2016; Noamani et al., 2021; Ozinga et al., 2017). 

Additional common accelerometer placements on the body include the chest (Cerrito et al., 

2015; Cruz-Montecinos, Cuesta-Vargas, et al., 2020; Dewan et al., 2019; Doheny et al., 

2013; Dugan et al., 2021; Frechette et al., 2020; Greene et al., 2014; Hasegawa et al., 2021; 

Hsieh et al., 2019; Hsieh & Sosnoff, 2021; Huisinga et al., 2018; Janssen et al., 2008; Kasser 

et al., 2015; Mejía et al., 2023; Navarrete-Opazo et al., 2017; Parvaneh et al., 2017; Reynard 

et al., 2019; Rivolta et al., 2019), the shins (Flood et al., 2020; Fuschillo et al., 2012; Greene 

et al., 2014; Hasegawa et al., 2021; Howcroft et al., 2016; Huisinga et al., 2018; Olsen 

et al., 2023; Schwenk et al., 2014; Turcot et al., 2009), and the thighs (Armstrong et al., 

2010; Doheny et al., 2013; Flood et al., 2020; Fuschillo et al., 2012; Greene et al., 2014; 

Löppönen et al., 2021; Schelldorfer et al., 2015; Zhou et al., 2021). Howcroft et al. tested 

faller classification models based on accelerations recorded from different locations. The 

best single-accelerometer classifiers were from head and pelvis accelerometers. However, 

the pelvis location was better for the dual-task experiments classification model because the 

head often makes non-balance related movements during cognitive tasks (Howcroft et al., 

2016). Additional accelerometers can be added to allow for more joints to be included in 

biomechanical model assumptions, allowing for double-link (Najafi et al., 2010) and even 

triple-link models (Fuschillo et al., 2012) (Fig. 2). For the double-link model, accelerometers 

are placed on the trunk and the shank, accounting for the ankle and hip joints (Najafi et al., 

2010). The knee joint can be added for the triple-link model by placing another sensor on the 

thigh (Fuschillo et al., 2012).

5 Balance Measures

In this review, we focused on experimental papers that measured features directly from 

acceleration signals during standing balance. The most common outcome measures for 

accelerometry-based balance assessments are in the medial-lateral (ML) and anterior-

posterior (AP) directions. Some studies use the resultant vector which combines the ML 

and AP signals into signal in the transverse plane. The most reported metrics used in the 

studies in this review are root-mean-square, jerk, normalized path length, 95% confidence 

ellipse area, 95% power frequency, and sample entropy (and additional variables derived 

from sample entropy like multiscale entropy and complexity index) (Table 1).

6 Comparison of Accelerometry to Laboratory Measurements

6.a Gold Standard Laboratory Technology

In the laboratory setting, researchers use a variety of technologies to evaluate balance. 

Motion capture systems and force plates are by far the most common and are considered 

the gold standard. The following describes studies that compare accelerometry measures to 

those taken with force plates and motion capture.
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Force plates are the most common balance evaluation technology used in research 

laboratories. Changes in CoP location during standing can show how the body adjusts to 

different postural conditions. Accelerometry measurements have been compared many times 

to force plate measurements (Abe et al., 2014; Adlerton et al., 2003; Alberts et al., 2015; 

Cerrito et al., 2015; Chiari et al., 2005; De Groote et al., 2021; Dewan et al., 2019; Doherty 

et al., 2017; Fuschillo et al., 2012; Heebner et al., 2015; Hsieh et al., 2019; Hsieh & 

Sosnoff, 2021; Hu et al., 2020; Janssen et al., 2008; Lindemann et al., 2012; Mancini et 

al., 2011; Mancini, Salarian, et al., 2012; Neville et al., 2015; Whitney et al., 2011; Zhou 

et al., 2021), some of which have found that accelerometers have comparable or higher 

reliability than force plates (Cerrito et al., 2015; Whitney et al., 2011). Force plate CoP 

metrics and accelerometry measurements are not perfectly correlated. Even in studies where 

both accelerometers and force plates can distinguish between patient populations (Hsieh et 

al., 2019; Hsieh & Sosnoff, 2021; Mancini, Salarian, et al., 2012) or task conditions (De 

Groote et al., 2021; Heebner et al., 2015), correlations range from 0.37–0.92, depending 

on the conditions (De Groote et al., 2021; Heebner et al., 2015; Hsieh et al., 2019; Hsieh 

& Sosnoff, 2021; Mancini, Salarian, et al., 2012). The explained variance tends to be low 

to moderate. One study reported that accelerometry was more correlated to motion capture 

(r=0.887) than to force plate measurements (r=0.793) – which showed only a moderate 

coefficient of determination (r2=0.6294) (Neville et al., 2015). Accelerometer measures and 

CoP differ due to the relationship between the ankle torques, reflected in the CoP, and the 

movements of the CoM that are in response to the torques. Another reason could be that 

standing balance is not a perfect inverted pendulum system with just one joint (ankle), as 

force plate CoP measurements assume (Lindemann et al., 2012; Manchester et al., 1989). 

Accelerometers may be useful in patient populations that are more likely to compensate with 

hip strategy, such as patients with hip fractures (Lindemann et al., 2012), ankle sprains (Abe 

et al., 2014), or Parkinson’s disease (Mancini, Salarian, et al., 2012).

Optical motion capture systems image a whole room or interior environment using a large 

set of cameras that are installed in the laboratory space. Reflective markers are placed on 

different segments of the body to track body movements and joint angles. These systems 

are very expensive and require a specialized set up and trained staff to run. The benefit of 

this big system is that markers can be attached to different parts of the body to monitor 

complex movements. The markers are tracked from several angles, so the output is a 

3D reconstruction of how the body is moving. Despite not providing positional (location 

in space) information like motion capture, accelerometry balance assessments have been 

validated against motion capture systems by comparing measurements made by each system 

(Neville et al., 2015; Olsen et al., 2023; Suttanon et al., 2020). Root-mean-square of 

resultant acceleration magnitudes showed high correlations between motion capture and 

accelerometry (r=0.88, p<0.001) when subjects performed various standing tasks like quiet 

stance, tandem stance with eyes closed, and tandem stance on foam with eyes open (Neville 

et al., 2015). Olsen et al. found that a smartphone application that used accelerometry 

showed excellent validity compared to motion capture outcomes (r=0.98, 95% confidence 

interval = 0.98–0.99) (Olsen et al., 2023). Another study developed a sway meter using 

accelerometers that calculated center of mass sway angles that were significantly correlated 

to those measured by a motion capture system (r=0.98, p<0.01) (Suttanon et al., 2020).
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6.b Laboratory Balance Tasks

Two of the most common balance tasks performed while on a force plate are the Romberg 

test and the Sensory Organization Test; the latter requires the force plate to be integrated 

into a dynamic posturography system. Romberg tests involve subjects standing with the 

feet close together (Buckley et al., 2019); often subjects perform the Romberg test on 

solid and foam surfaces. The Sharpened Romberg test has the feet aligned heel-to-toe. 

Normally, the Romberg test is performed with eyes open and eyes closed. People with 

poor balance are more easily discriminable because their performances diverge more from 

healthy individuals during challenging balance tasks than easy balance tasks. In general, the 

more difficult the task, the more discriminable the sway measure outcomes are (Doheny et 

al., 2012; Najafi et al., 2010; O’Sullivan et al., 2009; Reynard et al., 2019). Computerized 

dynamic posturography systems allow researchers to eliminate different sensory systems 

for the subject. Computerized dynamic posturography allows the visual surrounding to be 

“sway-referenced”, meaning the surrounding moves at the same speed and angle as the 

subject. This creates the condition where the visual system does not detect movement. 

Additionally, the platform the subject is standing on can be rotated about the ankle 

such that the ankle angle is sway-referenced. Platform sway-referencing is used to make 

ankle proprioceptive information unreliable for balance control (Mancini & Horak, 2010). 

Computerized dynamic posturography protocols, termed the Sensory Organization Test, 

include six different conditions: 1) fixed stance and eyes open, 2) fixed stance and eyes 

closed, 3) fixed stance and sway-referenced vision, 4) sway-referenced platform and eyes 

open, 5) sway-referenced platform and eyes closed, and 6) both sway-referenced platform 

and vision (Ford-Smith et al., 1995). These tasks are considered even more difficult than 

the Romberg tasks because they involve dynamic postural perturbations, or the illusion of 

postural perturbations, that require the subject to compensate to maintain balance. Romberg 

test conditions, by comparison, are all static. The measures during force plate tests are 

usually based upon the center of pressure. Recently, accelerometers are also being used. 

A study by Whitney et al. compared force plate and accelerometry balance measurements 

during the Sensory Organization Test conditions and found significant correlations for the 

six conditions (Whitney et al., 2011). Normalized path length measurements had the greatest 

coefficients of correlation compared to root-mean-square and peak-to-peak measurements. 

Across each measurement, correlations were greater as task difficulty increased (Whitney 

et al., 2011). Another study compared CoM accelerations derived from force plate 

measurements to those recorded using an accelerometer. The CoM estimation from force 

plates assumes a single inverted pendulum model. The signal traces showed moderate to 

strong correlations (r=0.65–0.76) in both ML and AP directions for conditions 4–6 (Ozinga 

et al., 2017).

In addition to the Sensory Organization Test, researchers have compared accelerometry to 

force plate measurements during various single-leg stances (Abe et al., 2014; Adlerton et 

al., 2003; Dewan et al., 2019; Doherty et al., 2017; Heebner et al., 2015; Hsieh & Sosnoff, 

2021), tandem stances (Doherty et al., 2017; Heebner et al., 2015; Hsieh & Sosnoff, 2021), 

and dynamic movements (Heebner et al., 2015; Janssen et al., 2008) (Table 2). Some studies 

found significant correlations between force plate and accelerometry parameters during 

single leg stances (Adlerton et al., 2003; Dewan et al., 2019; Heebner et al., 2015), but 
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other studies had contradicting findings (Doherty et al., 2017; Hsieh & Sosnoff, 2021). In 

Abe et al., only healthy subjects had correlated parameters between measurement modalities 

(Abe et al., 2014). Additionally, only accelerometry parameters were significantly different 

between ankle sprain subjects and healthy controls (Abe et al., 2014). Doherty et al. failed 

to find significant correlations between accelerometry and force plates for single leg stances 

but were able to use accelerometry to detect failures during the single-leg (AUC =0.91, 

95% CI=0.86–0.96) and tandem (AUC=0.91, 95% CI=0.85–0.96) stances of the Balance 

Error Scoring System (Doherty et al., 2017). While Hsieh et al. were unable to differentiate 

between assisted device users and non-users from the single-leg stances, the semi-tandem 

stance was successful with accelerometry parameters outperforming force plate parameters 

(AUC=0.77–0.85 for accelerometry, AUC=0.72–0.78 for force plate) (Hsieh & Sosnoff, 

2021). For dynamic tasks, the specific movement seems to have a lot of weight when 

comparing accelerometry and force plate measurements. Janssen et al. found moderate to 

high correlations between force plate and accelerometry root-mean-square and area-under-

the-curve when subjects were asked to perform sit-to-stand tests (Janssen et al., 2008). Using 

the balance conditions from the Dynamic Postural Stability Index, Heebner et al. concluded 

that the two modalities were measuring different aspects of balance and body position 

(Heebner et al., 2015).

7 Algorithms and Smart Devices

The lack of transformed, easy-to-understand outcomes has prevented widespread 

accelerometry adoption in the clinic. Clinicians need user-friendly signal analysis software 

to interpret raw values. Different studies have tried to tackle this problem by developing 

algorithms and classifier models for distinguishing between individuals with balance 

disorders, testing subjects using commercially available accelerometers in smart devices, 

or building their own systems.

Work toward developing software packages and classifier algorithms is underway to discern 

which features are most important for differentiating between populations with good and 

poor balance (Dasgupta et al., 2022; Rivolta et al., 2019; Similä et al., 2014; Weiss et 

al., 2011; Zhou et al., 2021). Accelerometry-derived TUG times were used in a binary 

logistic regression for distinguishing between fallers and non-fallers (Weiss et al., 2011). 

Another study used two classification methods for determining high or low fall risk: an 

artificial neural network and a linear model. The artificial neural network and the linear 

model displayed misclassification errors of 0.11 and 0.21, respectively (Rivolta et al., 

2019). Fall risk predictors have been developed using machine learning techniques, where 

accelerometry data is the input. Examples of these techniques include linear least squares 

model (Shahzad et al., 2017), lasso regression model (Rivolta et al., 2019; Shahzad et al., 

2017), leave-one-out cross-validation model (Similä et al., 2014), and hybrid-convolutional 

recurrent neural network model (Dasgupta et al., 2022). These predictions are then 

compared to various clinical assessments (Rivolta et al., 2019; Shahzad et al., 2017) or 

occurrence of falls (Dasgupta et al., 2022). These techniques can assist in classifying and 

predicting fall risk for older adults should help in making accelerometry-based balance 

assessments more popular in the clinic and community.
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Many groups are starting to look to smart devices such as phones and tablets that contain 

accelerometers to monitor balance instead of force plates or research-grade accelerometers 

that are used in laboratory settings (Cerrito et al., 2015; De Groote et al., 2021; Hsieh 

et al., 2019; Hsieh & Sosnoff, 2021; Kosse et al., 2015; Mansson et al., 2021; Olsen et 

al., 2023; Zhou et al., 2021). One study measured sit-to-stand movements and found peak 

force and total movement duration were highly correlated between a smartphone and a force 

plate (r=0.86 and r=0.98) and, in addition to peak power, had high reliability (intra-class 

correlations=0.86–0.93) (Cerrito et al., 2015). A different research group found smartphone 

root-mean-square measurements were correlated to force plate velocities and sway ellipse 

during challenging balance tasks (e.g., semi-tandem, tandem, single-leg standing). Vertical 

and AP root-mean-square receiver operating characteristic curves were able to distinguish 

between older adults with low and high fall risk (p=0.01–0.04) (Hsieh et al., 2019). That 

research group later found significant correlations between root-mean-square and sway 

ellipse measurements from a smartphone, force plate, and research-grade accelerometer. 

All smartphone measurements were able to discriminate between assisted device users 

and non-users (p<0.0001–0.02) (Hsieh & Sosnoff, 2021). Another study compared an 

iPod touch to an accelerometer and found high cross-correlations between devices (≥0.88) 

(Kosse et al., 2015). Additionally, root-mean-square and sway area had high intra-class 

correlations for iPod validity (≥0.97) and test-retest reliability (≥0.81) (Kosse et al., 2015). 

The use of smart devices to analyze postural stability has also been explored in patient 

populations. Accelerometry measurements from a smartphone were able to discriminate 

between individuals with and without Parkinson’s disease from Sensory Organization Test 

conditions while the equilibrium score from this test was unable to discriminate (Ozinga et 

al., 2017). Additionally, impaired and non-impaired wheelchair users were distinguished by 

smartphone accelerometry (Frechette et al., 2020). These smart devices are commercially 

available, making them a cheap and accessible assessment tool. Transitioning from research-

grade accelerometers to commercially available devices that are already in high-use is 

imperative for bringing balance assessment outside of the laboratory.

8 Clinical Settings

8.a Clinical Examinations

In the clinical setting, healthcare providers evaluate balance using a variety of methods. 

Many research studies have focused on comparing or integrating accelerometry into these 

methods like the Berg Balance Scale (Buckley et al., 2019; O’Sullivan et al., 2009), TUG 

(Timed Up and Go) test (Galán-Mercant & Cuesta-Vargas, 2014; O’Sullivan et al., 2009; 

Weiss et al., 2011), or the 5-times sit-to-stand (Doheny et al., 2013; Shahzad et al., 2017). 

The Berg Balance Scale involves 14 different tasks that require the subjects to perform 

different static poses and dynamic movements to evaluate the individual’s balance (Berg et 

al., 1989). Examples of static poses are sitting, standing with eyes closed, and standing on 

one leg. Reaching, retrieving an object from the floor, and turning to look behind are some 

of the dynamic movements. Each task is scored from 0 of 4 and the individual task scores 

are added up to a maximum of 56 (Berg et al., 1989; O’Sullivan et al., 2009). The TUG test 

has subjects start sitting, rise from the chair, walk 3 meters, turn and return to the chair, and 

sit down again. The main outcome of this assessment is the time to complete the whole TUG 
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test (O’Sullivan et al., 2009; Podsiadlo & Richardson, 1991; Weiss et al., 2011). 5-times 

sit-to-stand measures how long it takes subjects to stand from a seated position and return 

to sitting five times (Csuka & McCarty, 1985; Doheny et al., 2013). Most of these balance 

assessments rely on subjective observations from the clinician and often floor and ceiling 

effects result in poor granularity (Buckley et al., 2019). It is important to note that the TUG 

test and 5-times sit-to-stand are not strictly balance assessments, although balance is heavily 

involved in the tasks. These evaluations were included in this review as some of the studies 

related accelerometry features from TUG or 5-times sit-to-stand to other clinical balance 

assessment scores.

Experiments have been conducted to compare these different evaluations to balance as 

assessed by accelerometry, to see if the scores of the different tests align with various 

accelerometry signal variables. Some experiments focus on comparing accelerometry 

outcomes to the scores of the clinical exams (Godfrey et al., 2015; O’Sullivan et al., 

2009) or using accelerometry to estimate clinical exam scores (McManus et al., 2022; 

Narayanan et al., 2010; Shahzad et al., 2017; Similä et al., 2014, 2017; Yu et al., 2021) 

(Table 3). Godfrey et al. compared accelerometry-derived times to stopwatch times for 

TUG (Godfrey et al., 2015). No significant differences were detected between accelerometry 

and TUG times, suggesting accelerometry is a feasible method for balance assessment 

(Godfrey et al., 2015). A study conducted by O’Sullivan et al. showed that accelerometry 

root-mean-square had strong negative correlations with the Berg Balance Scale and strong 

positive correlations with TUG scores while subjects stood on a foam mat with their eyes 

open. Low Berg Balance Scale scores and high TUG scores indicate poor balance, as does 

high root-mean-square (O’Sullivan et al., 2009). Similarly, another study found that larger 

summed magnitude area of resultant accelerometry signals corresponded to higher Berg 

Balance Scale scores and lower TUG scores (Similä et al., 2017). A previous study by 

the same group estimated Berg Balance Scale scores from accelerations recorded during 

the assessment. Classifiers using the estimated scores showed high performance (89.5%) 

when identifying individuals with high fall risk (Similä et al., 2014). Subjects in a study 

by Shahzad et al. performed TUG, 5-times sit-to-stand, and alternative step test while 

features were extracted from the accelerometry data to be used in various machine learning 

algorithms to produce Berg Balance Scale estimates. Shahzad was able to find strong 

correlations (ρ=0.86) between the average of two estimates and the standard Berg Balance 

Scale assessment score (Shahzad et al., 2017).

Other studies have focused on using the accelerometry measures from the assessments 

(particularly TUG) to classify adults as having better or worse balance performance 

(Dasgupta et al., 2022; Doheny et al., 2013; Galán-Mercant & Cuesta-Vargas, 2014; Greene 

et al., 2014; Lee et al., 2016; Liu et al., 2011; McManus et al., 2022; Mulas et al., 2021; 

Weiss et al., 2011; Wu et al., 2019; Yu et al., 2021). These studies break down the tests 

into different segments, instead of just using overall TUG time to classify patients. One 

study even had access to a dedicated, commercial software that automatically detected 

the different segments (Mulas et al., 2021). Weiss et al. found that accelerometry-derived 

TUG duration was different between non-fallers and fallers while standard stopwatch 

TUG duration did not show significant differences (Weiss et al., 2011). Additionally, a 

model using three different accelerometry-derived metrics (jerk during sit-to-stand, standard 
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deviation, step duration) correctly classified 87.8% of the subjects, compared to just 

63.4% from the stopwatch duration (Weiss et al., 2011). Low and high fall risk subjects 

were more discriminable using accelerometry metrics, specifically signal complexity and 

jerk, from segmented TUG than traditional TUG measurements (Lee et al., 2016; Wu 

et al., 2019). Similar results were found in a study classifying frail and non-frail adults 

(Galán-Mercant & Cuesta-Vargas, 2014). Another study using 5-times sit-to-stand had 

better classification using four accelerometry-derived metrics (74.4%) compared to overall 

time (59.0%) (Doheny et al., 2013). The results from these studies provide support for 

instrumenting balance assessments because accelerometers can provide additional, useful 

information to detect balance changes.

There are other types of balance assessments for specific patient populations that have also 

been assessed in relation to accelerometry. For example, the Balance Error Scoring System 

is often used to evaluate concussed individuals (Doherty et al., 2017; Furman et al., 2013; 

Heebner et al., 2015; King et al., 2014) and the Unified Parkinson’s Disease Rating Scale 

(UPDRS) III has its own Postural Instability and Gait Disorders (PIGD) subscore (Mancini, 

Salarian, et al., 2012).

8.b Patient Populations

8.b.i Neurodegenerative Disorders—Parkinson’s disease causes significant deficits 

in balance and researchers have been using accelerometry to explore this postural control 

decline (Caudron et al., 2014; Y. Chen et al., 2018; Del Din et al., 2016; Flood et al., 

2020; Hasegawa et al., 2021; Mancini et al., 2011; Mancini, Carlson-Kuhta, et al., 2012; 

Mancini, Salarian, et al., 2012; Pantall, Del Din, et al., 2018; Pantall, Suresparan, et al., 

2018). Accelerometry signals can successfully distinguish between Parkinson’s patients and 

healthy controls. Additionally, accelerometry-derived outcomes correlate significantly to the 

PIGD (Mancini et al., 2011) and are more sensitive to Parkinsonian progression compared 

to Motor UPDRS, PIGD, bradykinesia and rigidity sub-scores (Mancini, Carlson-Kuhta, 

et al., 2012). Similarly, accelerometers are also being used to detect balance deficits in 

patient populations such as multiple sclerosis (Hsieh & Sosnoff, 2021; Huisinga et al., 

2018; Kasser et al., 2015; Pau et al., 2017), Huntington’s disease (Kegelmeyer et al., 

2017; Porciuncula et al., 2020), stroke (Helbostad et al., 2004; Mitsutake et al., 2020), 

lower back pain (Caña-Pino et al., 2021, 2023; Schelldorfer et al., 2015), spinal cord 

injury (Navarrete-Opazo et al., 2017; Noamani et al., 2021), osteoarthrosis (Ibara et al., 

2021), and arthropathy (Cruz-Montecinos, Carrasco, et al., 2020). For people with multiple 

sclerosis, assisted device usage is an important risk factor for falls. Hsieh et al. found that 

root mean square and 95% ellipse area were able to successfully discriminate between 

assisted device users and non-users in people with multiple sclerosis (AUC=0.77–0.89, 

p<0.001–0.03) (Hsieh & Sosnoff, 2021). Another study found that sway amplitude and jerk 

significantly improved in people with multiple sclerosis after completing a 10-week balance 

intervention (Kasser et al., 2015). For people with Huntington’s disease, the premanifest 

stage occurs prior to motor diagnosis; however, patients display deficits that are not apparent 

in clinical assessments. In a study conducted by Porciuncula et al., jerk and sway amplitude 

of low back accelerations were able to differentiate among manifest Huntington’s disease, 

premanifest Huntington’s disease, and controls (Porciuncula et al., 2020). Individuals with 
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chronic lower back pain exhibit acceleration signals with higher energy spectral density 

than healthy controls (Caña-Pino et al., 2021), which can be reduced with supervised or 

laser-guided exercise therapies (Caña-Pino et al., 2023).

8.b.ii Concussions and Sports Injuries—Balance performance is also a common 

assessment for concussion patients, as poor balance is a major symptom of traumatic 

brain injury. Several studies of accelerometry-measured balance have thus focused on 

individuals with concussions (Doherty et al., 2017; Dugan et al., 2021; Furman et al., 

2013; Howell et al., 2019; Johnston et al., 2020; King et al., 2014). Researchers have been 

using accelerometers during the Balance Error Scoring System when evaluating athletes 

after concussions. One study found that normalized path length (from the NIH Balance 

Accelerometry Measure) underperformed in comparison to the Balance Error Scoring 

System (Furman et al., 2013); however, the Balance Accelerometry Measure was not 

developed for concussion testing. Conversely, Doherty et al. showed that 95% sway volume 

during bilateral stance was significantly different between concussed and healthy subjects 

(Doherty et al., 2017). Detecting differences in the bilateral stance is important as subjects 

often do not make errors during that condition, meaning that the Balance Error Scoring 

System suffers from ceiling effects. Additionally, this study showed that accelerometers 

could identify when an error occurred (AUC=0.91) which could be useful for providing 

objective assistance to the clinical assessment (Doherty et al., 2017). Another study found 

that accelerometry values were significantly different between patients mild and persistent 

concussion symptoms, unlike scores from the Balance Error Scoring System (King et al., 

2014). Other sports injuries that affect balance also benefit from using accelerometry as a 

measurement tool. Abe et al. compared healthy controls to individuals with a history of 

ankle sprain, using accelerometers on the head and foot, and found that the healthy controls 

had a lower head-to-foot acceleration ratio than the ankle sprain subjects (Abe et al., 2014).

8.b.iii Sensory Deficit Patients and Feedback Systems—The balance system 

relies on inputs from visual, somatosensory, and vestibular systems. Some studies have 

focused on poor balance resulting from damage to the vestibular system (Alsubaie et al., 

2022; D’Silva et al., 2017; Marchetti et al., 2013; Turcot et al., 2009). The NIH’s Balance 

Accelerometry Measure was tested to see if it could accurately differentiate between healthy 

subjects and patients with vestibular disorders (Marchetti et al., 2013). The results showed 

that four of the six conditions of the Balance Accelerometry Measure were reliable in 

vestibular subjects and the composite score output by the test showed high sensitivity and 

specificity to discriminate between vestibular and healthy groups (Marchetti et al., 2013). 

Another type of balance deficit can occur with the loss of somatosensory information from 

peripheral limbs. Individuals with diabetic peripheral neuropathy have reduced sensitivity in 

their feet which reduces the amount of sensory feedback that the postural control system can 

use to adjust balance. Turcot et al. found that patients with diabetic peripheral neuropathy 

had higher accelerations and worse postural stability than controls and diabetic patients 

without peripheral neuropathy (Turcot et al., 2009).

Patients with poor balance may see improvements when using artificial feedback systems 

(Caudron et al., 2014; Chiari et al., 2005; Cruz-Montecinos, Cuesta-Vargas, et al., 2020; 
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Halická et al., 2014; Kegelmeyer et al., 2017; Pirini et al., 2011; Wall & Weinberg, 

2003). These feedback systems rely on accelerometers to monitor the subject’s balance 

and then that sway information is relayed, processed, and output in some other modality 

as an additional form of sensory feedback. Vibrotactile feedback (Wall & Weinberg, 2003), 

auditory feedback (Kegelmeyer et al., 2017), and visual feedback (Caudron et al., 2014) 

have been successful for people with vestibulopathic conditions, Huntington’s disease, and 

Parkinson’s disease respectively. Artificial feedback can also help subjects that have good 

balance (Chiari et al., 2005; Cruz-Montecinos, Cuesta-Vargas, et al., 2020; Halická et al., 

2014; Pirini et al., 2011). Audio feedback conveyed sway accelerations in two directions 

by modulating frequency (AP), left/right audio balance (ML), and volume (magnitude of 

acceleration). The audio feedback helped subjects improve their balance, particularly when 

posture was challenged by reducing sensory feedback (closing eyes or standing on foam) 

(Chiari et al., 2005). Visual biofeedback also enhanced postural control learning in healthy 

individuals that underwent single leg stance training (Cruz-Montecinos, Cuesta-Vargas, et 

al., 2020). This research shows that not only can accelerometry be used as an assessment 

tool but also as a component of balance treatment or enhancement.

9 Community Settings

Accelerometers allow researchers and clinicians to assess subjects and patients at their 

residence and in their daily life, without the bias of a laboratory or clinical setting. There 

have not been many balance studies conducted in community settings with accelerometers, 

but those that do exist have shown promising results (Alqahtani et al., 2017, 2020; Löppönen 

et al., 2021; Mejía et al., 2023; Parvaneh et al., 2017; Wu et al., 2019; Zhou et al., 2021). 

Alqahtani et al. used accelerometers to assess participants’ balance in their residence facility 

to analyze the reliability and validity of accelerometers in a community setting. They found 

that accelerometers had good to excellent intra-class correlations in all but one of their test 

conditions (AP semi-tandem stance). They also found that normalized path length had the 

best test-retest reliability (Alqahtani et al., 2020). This group had previously found that 

accelerometry root-mean-square and normalized path length were significantly correlated 

to the Duke Comorbidity Index (Alqahtani et al., 2017). In residential communities in 

Taiwan, Wu et al. was able to discriminate between low and high fall risk residents and 

their accelerometry features outperformed traditional assessment measurements (Wu et al., 

2019). Another study investigated application-based balance tests in laboratory settings 

and self-administered at home and found that the balance features from the application 

were sensitive to age and task condition in both testing locations (Zhou et al., 2021). 

Self-administered, smartphone-based balance tests were also used to explore the relationship 

between subjective balance confidence and objective sway measurements. The authors 

concluded that older adults at higher fall risk display greater postural sway on days with 

higher balance confidence (Mejía et al., 2023). Conducting balance assessments within the 

home or residential communities increases healthcare access for underserved populations, 

mobility-impaired patients, and individuals unable to get transportation to clinics.
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10 Conclusion

In this narrative review, the literature demonstrates that accelerometry is highly correlated 

with or outperforms several clinical and laboratory balance assessments. Accelerometers 

can be used to monitor changes in balance due to general aging or from different types 

of pathology. The portability of accelerometers and their sensitivity to different task and 

disease conditions show that this technology can reduce burden on clinicians and patients, 

particularly patients that already have mobility deficits. Commercially available smart 

devices are being shown to be useful in measuring balance and thus expanding accessibility 

further to patients and use in community or residential settings.

This review has a few limitations. The heterogeneity of many of the studies in terms of 

sensor placement, outcome, and balance tests employed make comparisons across studies 

difficult. Additionally, only papers published in English were considered, reducing the 

variety of study populations. Many of these studies also lacked diverse samples, particularly 

in terms of race and education, which limits the generalizability of these conclusions. 

Additionally, male participants were more common than female participants especially 

for studies that focused more on comparing accelerometers to other technologies and not 

on a particular study population. Lastly, a single reviewer was responsible for the data 

search, extraction, and analysis. As a result, studies could have been missed or omitted 

that should have been included. Despite these limitations, this narrative review does give 

a comprehensive overview of accelerometry methods and applications for standing balance 

assessment.

Accelerometers have been used in many different studies for balance assessment. They 

have been compared to laboratory technology like force plates and motion capture. 

Accelerometers provide additional information to clinical assessments like the Berg Balance 

Scale, TUG test, and 5-times sit-to-stand. They have been used with numerous patient 

populations, such as Parkinson’s disease, Huntington’s disease, multiple sclerosis, and 

concussion. Additionally, many studies now are looking at activity monitoring, using 

accelerometers in fitness watches or other smart devices to monitor function of community-

dwelling older adults in their daily lives (Cavanaugh et al., 2007; Kocherginsky et al., 

2017; Mañas et al., 2018; Schrack et al., 2018; Van Schooten et al., 2015). Despite the 

potential of these devices, the current literature is limited because it is difficult to make 

comparisons across studies as the field has not yet agreed on standardized outcomes to 

measure and report. It is also important to consider whether older adults will use this 

technology in their community or whether it should be used mostly in the clinic. Studies do 

not currently examine how older adults feel about incorporating this technology. A previous 

review has looked into older adults’ perceptions of technology and their conclusions point to 

the importance of older adults thinking the technology is useful and non-invasive (Hawley-

Hague et al., 2014). With the rise in activity monitoring and commercially available 

accelerometers in smart devices, balance assessments should move to the community, not 

requiring a trip to a clinic. However, accelerometers are not yet part of the clinical diagnostic 

process despite the breadth of clinically relevant uses, diagnostic sensitivity, and widespread 

accessibility of commercially available devices. For accelerometers to move into the clinical 
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space, a consensus on relevant outcomes is necessary as well as a reliable, user-friendly 

signal analysis software that clinicians can use in the balance assessment process.

Overall, accelerometers provide additional insight to current standard clinical assessments 

and diagnostics for patients, but their full potential is not yet realized. Accelerometers offer 

clinicians an objective, portable, and cost-effective measurement tool that could increase 

accessibility to balance assessments for older adults in an increasingly aging population.
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Fig. 1. 
A Diagram of a mass-spring system and Hooke’s Law, where F  is force, k is the spring 

constant, x is the displacement, m is the mass, and a is the acceleration B Simplified diagram 

of a capacitive micro-electromechanical accelerometer where m is the mass, k1 and k2 are 

springs, and C1 and C2 are capacitors.
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Fig. 2. 
Diagram of the single-link (left), the double-link (center), and the triple-link (right) 

biomechanical models.
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Table 1

Description of the most commonly reported outcome metrics calculated from acceleration signals from the 

experimental studies discussed in this review.

Feature Calculation Relationship to 
Balance

Number of Studies that Measured Feature

Root-Mean-
Square = ∑j = 1

N − 1 ACCj
2

N
Where N is the total number of data points, 
and ACCj is the acceleration data at sample 
j.

Measure of spread 
of accelerations, 
relates to amount 
of postural sway 
(Alqahtani et al., 
2020).

54
(Abe et al., 2014; Alqahtani et al., 2017, 2020; 
Alsubaie et al., 2022; Bohlke et al., 2021; Buchman 
et al., 2020; T. Chen et al., 2018; Chiari et al., 2005; 
Cho & Kamen, 1998; Cruz-Montecinos, Carrasco, 
et al., 2020; D’Silva et al., 2017; Dawe et al., 
2018; De Groote et al., 2021; Del Din et al., 2016; 
Doheny et al., 2012, 2013; Frechette et al., 2020; 
Godfrey et al., 2015; Greene et al., 2014; Halická 
et al., 2014; Hasegawa et al., 2021; Heebner et 
al., 2015; Helbostad et al., 2004; Hsieh et al., 
2019; Hsieh & Sosnoff, 2021; Hu et al., 2020; 
Janssen et al., 2008; Kasser et al., 2015; King et al., 
2014; Kosse et al., 2015; Lamoth & van Heuvelen, 
2012; Liu et al., 2011; Makizako et al., 2013; 
Mancini et al., 2011; Mancini, Carlson-Kuhta, et 
al., 2012; Mancini, Salarian, et al., 2012; Mansson 
et al., 2021; Matheron et al., 2016; McManus et 
al., 2022; Mejía et al., 2023; Narayanan et al., 
2010; Navarrete-Opazo et al., 2017; Neville et al., 
2015; Noamani et al., 2021; O’Sullivan et al., 2009; 
Ozinga et al., 2017; Pantall, Suresparan, et al., 
2018; Pirini et al., 2011; Reynard et al., 2019; 
Saunders et al., 2015; Shahzad et al., 2017; Turcot 
et al., 2009; Whitney et al., 2011; Yu et al., 2021; 
Zhou et al., 2021)

Jerk = 1
2∫0

t dACC
dt

2

Where t is the total time, ACC is the 
acceleration signal.

Measures the change 
in acceleration 
(slope) and 
indicates postural 
control smoothness 
(Mancini et al., 
2011).

25
(Buchman et al., 2020; T. Chen et al., 2018; Cruz-
Montecinos, Cuesta-Vargas, et al., 2020; Dasgupta 
et al., 2022; Dawe et al., 2018; Del Din et al., 
2016; Dewan et al., 2019; Doheny et al., 2013; 
Dugan et al., 2021; Flood et al., 2020; Godfrey et 
al., 2015; Hasegawa et al., 2021; Johnston et al., 
2020; Kasser et al., 2015; Lee et al., 2016; Mancini 
et al., 2011; Mancini, Carlson-Kuhta, et al., 2012; 
Mancini, Salarian, et al., 2012; McManus et al., 
2022; Navarrete-Opazo et al., 2017; Noamani et al., 
2021; Pantall, Suresparan, et al., 2018; Porciuncula 
et al., 2020; Shahzad et al., 2017; Weiss et al., 
2011; Yu et al., 2021)

Normalized 
Path Length = 1

t ∑j = 1
N − 1 ACCj + 1 − ACCj

Where t is the total time, N is the total 
number of data points, and ACCj is the 
acceleration data at sample j.

Measure of speed, 
similar to integrating 
acceleration 
(Alqahtani et al., 
2020).

12
(Alqahtani et al., 2017, 2020; Bohlke et al., 
2021; Flood et al., 2020; Furman et al., 2013; 
Mancini, Salarian, et al., 2012; Mansson et al., 
2021; Marchetti et al., 2013; McManus et al., 2022; 
Ozinga et al., 2017; Whitney et al., 2011; Zhou et 
al., 2021)

95% Ellipse 
Area

Area containing 95% of accelerations 
in transverse plane (anterior-posterior and 
medial-lateral).

Planar measure 
of spread of 
accelerations, relates 
to the amount 
of postural sway 
(Pantall, Suresparan, 
et al., 2018).

11a
(Del Din et al., 2016; Doherty et al., 2017; 
Frechette et al., 2020; Godfrey et al., 2015; Hsieh 
& Sosnoff, 2021; Lindemann et al., 2012; Matheron 
et al., 2016; McManus et al., 2022; Mejía et al., 
2023; Ozinga et al., 2017; Pantall, Suresparan, et 
al., 2018)

95% Power 
Frequency

95% of power is present below this frequency. Measure of 
frequency content 
of the acceleration 
signal (Doheny et 
al., 2013).

10
(Chiari et al., 2005; Del Din et al., 2016; Doheny et 
al., 2013; Godfrey et al., 2015; Greene et al., 2014; 
Mancini et al., 2011; Mancini, Carlson-Kuhta, et 
al., 2012; Mancini, Salarian, et al., 2012; McManus 
et al., 2022; Pantall, Suresparan, et al., 2018)
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Feature Calculation Relationship to 
Balance

Number of Studies that Measured Feature

Sample
Entropy = − ln Cm + 1 r

Cm r
Where C r  is the conditional probability that 
two sequences match for length m + 1 or 
m, r is the tolerance for match acceptance 
which is usually defined as a percentage of 
the standard deviation.

Measure 
of complexity/
regularity of 
acceleration signals 
(Richman & 
Moorman, 2000; Wu 
et al., 2019).

8b
(Cruz-Montecinos, Carrasco, et al., 2020; Dugan 
et al., 2021; Johnston et al., 2020; Lamoth & van 
Heuvelen, 2012; Lee et al., 2016; Pantall, Del Din, 
et al., 2018; Rivolta et al., 2019; Wu et al., 2019)

a
One study (Doherty et al., 2017) used ellipsoid volume instead of ellipsoid area and included the vertical acceleration signal.

b
Some groups used just sample entropy (Lamoth & van Heuvelen, 2012; Pantall, Del Din, et al., 2018; Rivolta et al., 2019), others went further to 

find multiscale entropy (Lee et al., 2016; Wu et al., 2019) and then additionally to calculate the complexity index (Dugan et al., 2021; Lee et al., 
2016; Wu et al., 2019).
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Table 2

Studies comparing accelerometers to force plates that required subjects to perform single-leg standing, tandem 

stances, or dynamic movements.

Paper Accelerometer 
Location

Activity

Abe et al. 2014 (Abe et al., 2014) Forehead, dominant 
ankle

Single-leg standing

Adlerton et al. 2003 (Adlerton et al., 2003) L3 Single-leg standing during resting and fatigued conditions

Dewan et al. 2019 (Dewan et al., 2019) Midsternum level Double leg standing, single-leg standing, anterior-posterior sway, 
medial-lateral sway

Doherty et al. 2017 (Doherty et al., 2017) Lower back Bilateral stance, tandem stance, unilateral stance (single-leg) from the 
Balance Error Scoring System

Heebner et al. 2015 (Heebner et al., 2015) L5 Dynamic postural stability index, forward jump over hurdle to one leg, 
lateral jump over hurdle to one leg, double leg stance on firm and 
foam, tandem stance, single-leg standing

Hsieh et al. 2021 (Hsieh & Sosnoff, 2021) Sternum Eyes open and closed bilateral stance, semi-tandem stance, tandem 
stance, and single-leg standing

Janssen et al. 2008 (Janssen et al., 2008) Sternum Sit-to-stand on firm, foam, and balance board surface, sit-to-stand 
rising on single dominant leg
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Table 3

Studies that focused on comparing accelerometry to or predicting scores of clinical examinations.

Paper Tasks Completed with 
Accelerometer

Clinical 
Examination

Main Takeaway

Godfrey et al. 2015 
(Godfrey et al., 2015)

TUG TUG TUG times detected with accelerometry were not significantly 
different from stopwatch times, indicating algorithm could 
replace stopwatch timing.

McManus et al. 2022 
(McManus et al., 
2022)

Standing on firm and foam 
surfaces in a semitandem 
stance, with eyes closed in 
a narrow stance, TUG

Berg Balance 
Scale, TUG

The Balance Score developed from accelerometry features was 
significantly correlated to TUG time (ρ = 0.30, 0.34; p<0.001). 
Accuracy was higher for fall risk assessment classifiers that 
used accelerometry data (66%, 68%) than classifiers using just 
TUG time (59%) or Berg Balance Scale scores (59%).

Narayanan et al. 2010 
(Narayanan et al., 
2010)

Physiological Profile 
Assessment, TUG, 
Alternative Step Test, 5-
times Sit-to-Stand

Physiological 
Profile Assessment

A model developed mostly using accelerometry features 
from the Alternative Step Test and Sit-to-Stand was highly 
correlated to the Physical Profile Assessment (ρ = 0.81, p < 
0.001).

O’Sullivan et al. 2009 
(O’Sullivan et al., 
2009)

Standing on firm and foam 
surfaces with eyes open 
and closed

Berg Balance 
Scale, TUG

Acceleration root-mean-square during standing on foam with 
eyes open was significantly correlated with Berg Balance Scale 
(ρ = −0.829, p < 0.001) and TUG (r = 0.621, p < 0.01).

Shahzad et al. 2017 
(Shahzad et al., 2017)

TUG, Alternative Step 
Test, 5-times Sit-to-Stand

Berg Balance 
Scale

The average of Berg Balance Scale score estimation models 
that were trained using accelerometry features was strongly 
correlated to standard Berg Balance Scale scores (ρ = 0.86, p < 
0.001).

Similä et al. 2014 
(Similä et al., 2014)

Berg Balance Scale, 10m 
Walk

Berg Balance 
Scale

The gait-based Berg Balance Scale estimation model was most 
accurate in identifying high fall risk subjects (77.8%) and low 
fall risk subjects (96.6%); the balance task estimation model 
performed better with high fall risk (89.5%) than low fall risk 
(62.1%).

Similä et al. 2017 
(Similä et al., 2017)

Romberg test, Berg 
Balance Scale, TUG, 5-
times Sit-to-Stand, 4m 
Walk

Berg Balance 
Scale, TUG, 5-
times Sit-to-Stand

Results from the estimation models using accelerometry 
features averaged normalized root-mean-square errors of 0.28 
for Berg Balance Scale scores, 0.18 for TUG times, and 0.22 
for 4m walk times. Standard deviation of vertical acceleration 
could predict decline in Berg Balance Scale (AUC = 0.82, 
sensitivity = 80%, specificity = 73%).

Yu et al. 2021 (Yu et 
al., 2021)

TUG Short Form Berg 
Balance Scale

Accelerometer features from TUG performance were the 
inputs to an estimation model for Short Form Berg Balance 
Scale scores, with an elastic net regression model performing 
the best (mean absolute error = 2.12, root-mean-square error = 
2.68). Predicted subtask scores were also able to discriminate 
between fall risk levels (AUC = 0.72–0.79).
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