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Bioaerosols are the dominant source of warm-
temperature immersion-mode INPs and drive
uncertainties in INP predictability
Gavin C. Cornwell1,2*, Christina S. McCluskey3,4, Thomas C. J. Hill3, Ezra T. Levin3†,
Nicholas E. Rothfuss5, Sheng-Lun Tai1, Markus D. Petters5‡, Paul J. DeMott3, Sonia Kreidenweis3,
Kimberly A. Prather2,6, Susannah M. Burrows1

Ice-nucleating particles (INPs) are rare atmospheric aerosols that initiate primary ice formation, but accurately
simulating their concentrations and variability in large-scale climate models remains a challenge. Doing so re-
quires both simulating major particle sources and parameterizing their ice nucleation (IN) efficiency. Validating
and improving model predictions of INP concentrations requires measuring their concentrations delineated by
particle type. We present a method to speciate INP concentrations into contributions from dust, sea spray
aerosol (SSA), and bioaerosol. Field campaign data from Bodega Bay, California, showed that bioaerosols
were the primary source of INPs between −12° and −20°C, while dust was a minor source and SSA had little
impact. We found that recent parameterizations for dust and SSA accurately predicted ambient INP concentra-
tions. However, the model did not skillfully simulate bioaerosol INPs, suggesting a need for further research to
identify major factors controlling their emissions and INP efficiency for improved representation in models.
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INTRODUCTION
Ice-nucleating particles (INPs) are a subset of atmospheric aerosol
that can initiate heterogeneous ice nucleation (IN). While they are
rare [roughly 1 in 105 particles in ambient continental air is an active
INP at −30°C (1)], these INPs can affect precipitation and the radi-
ative properties of clouds due to their ability to induce glaciation,
with important impacts on weather and climate (2–6). Immer-
sion-mode INPs are of particular importance to freezing processes
in mixed-phase clouds (7) and are the focus of this study. While
many substances have been shown to nucleate ice, observational ev-
idence suggests that only a small number of particle types must be
represented to adequately predict INPs in climate models, including
mineral and soil dusts, sea spray, and biological INPs (hereafter
“bio-INPs”) (8, 9).

While dust particles are well understood to be the globally most
abundant source of immersion-mode INPs in boundary-layer air at
colder temperatures [e.g., below −25°C; (10, 11)], previous studies
suggest that bio-INPs are likely the primary source of INPs at tem-
peratures above −15°C (12). Global simulations incorporating bio-
INPs have found that they may contribute to droplet freezing in
warm portions of mid-latitude clouds (13).

The contribution of bio-INPs to freezing at warmer tempera-
tures is important due to the potential impacts on subsequent
cloud development. After the initial formation of primary cloud
ice, cloud glaciation can be further accelerated by secondary ice pro-
duction (SIP) mechanisms (14) that lead to the formation of addi-
tional cloud ice. High-resolution modeling studies suggest that
certain clouds are particularly sensitive to warm-temperature
INPs when SIP is accounted for, with impacts on both surface pre-
cipitation and cloud radiative properties (4, 15). More broadly, ad-
vances in remote sensing have recently made it possible to identify
SIP in clouds, and have shown that SIP is particularly important at
temperatures ranging from −5° to −20°C (16). Consequently, bio-
INPs, which are active at warmer freezing temperatures, may be par-
ticularly impactful for climate.

Despite their importance, bio-INPs have proven challenging to
measure and identify in the atmosphere, and models of bio-INP
impacts on clouds and climate consequently have lacked adequate
validation datasets. Most previous studies of bio-INPs in the
ambient atmosphere have relied on indirect methods to identify
bio-INPs, such as heat and peroxide treatments (17) that deactivate
biological and organic INPs. These methods are inexpensive and
readily accessible, but the potential for deactivation of other INP
types by these treatments introduces inherent uncertainties in
their interpretation (18). Other studies have used correlation anal-
ysis to show associations between elevated biological particle and
INP concentrations (19), but have not quantified the contributions
of bio-INPs to the total INP population.

In this work, we use a unique measurement dataset to conclu-
sively attribute warm-temperature INPs to bioaerosol. At colder
temperatures (ca. −30°C), we directly observe dust and sea spray
INPs and show that both can be predicted well by current INP pa-
rameterizations. After accounting for dust and sea spray INPs, the
remaining variability in observed INPs at warmer freezing temper-
atures (−12° to −20°C) is correlated with a class of fluorescent
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bioaerosol, FP3, which is operationally defined by their measure-
ment from a fluorescence-sensitive optical particle counter. By de-
veloping a linear relationship between FP3 particles and bio-INPs,
we show that bio-INPs comprised more than 60% of INPs in this
temperature range. Using this unique dataset, we evaluate the
ability of present-day models to adequately simulate ambient im-
mersion-mode INPs from multiple particle types at both warmer
and colder freezing temperatures. We show that the leading obstacle
to accurate simulation of total INP concentrations by an atmospher-
ic model during a field campaign in California is the inaccurate rep-
resentation of bio-INPs.

RESULTS
All measurements used in this study were collected at the Bodega
Marine Laboratory in Bodega Bay, CA (38.3186°N, 123.0716°W)
during the CalWater-2015 field campaign. Our previous work
showed that approximately 90% of INPs at Bodega Bay could be
classified as either dust, sea spray aerosol (SSA), or bioaerosol
(20). We considered other particle types that have been shown to
nucleate ice, namely, soot and organic aerosol. However, these par-
ticle types generally have low IN activity in the mixed-phase cloud
regime (21) and would not be expected to contribute substantially
to INP populations in this study given the locations (22, 23), and
thus, we neglect any potential contributions. The focus of this
study is testing our predictive understanding of the variability in
ambient concentrations of each of these INP types, with the goal
of understanding whether adequate simulation of each INP type
is currently achievable in atmospheric models.

We posit that for simulation of INPs in models to be considered
adequate, prediction errors must be less than an order of magnitude
for most observations. High-resolution cloud modeling shows that
clouds can be sensitive to INP perturbations of more than one order
of magnitude (5), suggesting that this is a necessary criterion for
simulation of cloud processes. Global aerosol models are often
able to predict aerosol loadings within an order of magnitude
[e.g., (24)], suggesting that this criterion may be achievable by
large-scale models.

We therefore use two primary metrics to evaluate our ability to
correctly predict total INP concentrations: (i) the fraction of total
speciated INPs within a factor of 2 of the total predicted INPs
(F2), and (ii) the fraction of total speciated INPs within a factor of
10 of the total predicted INPs (F10). We consider prediction of INPs
to be successful on these metrics if we are able to achieve F2 ≥ 0.5
and F10 ≥ 0.8. In addition, the mean bias in predicted INPs should
be less than an order of magnitude, as measured by a modified nor-
malized mean bias (MNMB) less than 1. Last, a high correlation
between observed and predicted INPs, as measured by the
Pearson correlation coefficient (r), is desirable.

In this context, we discuss here four separate analyses that test
predictive understanding: (i) a closure analysis for directly detected
dust and SSA INPs at colder temperatures; (ii) an apportionment of
INPs at warmer freezing temperatures to dust, sea spray, and bio-
INPs; (iii) an analysis of model predictive skill for cold-temperature
INPs; and (iv) an analysis of model predictive skill for warm-tem-
perature INPs (Fig. 1). Although the observations we use for this
study are taken from a single field campaign, they provide a direct
and quantitative corroboration for a growing body of studies

suggesting that bio-INPs play a critical role at warmer freezing tem-
peratures in many locations globally (9, 12, 25).

Closure analysis for INPs directly detected at freezing
temperatures ca. −30°C
We first perform a closure analysis, testing the ability of current INP
parameterizations to adequately predict both dust and sea spray INP
concentrations (NINP,x) for each particle type x at colder freezing
temperatures from −28° to −33°C. INPs were quantified using
the Colorado State University (CSU) Continuous Flow Diffusion
Chamber (CFDC). In addition, INPs were aerodynamically separat-
ed and chemically classified by an aerosol time-of-flight mass spec-
trometer (ATOFMS) (26) in a residual characterization
experiment (20).

We compare observed INP concentrations with those predicted
using active site density (ns)–based parameterizations following the
equation

NINP;x ¼ ns;xAx

where ns,x [m−2] is the active site density for particle type x (dust, sea
spray, or bio-INP) and Ax is the total surface area concentration of
particle type x (m2 liter−1). We parameterize dust and SSA INPs fol-
lowing (27, 28), respectively. The parameterization for SSA has an
uncertainty range of a factor of 2, while the dust parameterization
has no uncertainty range. Type-specific surface areasADust andASSA
were derived by combining single-particle classifications with the
size distribution measured by an aerodynamic particle sizer (APS)
(APS 3321, TSI Inc.), as in previous studies (29, 30).

Figure 2 (A and B) shows the speciated INPs for SSA and dust
from the residual characterization measurement versus those pre-
dicted using existing parameterizations and ambient aerosol mea-
surements. Excellent agreement was found between the speciated
and predicted INPs for both SSA and dust, with a Pearson correla-
tion coefficient of r = 0.9 and r = 0.8, and an average overprediction
of only 33 and 41% (MNMB of 0.33 and 0.41), respectively. This
closure analysis demonstrates that NINP,x can be successfully pre-
dicted at colder temperatures using recent INP parameterizations,
when the available surface area for each particle type is known.

We also note that while SSA is an important source of INPs over
remote ocean regions where continental aerosols are scarce (3, 31),
SSA did not notably contribute to INPs in this study. Despite the
proximity to the ocean, we observed only about five times more par-
ticle surface area for SSA than for dust (fig. S1). Dust particles typ-
ically have IN activities two to three orders of magnitude greater
than SSA particles at the same temperature (27, 28, 30), which ex-
plains why dust INPs were much more prevalent than SSA INPs at
this coastal site. This is consistent with modeling studies suggesting
that SSA particles are an important source of INPs only at locations
distant from land (31).

INP apportionment and closure at freezing temperatures
between −12° and −20°C
Total immersion-mode INPs at warmer freezing temperatures
between −12° and −20°C were quantified by the North Carolina
State University (NCSU) Cold Stage (32). We use single-particle
measurements from a wideband integrated bioaerosol sensor
(WIBS) (WIBS-4, DMT Inc.) to support our attribution of bio-
INPs in this temperature range. At these warmer temperatures,
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INP concentrations correlate strongly with the FP3 particle class, a
subset of fluorescent particles measured by the WIBS-4, character-
ized by their very high fluorescent signal in the tryptophan channel
(Fig. 3) (33). Similar associations have been observed in previous
field experiments (34, 35), suggesting a strong contribution of bio-
aerosols to warm-temperature INPs. Therefore, we posit that the
FP3 particle type is a reliable proxy for the concentration of bio-
INPs during this field study.

Because too few INPs are active at these warmer temperatures to
allow a residual characterization experiment, we take a different ap-
proach to speciate INPs in this temperature range. We first extend
our calculation of dust and SSA INPs using ns-based parameteriza-
tions to the warmer temperature range. For bioaerosol, the uncer-
tainties in both the measured size distribution and available INP
parameterizations are large enough to prohibit this approach.

Instead, we parameterize bio-INP number concentration by apply-
ing a linear, temperature-dependent scaling factor to the FP3 con-
centration (fig. S2). This scaling factor was derived from a sum-of-
least squares best fit to the residual concentration of INPs after first
subtracting the concentrations of dust and SSA INPs (see Materials
andMethods for more details). While the ATOFMS andWIBS have
different measurement ranges and detection methods, and thus
would not be expected to measure the same particles, previous
work has found a moderate correlation (r = 0.73) between biopar-
ticles measured by the ATOFMS and the FP3 particle class (33).

Notably, bioaerosols were the dominant source of INPs at all
temperatures between −12° and −20°C (binned in one-degree in-
tervals; Fig. 4), comprising more than 60% of the INPs active in
this temperature range. Dust particles were a minor INP source at
−12°C, but increased in importance at colder temperatures,

Fig. 1. Overview of the methodology used in this study. We take two different approaches to speciate INP concentrations using single-particle techniques. The first
approach uses the direct measurements of ice crystal residuals with an SPMS to fractionate INP concentrations. The second approach uses single-particle measurements
in tandem with size distributions to derive speciated particle surface area distributions. We then apply particle type–specific active site density ns parameterizations to
calculate INP concentrations for different particle types. These two approaches can be used to evaluate the representativeness of dust and SSA INP parameterizations. We
take a Lagrangian approach to evaluate model predictive skill. We use a turbulent dispersion model, FLEXPART, to calculate source-receptor influence footprints and
combine these source-receptor footprints with particle source functions for dust, SSA, fungal spores, and bacteria along with appropriate ns parameterizations to predict
INP concentrations. The predictive skill of the model is evaluated using the speciated INP measurements. In addition, using high- and low-resolution meteorological data
to drive the Lagrangian simulations allows us to assess how model resolution affects our prediction of INP concentrations.
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contributing 10 to 40% of the INPs active at −19°C. These results
are consistent with previous literature showing that bio-INPs make
up a greater fraction of continental boundary layer INPs at warmer
temperatures than at colder temperatures (19, 25, 36).

Next, we evaluate aerosol-INP closure for warm-temperature
INPs, by comparing the total of our dust, sea spray, and bio-INP
proxies with the total INPs quantified via droplet freezing.
Closure exceeded our requirements, with agreement within a
factor of 2 achieved 40 to 50% of the time. Agreement within a
factor of 10 was achieved 80 to 90% of the time for temperatures
warmer than −18°C (fig. S3). MNMB is less than 1 for temperatures
warmer than −17°C (Fig. 4). The correlation between predicted and
measured INP concentrations ranged from 0.66 to 0.86 across all
temperatures (Fig. 4D). Overall, we conclude that aerosol-INP
closure was achieved to within the precision required for atmo-
spheric models at temperatures between −12° and −17°C, while
errors from −17° to −20°C were slightly greater than our established
criteria.

An unavoidable limitation of our approach towarm-temperature
closure is that the prediction of bio-INPs relies in part on the total
INPmeasurement, which is also used to evaluate closure. Therefore,
we also examined independent sources of evidence to corroborate

our attribution of bio-INPs. First, we performed heat treatment ex-
periments on an independent INP dataset using filters processed in
the CSU ice spectrometer (IS) for select periods when our method
predicts high bio-INPs and low bio-INPs. These experiments
showed that more INPs were deactivated during periods of high
bio-INPs, which qualitatively corroborates our attribution method
for bio-INPs (fig. S4).

Second, we note an increase in bio-INPs following each of two
observed atmospheric river events (fig. S5). A similar phenomenon
has been observed in previous field experiments where bioaerosol,
total INP, and heat-sensitive INP concentrations all increased in
tandem during and after rainfall (37–39). The consistency of this
study with previous studies demonstrating a connection between
rain events and bio-INPs adds further corroborating support to
our conclusions.

Predictive skill for INP concentrations at freezing
temperatures ca. −30°C
Having established that aerosol-INP closure is achieved using
current INP parameterizations for SSA and dust, we next applied
these parameterizations to model-simulated aerosol and quantified
model predictive skill. By separately quantifying closure errors and

Fig. 2. Scatter plots of predictions of speciated INPs, on the basis of parameterizations and aerosol measurements, versus speciated INPs based on residual
experiments. Marker color shows the temperature at which the measurement was collected. The top panels show relatively good agreement between speciated INPs
predicted from aerosol size distributions for SSA (A) and dust (B). The bottom panels show the speciated INPs versus those predicted from simulations for SSA (C) and dust
(D). MNMB, fractional gross error (FGE), and r are shown for each plot.
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model predictive skill, we can examine the relative contributions of
errors in INP parameterizations to our ability to successfully simu-
late INP concentrations at this site.

We used a Lagrangian model, FLEXPART (40), to simulate INP
transport and concentrations at the Bodega Bay site. Lagrangian
methods are well suited when observations are made at a single
point and sources are regionally widespread, as is the case in this
study. To simulate INPs from dust and sea spray, we combined La-
grangian source-receptor footprints (41) with surface emission
functions for each particle type. The Lagrangian model was
driven by 0.5° input data (hereafter the standard simulations),
and the emission functions of sea spray and dust were taken from
a global climate model simulation. Figure 2 (C and D) shows the
modeled concentrations for SSA and dust versus those measured
via the residual experiments. Neither particle type is predicted
well; SSA is underpredicted severely (MNMB = −1.35), while the
simulation of dust shows less bias (MNMB = −0.36). The correla-
tion between simulated and observed INPs is poor for both SSA (r =
0.17) and dust (r = 0.18). Given the good closure demonstrated in
Fig. 2 (A and B), we conclude that our inability to accurately repre-
sent SSA and dust INP concentrations is caused by deficiencies in
the model’s simulation of SSA and dust particles.

Predictive skill for INP concentrations at freezing
temperatures between −12° and −20°C
To extend our analysis of model predictive skill to warmer temper-
atures, we added representations of bacterial and fungal spore INPs.
Bacterial emissions were prescribed as a fixed emission map (42),
and fungal spore emissions were parameterized on the basis of sat-
ellite and meteorological variables from reanalysis data (43). Simu-
lated INP concentrations were calculated using ns parameterizations
for dust (27) and SSA (28). For bacterial and fungal spores, most

published INP parameterizations are based on measurements of in-
dividual microbial species isolated in a laboratory environment.
However, in light of the well-documented discrepancies in INP ac-
tivity spanning several orders of magnitude between various bioaer-
osol types (10, 12, 44), it appears imprudent to assume that any
individual species is representative for ambient bio-INPs. There-
fore, we use recently proposed bacterial and fungal spore INP pa-
rameterizations that were derived from measurements of ambient
bioaerosol (45). We compared the sum of simulated bacterial and
fungal spore INP concentrations with observed bio-INPs.

Figure 5 shows the ratio of simulated to observed INPs for the
speciated and total INP concentrations. Across all temperatures,
we predict both dust and SSA INPs adequately, despite moderately
underpredicting dust INPs (median predict-to-observed ratio of 0.2
to 0.4) andmoderately overpredicting SSA INPs (median ratio of 3.6
to 4.6). However, we substantially underpredict bio-INPs, particu-
larly at warmer temperatures, with a median ratio of 0.10 at −12°C.
Because most of the INPs are bioaerosol at warmer temperatures,
this causes a notable underprediction of total INPs (Fig. 5D).
These results show that without improved representations of the
sources and IN activities of bio-INPs, models will struggle to sim-
ulate total INP concentrations at warmer temperatures.

DISCUSSION
Clarifying the leading sources of error in INP predictive skill
at Bodega Bay
Ultimately, we are interested in identifying the structural causes of
poor predictive skill for bio-INPs. We expect these to be driven pri-
marily by three potential categories of errors: (i) uncertainties in the
parameterizations for the IN activity of each particle type, (ii) inad-
equate source functions for the surface emissions of relevant parti-
cle types, and (iii) inadequate simulation of aerosol transport. In
this section, we examine each of these potential categories of
error in turn.

First, we consider errors associated with INP parameterizations.
Laboratory studies of the impact of atmospheric aging have found
that they can affect IN activity, albeit with inconsistent outcomes.
For instance, aging with sulfuric acid can either greatly reduce the
immersionmode IN activity (46) or have little effect. The IN activity
of biomass burning can actually increase due to photochemical ox-
idation (47), whereas surrogate secondary aging has little to no
impact on the IN activity of dust (21). Given these conflicting find-
ings and the dearth of knowledge surrounding how to parameterize
the IN activity of aged particles generally, we havemade the decision
not to account for potential aging effects on IN activity within the
scope of our study. However, as shown in Fig. 2, the INP parame-
terizations for dust and SSA perform well at freezing temperatures
ca.−30°C when aerosol properties are known.While we do not have
direct measurements of INPs at warmer temperatures, it is reason-
able to expect similar results at other temperatures within the valid
range of the parameterizations. We therefore conclude that uncer-
tainties in sea spray and dust INP parameterizations, or potential
effects of atmospheric aging on IN activity, are likely only a
minor source of error in this study.

At warmer freezing temperatures, however, poor predictive skill
for bio-INPs suggests that these parameterizations may be a source
of error. One potential explanation is that bio-INPs may exhibit var-
iations in their INP efficiency that are not adequately captured by

Fig. 3. Heatmap showing the Pearson correlation coefficients (r) between INP
concentrations and aerosol observations. N500 is the total number concentra-
tion of particles larger than 0.5 μm, N500,dust is the number concentration of dust
particles larger than 0.5 μm, ASSA and ADust are the total particle surface area con-
centrations for SSA and dust, respectively, while FBAP (total fluorescent biological
aerosol particles) and FP3 are the particle class concentrations measured by
the WIBS.
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current parameterizations. Development of robust bio-INP param-
eterizations has proven challenging due to the small sampling sta-
tistics achieved at warmer temperatures where bio-INPs are
important, and the inherent complexity of bioaerosols. Laboratory
studies have found that the IN activity of bacterial and fungal spores
can vary substantially across different species (12, 48, 49). Because
the species composition of airborne fungal and bacterial communi-
ties exhibits considerable geographic variability (50, 51), it is rea-
sonable to expect that the IN activity of airborne fungal spores or
bacteria may differ between geographic regions. The bio-INP pa-
rameterizations we have used were developed on the basis of a
small number of samples from the Amazon rain forest (45) and
may not be representative for the bio-INPs we observed in coastal
California.

Another potential source of error is the occurrence of changes in
the efficiency of bio-INPs as a function of environmental condi-
tions. For example, bio-INP efficiency can be altered by atmospher-
ic processes such as photo-oxidation (52), and some bacteria
actively modify their surface chemistry in response to environmen-
tal conditions (53). The effects of environmental conditions are
presently not sufficiently well understood to be accounted for in

bio-INP parameterizations. Our findings suggest a need for
further research to develop, validate, and improve parameteriza-
tions of INPs and their environmental transformations. While ex-
perimental challenges remain, recent advances in INP
measurement technologies show promise to markedly improve
the observational basis for such studies in the near future, e.g., by
increasing throughput and facilitating single-particle microspectro-
scopic analysis of INPs (54).

Next, we consider errors caused by inadequate—or missing—
source functions. While we have documented that simulation
errors cause model-observation mismatches for dust and SSA
INPs (Fig. 2), the largest errors in this study are associated with
our simulation of bio-INPs (Fig. 5). The simulation of bioaerosol
emissions is acknowledged to be fraught with uncertainties, and
only a small number of previous studies have evaluated simulations
of fungal spores and bacteria using independently collected data-
sets. These studies showed examples of both good agreement and
poor agreement with locally measured vertical profiles (43, 55)
and large-scale geographic variations (43, 56). This suggests that
while models can simulate bioaerosol concentrations that are
broadly consistent with order-of-magnitude concentrations

Fig. 4. Heatmaps of the fraction of speciated INPs as a function of temperature. Panels show the fraction for (A) dust, (B) SSA, and (C) bio-INPs (Bio). Figure shading
shows the fraction of INP samples between the upper and lower bounds of that bin, where brighter (darker) colors indicate bins with higher (lower) frequency of oc-
currence of that species’s fractional contribution (x axis) at a given temperature (y axis). (D) Median estimated fraction of INPs from dust (brown), SSA (blue), and bio-INPs
(green). The horizontal bars show the interquartile ranges. The Pearson correlation coefficient r for the fit between the total speciated INPs and measured INPs is
also shown.
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observed in the atmosphere (fig. S6), environmental factors driving
variability in bioaerosol emissions and concentrations are likely not
fully captured by current models. For example, models currently do
not represent the previously noted increases in bio-INP concentra-
tions that frequently follow rainfall (25, 33, 34, 36, 37). Likewise, our
simulations did not predict the increase in bio-INPs following pre-
cipitation (fig. S5). More work is needed to improve source func-
tions for bio-INPs and more fully incorporate the observed
dependence of bio-INP sources on both surface properties and en-
vironmental conditions.

One challenge in developing such source functions is that the
identity and nature of the bioaerosols that contribute to bio-INPs
is still not fully understood. There is ample evidence supporting a
link between INPs and either total fluorescent particles (37) or the
FP3 subset of fluorescent particles (33, 34). However, the exact iden-
tity of these fluorescing particles has not yet been clarified, and it
remains challenging to identify better proxies for bio-INP that
can be readily measured in the environment. For example, bio-
INPs correlate poorly with the relative abundances of ice-nucleating
bacteria identified via sequencing analyses (57, 58) but appear to be
somewhat related to total bacterial abundance (58).

Additional bio-INP sources may exist that are beyond the scope
of the current study. While we have focused here on fungal spores
and bacteria, several other particle types have been identified as

potential sources of bio-INPs, such as subpollen particles (59),
fungal spore fragments (60), cellulose-containing particles (61),
and intermittently or seasonally present oceanic bio-INPs (62).
Because of experimental challenges, the quantitative relevance of
these particles in the atmosphere is still poorly understood, we
did not include them here, but we also cannot exclude them as po-
tentially important sources of bio-INPs. Overall, the totality of the
evidence suggests a lack of a fundamental understanding of bioaer-
osol types and the mechanisms by which they are emitted from the
biosphere into the atmosphere. Fundamental process studies are
needed to establish confidence in model extrapolation of bio-INP
based on these empirical parameterizations in response to a chang-
ing biosphere.

We now turn to our third potential category of errors, those as-
sociated with simulated aerosol transport. In particular, the effect of
localized circulation patterns such as land-sea breezes and flow near
local topographic features like the Sierra Nevada could be missed in
coarse-resolution meteorological simulations. We therefore investi-
gated whether higher-resolution meteorological data could improve
the model’s predictive skill. We performed a second set of Lagrang-
ian simulations using higher-resolution meteorological input data
(4-km resolution, simulated using an observationally constrained
version of theWeather Research and ForecastingModel, see Supple-
mentary Materials for more details). Using these higher-resolution

Fig. 5. Heatmaps of the ratios of predicted to observed INPs as a function of temperature. Panels show the rations for (A) dust, (B) SSA, (C) bio-INPs, and (D) total
INPs. Red lines show the median values for each temperature. Dashed black lines show the 1:1 line where predicted INPs agree with observed INPs.
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input data improved our prediction of SSA INPs, but not dust and
bio-INPs (fig. S7). The improved prediction of SSA INPs is likely
attributable to an improved ability to represent small-scale trans-
port patterns around the coastline. The lack of improvement for
dust, by contrast, indicates that errors in dust prediction were not
primarily caused by model resolution. Dust prediction errors may
be driven by sources for which we lack adequate emission represen-
tations, including potential anthropogenic sources near the site
(e.g., traffic and construction) and in the surrounding region
(e.g., agriculture). Our predictions of bio-INPs were equally poor
regardless of the resolution of the meteorological fields. While we
cannot exclude model representations of physical loss transforma-
tion and processes as a potential cause of simulation bias, we can
conclude that model resolution was not a leading source of INP pre-
diction errors during this campaign.

Atmospheric implications
We have shown that bio-INPs are an important source of warm-
temperature immersion freezing INPs at this measurement site.
Using a combination of aerosol size, composition, IN parameteriza-
tions, and INmeasurements, we speciated the relative contributions
of dust, SSA, and bioaerosol to INP populations.

We used a Lagrangian modeling approach to simulate INP con-
centrations at the site, and find good agreement with dust and SSA,
but poor agreement with bio-INPs. Our conclusion that bioaerosols
are a crucial source of warm-temperature INPs implies that failing
to accurately simulate their prevalence results in poor simulation of
total INP concentrations at temperatures warmer than −15°C.
While our focus here is on a detailed analysis of a single field cam-
paign, a growing number of recent studies implicate bio-INPs as a
critical source of warm-temperature INPs at a variety of locations,
which suggests that this conclusion is broadly generalizable to many
locations and times globally (12, 19, 25, 63, 64). We conclude that an
improved fundamental understanding of the sources of bio-INPs
and the environmental factors controlling their variability is re-
quired to improve and build confidence in parameterizations of
bio-INP emissions and efficiency, and their dependencies on envi-
ronmental factors.

In light of the complex nature of bio-INPs, it will likely prove
prohibitively difficult to establish an inventory of individual bio-
INP species and their responses to environmental conditions that
contains sufficient information to be usefully extrapolated to ob-
served atmospheric bioaerosol populations or confidently applied
in atmospheric models. Instead, future studies, enabled by novel
measurement technologies, should focus on field measurements
that identify and attribute ambient bioaerosol and INPs in different
ecosystems and environmental conditions. This approach will
enable the scientific community to build an improved understand-
ing of which ecosystem or environmental variables have substantial
impacts on bio-INPs in the ambient atmosphere, and which vari-
ables can be confidently neglected when developing predictive
models for bio-INPs. Laboratory experiments can provide comple-
mentary perspectives, for example, by isolating chemical or physical
transformation mechanisms that may modify the INP availability
and effectiveness of bioaerosols in the atmosphere. Last, improved
understanding is required regarding the sensitivity of different
cloud regimes to warm-temperature INPs, to clarify when and
where adequate simulation of bio-INPs matters for clouds and
climate. Addressing these research priorities to develop a more

comprehensive understanding of the atmospheric variability of
bio-INPs—and their impacts in different cloud regimes—will
require joint efforts of the cloud modeling, aerosol modeling,
aerosol measurement, and INP measurement communities.

MATERIALS AND METHODS
Field measurement site
Field measurements of aerosol size, number, composition, and mi-
crophysical properties were collected at Bodega Marine Laboratory
in Bodega Bay, CA (38.3186°N, 123.0716°W) as part of the Cal-
Water-2015 field campaign. Measurements were collected from
14 January to 8 March 2015. These measurements have been de-
scribed before (65), so we provide only a short overview. Two
mobile sampling laboratories were deployed to the site with instru-
ments for the measurement of aerosol number, size, composition,
and microphysical properties. Bioaerosol concentrations, black
carbon mass, and gas-phase tracer concentrations were also mea-
sured, while filter and impinger samples were collected for offline
analysis. Ameteorology station owned and operated by the National
Oceanic and Atmospheric Administration’s Earth System Research
Laboratory was located ~100 m north of the site.

INP measurements
NCSU Cold Stage
Ambient aerosol was sampled for offline INPmeasurements using a
three-piece 20-ml impinger sampler (SKC Inc., BioSampler). Im-
pingers were located ~10 m away from two sampling trailers, at a
height of approximately 0.3 m. The impinger sampled ambient
air at a flow rate of 12.5 liters min−1 for a duration of approximately
4 hours. The INP concentrations of these ambient samples were
measured using the NCSU Cold Stage (33). Because of the differ-
ence in height between the impingers and the rest of the measure-
ments (roughly 3 to 4 m), we have scaled these measurements down
by a factor of 5 to align with measurements from the CSU IS (see
Supplementary Text for more information).
CSU ice spectrometer
Filters were at Bodega Bay for subsequent INP analysis with the
CSU IS, which can investigate immersion freezing across a temper-
ature range of 0 to about −27°C (17). Precleaned filters were pre-
loaded into sterile, open-faced Nalgene filter units (Thermo
Fisher Scientific Inc.) and placed beneath a rain shield on top of
the sampling trailer. Before the study, all sample collection filters
were cleaned in a laminar flow cabinet by soaking in 10% H2O2
for 10 min followed by three rinses in deionized water, the last of
which had been filtered through a 0.02-μm-pore-diameter filter
(Anotop 25-mm syringe filter, Whatman) and drying on foil.

After sampling, filters were transferred from filter holders and
Nalgene units using cleaned plastic forceps and stored at −20°C
in 60-mm-diameter petri dishes (CELLTREAT). For resuspension
of particles, filters were placed in sterile 50-ml Falcon polypropylene
tubes (Corning Life Sciences), 5 to 6 ml of 0.02-μm-pore-diameter
filtered deionized water were added, and particles were resuspended
by tumbling on Roto-Torque (Cole-Palmer) at 60 cycles/min for 20
min. Within a laminar flow cabinet, 32 × 50-μl aliquots of each sus-
pension were transferred into sterile, 96-well polymerase chain re-
action trays (Life Science Products Inc.), and the plates were
transferred to the IS blocks. Immersion freezing temperature
spectra were obtained from the IS following previously documented
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procedures (61). Frozen wells were monitored as temperature was
lowered at 0.33°C min−1 under aspiration of the instrument head-
space with 0.5 to 1 liter min−1 of cooled, filtered (HEPA-CAP,
Whatman) nitrogen. Frozen wells were counted at 0.5° or 1°C inter-
vals to a limit of −27°C, and cumulative numbers of INPs (ml−1) of
suspension were estimated using

NINP ¼
� lnðf Þ
Vi

where f is the proportion of droplets not frozen andVi is the volume
of each aliquot (66). Filter blanks (loaded into in-line filter units and
loaded into and removed from the sampling platform) were pro-
cessed to obtain background INP spectra. At each temperature,
INPs in the blank were subtracted from sample measures in suspen-
sion, and then measured INPs in the total volume of suspension
were converted to ambient INP concentrations (liter−1) using the
liters of air sampled. Binomial sampling confidence intervals
(95%) were derived using previously established methods (67).

An additional subset of samples was selected for heat treatment
to quantify the contributions of heat-labile INPs, assumed to be
proteinaceous. Samples were heated to 95°C for 20 min, and the
sample was reanalyzed to determine the reduction in INP concen-
trations (17). The difference between total INPs and the INPs re-
maining after the heat treatment were determined to be bio-INPs.

Bioaerosol concentrations
The WIBS (WIBS-4A, Droplet Measurement Technologies Inc.)
measures the size, asymmetry factor, and fluorescence signal for in-
dividual particles from 0.5 to 20 μm. Fluorescence is measured in
three different channels: FL1, excitation of 280 nm, emission of
310 to 400 nm; FL2, excitation of 280 nm, emission of 420 to 650
nm; and FL3, excitation of 370 nm, emission of 420 to 650 nm. The
detection of fluorescent particles from 0.5 to 0.8 μm is limited by the
sensitivity of the instrument’s detectors (68); therefore, we limit
fluorescent particles to the size range of 0.8 to 20 μm. Background
fluorescence signal was calculated following (69) where we force-
triggered the sampling of filtered air for 5 min and the background
signal, Ebackground,i, calculated by the following

Ebackground;i ¼ Ei + 9σi
where Ei is the average signal in channel i, for a force-triggered
sample, and σi is the SD of the force-triggered sample signal in
channel i. Ebackground,i was subtracted from each particle for each
channel to yield the final fluorescence signal. Particles were classi-
fied into types based on their fluorescent signal in each channel
using criteria defined in a previous study (34). In this work, we
have focused upon a subset of fluorescent particles (FP3) character-
ized by very strong signal in the FL1 channel (FL1 > 1900). This
class of particles has previously been linked to INP concentrations
in ambient measurements (34, 35).

Single-particle composition
Size-resolved, single-particle mass spectra were collected using an
ATOFMS (26). Particles are introduced into the instrument
through a nozzle and then subsequently collimated and focused
by a series of skimmers. The particle beam is focused through the
path of two continuous wave lasers (532 nm; Nd:YAG) 6 cm apart.
As particles travel through the laser beam, they scatter light, which is

reflected by ellipsoidal mirrors onto photomultiplier tubes (PMTs).
The time between scattered light being detected at the two PMTs is
used to calculate the particle velocity. Through external calibration
with polystyrene latex spheres of known size and density, the parti-
cle velocity can be used to determine the particle vacuum aerody-
namic diameter (Dva). The particle velocity also triggers a pulsed
266-nm laser (Nd:YAG; 1.0 to 1.3 mJ pulse−1) to desorb and
ionize particles into a dual-polarity time-of-flight mass spectrome-
ter. Both positive and negative ions are generated by the laser de-
sorption process. For each particle, the dual-polarity mass
spectrum, Dva, and time stamp are recorded. These data were im-
ported into MATLAB (The MathWorks Inc.) and analyzed using
the software toolkit FATES (70). Particles were clustered on the
basis of their mass spectral features via an adaptive neural
network (71). Particle types were manually regrouped upon inspec-
tion of the clusters based on spectral similarities (65). In this work,
we focus only upon those particles identified as dust or SSA.

Predicting INP concentrations using single-particle
measurements
On the basis of previous work identifying INP sources at Bodega
Bay (20), we assume that the INP concentrations at this site can
be described by dust, SSA, and bioaerosol. While some recent
studies have highlighted how using time-dependent IN parameter-
izations may be able to account for effects of factors such as uneven
distribution of surface area among particles (72, 73), we use a deter-
ministic approach here.

The active site density (ns), conceptualized as the density of ice-
active sites within a given particle type population per unit surface
area, can be used to predict INP concentrations by the following

NINP;x ¼ ns;xAx

where ns,x is the active site density for particle type x and Ax is the
total particle surface area per unit volume.

We calculate Ax from combined measurements of the ATOFMS
and APS. Single-particle mass spectrometry (SPMS) techniques
such as the ATOFMS do not provide quantitative concentrations
of different particle types, although SPMS measurements can be
used in tandem with size distributions from co-located instruments
to return quantitative concentrations of particle types (29, 74). Ax
can be described by

Ax ¼
X51

i¼1
D2

p;x;iπnif x;i

where Dp,x,i is the particle diameter of class x in size bin i, and fx,i is
the size-resolved fraction of particle class x in that same size bin. For
APS size bins larger than the upper limit of the ATOFMS, we follow
the example of a previous study (8) and calculate fx,i using ATOFMS
particles larger than 1 μm. Dp,x can be calculated from

Dp;x ¼ Da;x

ffiffiffiffiffiffiffiffiffi
ρ0χx
ρx

r

where Da,x, is the aerodynamic diameter of particle type x, ρ0 is the
unit density, χx is the dynamic shape factor of class x, and ρx is the
density of class x. We assumed χdust to be 1.25, χSSA to be 1.25, ρdust
to be 2.65 g cm−3, and ρSSA to be 2.2 g cm−3. Da,x was calculated
from the ATOFMS-measured values of type-dependent vacuum
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aerodynamic diameter Dva,x by

Da;x ¼ Dva;x

ffiffiffiffiffi
χx
ρx

r

We assumed that the dynamic shape factors for the continuum
and free-molecular regimes are roughly equal. We note that this as-
sumption does not always hold (75).

We use the ns-based parameterizations from N12 (27) and M18
(28) to predict INP concentrations from dust and SSA, respectively.
We did not observe enough bioaerosol with the ATOFMS to calcu-
late a particle type–specific surface area. However, we do see a
strong relationship between fluorescent particles measured by the
WIBS and INP concentrations. The correlations between these
measurements are particularly strong for the FP3 particle class
(34) and INPs measured at warmer temperatures (Fig. 3). Thus,
we devise a simple scalar-based parameterization of FP3 particles
for bio-INPs, i.e.

NINP;Bio ¼ γFP3

where γ is the scalar. As mentioned above, we assume that the INP
population at Bodega Bay can be adequately described by assuming
that the relevant sources of INPs are dust, SSA, and bioaerosol

NINP ¼ NINP;dust þ NINP;SSA þ NINP;Bio

We can calculate NINP,dust and NINP,SSA by rewriting the above to

NINP;Bio ¼ NINP � ðNINP;dust þ NINP;SSAÞ

This can then be combined with the above to yield

FP3 ¼
NINP � ðNINP;dust þ NINP;SSAÞ

γ

Calculated values for γ ranged from 0.00465 at −12°C to 0.3108
at −20°C (fig. S2). This methodology implicitly assumes that FP3 is
an equally representative proxy for all bio-INPs. Future research
should investigate this assumption in greater detail through
further laboratory and field experiments.

Comparisonwith previousmethods of quantifying bio-INPs
Previous studies of bio-INPs in the ambient atmosphere have relied
on indirect methods, such as heat and peroxide treatments, to quan-
tify their concentrations [e.g., (17)]. We performed heat treatments
for a subset of our IS samples for comparison with our methodol-
ogy. Figure S4 shows the results of six samples, separated into either
high or low bioaerosol concentrations. Nearly all of the INPs at
−12°C were inactivated by the heat treatment. The high bioaerosol
samples had high bio-INP fractions across the entire temperature
range. The low bioaerosol concentration samples had more INPs
coming from nonbiological sources. While we are not able to
provide a direct comparison between the twomethodologies of spe-
ciating INPs due to the different sampling times and methodologies
for the INP measurements, the results from the heat treatment ex-
periments are broadly consistent with the results acquired using our
scalar-based methodology.

Single-particle composition of ice crystal residuals
We used an SPMS to directly characterize ice crystal residuals [e.g.,
(76)]. These results have been described in detail elsewhere, so we
provide a short description of the methods (20). We used a CFDC

(77) to activate INPs into ice crystals, which were then separated
from nonactivated particles via a pumped counterflow virtual im-
pactor (PCVI; Brechtel Manufacturing Inc., model 8100). The
CFDC was operated at approximately −31°C, with water supersatu-
ration ranging between ~3 and ~7%. These ice crystals were melted
and dried with a silica diffusion dryer, and the residual particle
composition was measured by an ATOFMS. A 1.5-μm impactor
was placed upstream of the CFDC to remove large particles,
which might be mistakenly counted as INPs or transmitted
through the PCVI counterflow. Residuals were sampled for a few
hours each day from 12 to 19 February 2015 (total residual sampling
time: 16 hours and 28 min). Control periods measuring ambient
aerosol composition were selected on the basis of wind speed and
wind direction (total ambient sampling time: 30 hours and 6 min).

Single-particle mass spectra and size data were imported into
MATLAB and analyzed with the software toolkit FATES (70). Par-
ticles were clustered on the basis of their mass spectral features using
an adaptive neural network and combined manually into particle
types. In this work, we focus on particles classified as dust and
SSA. Across all sampling days, dust was the most abundant type
in the ice crystal residuals by number fraction (70.5%). Speciated
INP concentrations were calculated for each CFDC sampling
period by scaling the reported INP concentrations by the ice
crystal residual fraction (calculated daily). We apply a correction
factor of 3 to correct for incomplete activation of dust particles in
the CFDC chamber (78). Speciated particle surface areas were cal-
culated for CFDC measurements periods by mapping the single-
particle composition measured by the ATOFMS during control
periods onto the APS size distributions (see the previous section
for more details on this procedure). To increase the number of
INPs characterized, ambient particle concentrations were enhanced
using an aerosol concentrator (model 4240, MSP Corporation).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S13
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