
High frequency oscillation network dynamics 
predict outcome in non-palliative epilepsy 
surgery
Jack Lin,1 Garnett C. Smith,2 Stephen V. Gliske,3 Michal Zochowski,1,4 Kerby Shedden5

and William C. Stacey6,7,8

High frequency oscillations are a promising biomarker of outcome in intractable epilepsy. Prior high frequency oscillation work focused 
on counting high frequency oscillations on individual channels, and it is still unclear how to translate those results into clinical care. We 
show that high frequency oscillations arise as network discharges that have valuable properties as predictive biomarkers. Here, we de
velop a tool to predict patient outcome before surgical resection is performed, based on only prospective information. In addition to 
determining high frequency oscillation rate on every channel, we performed a correlational analysis to evaluate the functional connect
ivity of high frequency oscillations in 28 patients with intracranial electrodes. We found that high frequency oscillations were often not 
solitary events on a single channel, but part of a local network discharge. Eigenvector and outcloseness centrality were used to rank 
channel importance within the connectivity network, then used to compare patient outcome by comparison with the seizure onset 
zone or a proportion within the proposed resected channels (critical resection percentage). Combining the knowledge of each patient’s 
seizure onset zone resection plan along with our computed high frequency oscillation network centralities and high frequency oscilla
tion rate, we develop a Naïve Bayes model that predicts outcome (positive predictive value: 100%) better than predicting based upon 
fully resecting the seizure onset zone (positive predictive value: 71%). Surgical margins had a large effect on outcomes: non-palliative 
patients in whom most of the seizure onset zone was resected (‘definitive surgery’,  ≥ 80% resected) had predictable outcomes, whereas 
palliative surgeries (<80% resected) were not predictable. These results suggest that the addition of network properties of high fre
quency oscillations is more accurate in predicting patient outcome than seizure onset zone alone in patients with most of the seizure 
onset zone removed and offer great promise for informing clinical decisions in surgery for refractory epilepsy.
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Graphical Abstract

Introduction
Every year, tens of millions of people around the world suffer 
from epilepsy.1,2 This common neurological disorder affects 
people of all ages and is characterized by chronic seizures that 
are debilitating and deadly to some individuals. While advances 
in pharmacotherapy in the past few decades have improved side 
effects and tolerability, roughly one-third of the patients remain 
unresponsive to any kind of drug treatment.3,4 In patients with 
intractable epilepsy, the standard of care is to determine 
whether epilepsy surgery is possible. Ideally, the surgery re
moves the offending brain tissue and seizures would resolve. 
However, only 35–80% of these patients achieve seizure free
dom after surgery, depending on the type of surgical 

resection.5-7 The cause of these surgical failures is often unclear. 
Suboptimal outcomes are expected when the surgery is merely 
palliative, i.e. the clinicians used their clinical judgment to iden
tify the seizure onset zone (SOZ), but then could not resect all of 
it for various reasons.8 However, even when all of the SOZ is 
resected, there are still many patients who continue to have sei
zures. In other words, the clinical standard of care—the SOZ— 
is not an ideal prognostic biomarker of surgical outcome.9 This 
has led to the search for additional prognostic biomarkers of 
outcome.10,11 Two promising biomarkers are high frequency 
oscillations (HFOs)12-14 and network connectivity.15-17 Here, 
we combine these two approaches, evaluating the network 
properties of HFOs to develop a useful biomarker of outcome 
in epilepsy surgery.
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HFOs are 80–500 Hz waveforms that last less than 
100 ms.12,18 HFOs were first discovered in healthy rodent 
hippocampus and later shown to also be prevalent in hu
mans.19,20 Many later studies showed that HFOs are ele
vated within the SOZ in patients with epilepsy18,21-23 and 
that resecting channels with high HFO rate was associated 
with good surgical outcome.14,21,24 It has been challenging 
to translate these results into clinical practice. One intriguing 
method is to use HFOs to predict the outcome of epilepsy 
surgery. This method was the foundation of the first pro
spective clinical study using HFOs, which calculated the 
rate of all channels during 10 min of slow wave sleep. 
Unfortunately, that information was unable to predict pa
tient outcome, even when restricting the analysis to the high
er frequency ‘fast ripples’ that had been proposed as being 
more specific.25 Later work by the same group found that 
fast ripples showed promise to predict surgical outcome if 
the analysis was expanded to several hours of data.26

Another clinical trial compared using HFO rate with spike 
rate to tailor surgical margins, but found that HFOs were 
not superior to spikes.27 Thus, despite a wealth of data show
ing correlation of HFO rate with outcome, it is still unclear 
how to use these data clinically.

All of those prior studies had an important limitation: they 
analysed HFOs on each channel independently. Yet epilepsy 
is a network disorder wherein the electrographic signals 
propagate across channels.28-30 Clinicians avoid reading 
EEGs as single channels because they know that it is critical 
to see the interactions between different channels. We hy
pothesize the HFOs have similar network interactions. A 
few prior studies have shown that HFOs exhibit propagation, 
with the earliest HFO onset channels being more correlated 
with the SOZ, but they did not quantify the network proper
ties.31,32 Several groups analysed the functional connectivity 
of background ictal and interictal EEG in the context of HFO 
location or frequency bands, but did not analyse the connect
ivity of the HFOs themselves.33-35 Another recent study 
showed that two functional connectivity metrics of individ
ual fast ripples (200–600 Hz HFOs) could improve the rate 
of misclassifying surgical outcome prediction by at least 
50%.36 These results suggest that incorporating network in
formation will improve the efficacy of using HFOs as a pre
dictive biomarker of surgical outcome.

We first characterized the HFO networks using functional 
connectivity analysis, which is used to understand the con
nections between different regions of the brain.37-40

Subsequently, we analysed these networks using a set of 
graph theory algorithms commonly used in various disci
plines including social, transportation or biological net
works for identifying important nodes, known as 
centralities.41-43 We aimed to see how well channel centrality 
of interictal HFOs could predict surgical outcome. We per
formed two different comparisons. The first was to measure 
centrality within the SOZ, similar to how previous research
ers considered HFO rates. This helps determine if interictal 
HFO data, which comprises the vast majority of the EEG re
cording, can capture similar information to the SOZ, which 

requires waiting for seizures to occur. However, as described 
above, SOZ is an imperfect biomarker of outcome—our goal 
is to provide novel information, not simply identify the SOZ 
channels that the clinicians are already searching for. In or
der to fit this tool into the clinical workflow, we designed a 
new measurement that compares the overlap of the HFO 
data with the tissue that is proposed to be resected, which 
we named critical resection percentage (CReP). These two 
measurements test how well all information available to a 
clinician prior to resection [HFOs, SOZ, proposed resected 
volume (RV)] can be used to predict surgical outcome. Our 
results show that this method is readily translatable to clinic
al workflows and predicts outcomes better than both SOZ 
and HFO rates.

Materials and methods
Patient population
All consecutive patients from the University of Michigan who 
had undergone intracranial EEG implantation for refractory 
epilepsy monitoring between 2016 and 2022 were evaluated 
(n = 68). Only a rare minority of epilepsy surgeries are 
performed without receiving intracranial EEG (e.g. obvious 
right mesial temporal sclerosis). Inclusion criteria were (1) 
eventual resective surgery and (2) the reference standard of 
Engel outcome classification of class I, III or IV after 1 year.44

Patients with good (I) outcome were grouped into Class-1 
while those with poor outcome (III, IV) were grouped into 
Class-3+. As Class-2 patients (n = 7) are characterized as hav
ing ambivalent outcome and have been included as either 
‘good’ and ‘bad’ outcomes in past work,14,22,45,46 we have ex
cluded them from most of the analyses. Patients receiving neu
rostimulation devices (n = 27) were excluded, as were patients 
who did not have surgical resection (n = 6). This resulted in a 
total of 28 available Class-1 (n = 18) and Class-3+ (n = 10) 
patients for our analyses (Fig. 1). We further divided the pa
tients into two groups based on how much of their SOZ was re
sected [non-palliative definitive surgery (DS): 80%, palliative 
surgery (PS): < 80%, see next section]. This results in 17 DS 
(12 Class-1, 5 Class-3+) and 11 PS (6 Class-1, 5 Class-3) pa
tients. Of the seven Class-2 patients, six were DS. All patient 
data used in this study are approved by the local Institutional 
Review Board with written patient consent to share and use 
their de-identified information.

Seizure onset zone resection 
percentage
Across all 28 patients, there were 18 good outcomes (class I) 
and 10 poor outcomes (nine class III, one class IV). After de
termining which electrodes were resected, we noted that 
many of the surgeries left a large portion of the SOZ behind. 
Throughout this paper, the SOZ is defined as the channels in 
which the seizures begin, as listed in the official clinical re
port and vetted by consensus of at least eight epilepsy 
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physicians in the conference. The SOZ is used directly by the 
treating clinicians to determine where to perform the surgical 
resection in each patient. While the goal of the surgery is to 
attempt to remove all the SOZ, sometimes a portion of these 
channels cannot be resected due to clinical scenarios such as 
anatomic constraints and eloquent cortex. In such patients, 
the clinicians anticipate and accept a PS with lower chance 
of seizure freedom. It is difficult to assess outcome in such pa
tients. In contrast, when most or all of the SOZ is resected, 
the clinical team expects a good outcome. Therefore, we se
parated the patients into DS and PS groups with DS being re
presented by patients with 80% of SOZ resected and PS by 
those with 80% of the SOZ resected. The 80% threshold 
was chosen in a data-driven manner: 10/12 of the DS patients 
had 100% SOZ resection, the other two had 87.5% and 
90%, and changing the threshold between 80% and 100% 
did not affect results. Our analyses focused primarily on 
the DS patients: here, the clinicians believe the patient has 
the best chance for success based on all available data.

Data acquisition
All data are from intracranial electrodes. Implanted electro
des consisted of a mixture of stereo-EEG depth, subdural 
grids and conventional depth electrodes that were chosen 
based on standard clinical care for each patient 
(Supplementary Table 1). All channels were monitored at a 
sampling rate of 4096 Hz with a Quantum amplifier 
(Natus Medical Inc.) with signals referenced to the lab stand
ard placed between the Fz and Cz. Clinically-defined SOZ, 
surgical outcomes and seizure times were obtained through 
clinical reports and consultation with the treating clinicians. 
Only data > 30 min outside of seizure times were used in this 

study. Determination of which channels were included in the 
RV was performed using Curry (Compumedics) software 
and coregistering the post-implant and post-resection im
aging; two trained epilepsy physicians (WS, GS) adjudicated 
when electrode volumes were > 50% removed by the resec
tion. The final determination of each patient’s SOZ and 
RV was reached through the consensus of at least three epi
leptologists, who presented the case to a conference of at 
least five other epileptologists at the presiding hospital.

Automated HFO detection
All HFO detections were obtained using a previously- 
validated detection system.47-49 Very briefly, the HFO 
detections were performed using the automated, root-mean- 
square-based Staba detector50 with improved specificity for 
‘true’ (neural tissue generated) HFO by redacting detections 
overlapping with periods of sharp transients, widespread 
events that are most likely due to noise and other signal-based 
artefacts.49 We used a common average reference, including 
all grid or depth electrodes as a single group, as described in 
Gliske et al. 2016.49 Additionally, we ignored HFO detec
tions that are coincident with muscle-based EMG artefacts 
using another validated detector.47 These algorithms were 
all previously validated by showing a high level of agreement 
with trained human reviewers for distinguishing between true 
HFOs and artefactual HFOs.49 These multiple levels of arte
fact rejection were necessary to allow inclusion of HFO data 
from all interictal times and brain states.

We include HFOs from all brain states, which is facilitated 
by our algorithm that removes artefacts.47,49 We note that 
artefactual HFOs would be expected to introduce noise to 
our analysis and reduce the effect size, so the strong 

A B

Figure 1 Distribution of patient seizure onset zone resection percentage. (A) Individual patient SOZ resection percentage coloured by 
their Engel outcome classification. (B) Patients divided into two groups with Class 1 (n = 18) made up of Engel I and Ib and Class 3+ (n = 10) made 
up of Engel III and IV. For Class 1, 12 of the 18 patients had at least 80% SOZ resection and for Class 3+, 5 of the 10 patients had at least 80% SOZ 
resection. Patients with at least 80% SOZ resection are grouped into the DS category while those less than 80% are placed into the PS category.
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correlations with surgical outcome present herein suggest 
these methods are successful at identifying HFOs correlated 
with epileptic tissue.51

Ranked HFO rate
Most prior HFO work has focused on rates on individual 
channels. We used that measurement (HFO-RATE) as a 
benchmark for our network measurements, to show whether 
these new network data add information to prior HFO work. 
To quantify the HFO rate, we counted the number of interic
tal HFOs detected on every channel over the course of the pa
tient’s stay at the hospital and performed an ordinal ranking 
where the lowest HFO count channel is ranked as zero with 
the highest HFO count channel ranked up to N−1 and then 
normalized by the largest rank so the normalized ranked 
score ranged from zero to one. This totalled over 11 million 
HFOs detected (Table 1). Further details on the following 

methods are found in Supplementary Materials. 
Supplementary Fig. 1 summarizes the entire process.

Functional connectivity analysis
To perform the network analysis, we randomly selected 500 
HFOs from each channel independently. As shown in Fig. 2, 
many HFOs arose within network discharges across multiple 
channels, and several channels that were clearly involved in 
the discharge did not have ‘detected’ HFOs. In addition, 
the start and end times of the HFOs were often not an accur
ate representation of the entire discharge time, which would 
make calculating lag between channels unreliable. 
Therefore, we converted the analysis to use the actual EEG 
data itself. To this end, each sample of data is taken as an 
N-channel by 100 ms array of EEG data centred around 
the time at which an HFO was detected. Each channel was 
first re-referenced against the common average reference of 

Table 1 Patient demographics and clinical data

Patient Age Sex ILAE class
Seizure focus  

(hemisphere, region) Pathology
Percent SOZ  

resection DS Total HFO count

UMHS-0018 41 M 1 L F CD 50% N 110 177
UMHS-0019 59 F 2 R T Gliosis 100% Y 124 642
UMHS-0020 45 F 3 R T MTS 100% Y 28 734
UMHS-0022 40 M 1 L T CD, MTS 100% Y 63 700
UMHS-0025 17 F 2 L T Gliosis 80% Y 178 705
UMHS-0028 14 F 1 R T Tumour: Glioma 100% Y 216 041
UMHS-0030 5 M 5 L T MTS, Gliosis 100% Y 441 168
UMHS-0031 13 M 1 L T Gliosis, Tumour: NF1 100% Y 569 313
UMHS-0032 41 F 1 R F CD 100% Y 542 990
UMHS-0033 5 F 4 R Insula CD, Gliosis 100% Y 86 855
UMHS-0034 33 F 5 R F Gliosis 36% N 421 877
UMHS-0035 50 F 1 L Hipp. Gliosis 100% Y 127 121
UMHS-0037 14 M 1 L F DNET 29% N 227 536
UMHS-0038 28 M 2 L T MTS, Gliosis 100% Y 215 510
UMHS-0040 14 F 1 L P CD, Gliosis 87.5% Y 377 528
UMHS-0041 32 F 1 R F CD 78% N 86 499
UMHS-0042 17 M 4 L Insula 37.5% N 31 465
UMHS-0043 28 M 1 R T Gliosis 89% Y 493 238
UMHS-0046 23 F 1 L F CD 100% Y 14 762
UMHS-0047 48 F 2 R T Gliosis 100% Y 236 590
UMHS-0050 31 F 1 L Hipp. Gliosis 0% N 287 992
UMHS-0052 27 M 1 L Hipp. MTS, Gliosis 100% Y 164 878
UMHS-0053 55 F 1 R T Gliosis 100% Y 481 267
UMHS-0054 35 F 1 L Hipp. Gliosis 100% Y 171 316
UMHS-0055 42 M 5 L T, Hipp. HS, Gliosis 57% N 753 699
UMHS-0060 23 M 5 R T Tumour: RG, Gliosis 56% N 1 090 979
UMHS-0066 43 F 5 R F FCD, Gliosis 100% Y 1 011 536
UMHS-0068 23 F 6 R Hipp. 100% Y 650 594
UMHS-0071 56 F 1 L Hipp. Gliosis 0% N 290 862
UMHS-0073 39 F 5 L Hipp. Gliosis 100% Y 194 040
UMHS-0075 24 M 1 L T Gliosis, MTS 100% Y 802 164
UMHS-0078 35 M 1 L Hipp. MTS 50% N 337 362
UMHS-0079 25 F 5 L Hipp. 36% N 887 655
UMHS-0085 21 M 5 R F FCD 54% N 648 016
UMHS-0093 8 M 5 R P FCD 100% Y 101 452

Totals 12 468 273
Averages 356 236.1

CD, cortical dysplasia; DNET, dysembryoplastic neuroepithelial tumour; F, frontal; FCD, Frontal cortical dysplasia; Hipp., Hippocampus; HS, hippocampal sclerosis; L/R, left/right; M/F, 
male, female; MTS, medial temporal sclerosis; NF1, neurofibromatosis type 1 tumour; P, parietal; PMG, polymicrogyria; PVNH, periventricular nodular heterotopia; RG, recurrent 
ganglioglioma; RV, Resected volume (# electrodes within); T, temporal.
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their respective channel type (grid or depth electrodes) to re
move spurious large amplitude, global artefacts like head 
scratching or movement. We then applied a 60 Hz IIR 
comb filter and an 80–500 Hz elliptical passband filter. 
Finally, we calculated the root mean squared of the data 
with 10 ms sliding windows to further obtain the magnitude 
of the high frequency activity (Fig. 2).

Using these 500 ‘samples’ from each channel, we first gener
ated a functional connectivity network (FCN) that characterized 
the mean of peak correlation amplitudes between each electrode 
pair, normalized to the background. Since individual HFOs are 
produced by small volumes of brain tissue, we assumed any zero- 
lag correlation across channels to be due to volume conduction 
or artefact, rather than propagating HFOs.52-54 Thus, we ig
nored all correlations at lags between −1 ms and 1 ms. We 
then generated a lag asymmetry network (LAN) that measured 
how likely each channel’s HFOs were to lead or lag the activity 

in other channels. The LAN distributions were estimated with a 
kernel density estimation with a 95% pointwise confidence inter
val via bootstrapping.55,56 To account for the requirements of 
the centrality measures, the LAN was further divided into an un
directed network (uLAN) that measured the peak connection be
tween each electrode pair and a forward network (fLAN) that 
only measured forward propagation (negative lag). All values 
from all three networks (FCN, uLAN, fLAN) were normalized 
by converting them to ordinal ranks (0:N−1 channels), and div
iding the score by the highest rank. For more detail on the meth
odology, please consult the Supplementary Material.

Centrality
Centrality is a category of tools used in network theory to 
evaluate the role of each node within a network.57-59

Eigenvector centrality was performed in both networks 

BA

Figure 2 Data analysis examples. Filtred (80–500 Hz) EEG (black) with superimposed HFO detections (red overlay) show how neighbouring 
channels often had high frequency discharges that did not cross threshold for the HFO detector but were still part of the network spread. In order 
to remove the effect of oscillatory phase and standardize the time of onset, cross-correlation analysis was performed on the root-mean-squared 
filtered data (green panels to right). (A) ‘Sample’ with a network discharge that had detected HFOs in three channels, but likely involved at least 
seven. Note that even in detected channels, the red detection does not accurately detect the onset/offset time of the true discharge. (B) Sample 
showing network HFO discharge over several channels simultaneously with varying amplitudes.
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(FCN-EIG and uLAN-EIG), which measured the importance 
or influence of each channel within the network.45-47,60

Outcloseness centrality was performed in the fLAN network 
(fLAN-OUT) to measure how far ‘upstream’ each channel is 
compared to the others.43,57,58

HFO features
The HFO-RATE, FCN-EIG, uLAN-EIG and fLAN-OUT 
comprise four ‘HFO features.’ For each feature, all channels 
within each subject were ordinally ranked from 0 to N−1 
based on the raw value, then the rank was divided by the 
highest-ranking channel. Each channel then has a single 
rank for each of the four features.

Clinical prediction algorithm
SOZ feature score
We evaluated how well the four measurements (HFO-RATE, 
FCN-EIG, uLAN-EIG and fLAN-OUT) could distinguish be
tween good outcome (Class-1) and poor outcome (Class-3+) 
patients. We accomplished this by computing the mean rank 
for each feature in (1) every channel in the SOZ (-SOZALL); 
(2) the highest-ranking 50% of channels within the SOZ (-
SOZ50); (3) the highest ranking 10% of channels within 
the SOZ (-SOZ10); or (4) the single highest ranked channel 
in the SOZ (-SOZTOP). This produced a four-dimensional 
feature vector for each subject, for each group of features.

Critical resection percentage
To evaluate how well the centralities and HFO rate relate 
with resected volume, we calculated how many of the highest 

ranked (i.e. most important) channels would be resected. 
The strategy is designed to fit within the clinical decision 
protocol: identify which channels are proposed to be re
moved, then compare if that resection would include the ‘im
portant’ channels using the features above.

This CRePX (where X = 10, 20, 30 or 40) is the fraction of 
a specified X% of the highest ranked channels that are within 
the proposed resection margins, i.e. ‘how many of most im
portant X% channels will be resected?’ To calculate CReP, 
you need to know the total number of electrodes, the specific 
electrodes that are going to be resected, and for each HFO 
measurement, the rank of every channel in the planned resec
tion. For a given percentage X, the number of channels to 
evaluate nCReP = ceiling (Ntotal channels * X%). CRePX =  
(number of channels in resected volume with rank nCRePth 
highest rank)/nCReP. Note that rank hierarchy is in reverse nu
merical order, i.e. rank 1 is the ‘highest’. Also note that the 
maximum value of CRePX is limited by the number of resected 
channels, which may be less than nCReP, i.e. the maximum 
CREP20 when 10 channels out of 87 channels are resected is 
10 (resected)/18 (i.e. 20% of 87 channels) = 0.556. See Fig. 3
and Supplementary Material for examples. We evaluated 
four different percentiles of channels: the top 40% (-CReP40), 
30% (-CReP30), 20% (-CReP20) and 10% (-CReP10). These 
were performed for each of the HFO measurements 
(FCN-EIG, uLAN-EIG, fLAN-OUT, HFO-RATE).

Classification with Naïve Bayes model
Using the Engel classifications as response variables, we com
bined the different measures into a single algorithm designed 
to predict, as the margins for surgery are being planned, 

A B

Figure 3 Critical resection participation calculation examples. (A) Given a grid layout of 20 electrodes (teal circles) in which eight 
electrode positions will be resected (red region), we first rank each electrode based upon importance (e.g. highest HFO rate or highest centrality). 
The ranks are shown as numbers on each electrode. We then determine how many of the top N% (e.g. 10%, 20%, 30%) of those ranks will be 
resected. The CReP10 results in two of the top 2 (10% of 20 electrodes = 2, so CReP10 is ‘what percent of the top 2 ranks is resected’). Since 
ranks 1 and 2 are both resected, CReP10 = 100%. For CReP20, it is out of four electrodes (20*20%), and since ranks 1, 2 and 3 are resected but not 
4, the CReP20 is 3/4 = 75%. CReP30 is four of the top six (20*30%). (B) A similar example with depth electrodes. CReP10 results in one of the top 
three (30*10%) ranked electrodes being resected, CReP20 with four of the top six (30*20%) electrodes being resected, and CReP30 with six of 
the top nine (30*30%) electrodes being resected.
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whether the patient is likely to have Class 1 versus Class 3+ 
outcome. It is important to note that all values used in this 
algorithm (SOZ, CReP, HFO measures) are known prior 
to the planned surgery. To build a classifier with multiple fea
tures, we opted for Naïve Bayes as it has the advantage of as
sessing the contribution of each feature in the model and 
provides a probability score for the prediction belonging to 
a given class. Specific features were chosen based upon the re
sults of the Hotelling’s T in the prior sections. A 
leave-one-out Naïve Bayes was performed (each patient left 
out for testing once) using the selected features and the 
resulting posterior probabilities were used to construct a re
ceiver operating characteristic (ROC) curve to assess the 
model’s discrimination performance on each left-out patient. 
Calibration of the model was then assessed by plotting the 
predicted posterior probability against the observed prob
ability of having a Class 1 outcome. To test our model in a 
real-world, prospective-like manner, held-out patients in 
the form of the Class 2 DS (n = 6) patients were treated as 
separate test inputs against each of the leave-one-out models.

Statistical analysis
To evaluate the differences in a given set of stratified SOZ or 
CReP measurements between good and poor surgical out
come patients, we employed Hotelling’s T2 used for multi
variate hypothesis testing (= 0.05). In the cases where there 
is a significant difference in the omnibus test, post hoc ana
lysis for each individual feature was subsequently done 
with two-tailed Student’s t-test (=0.05). Additionally, we 
measured the effect size for distinguishing Class 1 versus 
Class 3+ across the whole patient cohort using the area under 
the ROC curve (AUC) wherein a random classifier (i.e. dis
tinguishing two classes that have the same distribution) 
would have an AUC = 0.5. For the prediction of surgical out
come, we employed a Naïve Bayes model (see above section 
for more information) with leave-one-out cross-validation in 
which the posterior probabilities were used to construct a 
ROC curve for evaluating the performance of the classifier. 
The significance of the AUC of the ROC was evaluated 
through bootstrap hypothesis testing against the null hy
pothesis of AUC = 0.5, which denotes a random classifier, 
and the confidence interval was computed using the 
Hanley–McNeil method.

Results
HFO centrality and rate in SOZ 
compared with patient outcome
We first tested relationships in the entire cohort of 28 pa
tients. Many studies have shown that channels with high 
HFO rate channels are in the clinically-defined SOZ. Here, 
we wanted to see if HFO propagation network features 
also corresponded with the SOZ, with the added goal of 
being able to distinguish between good (Class-1) and bad 

outcome (Class-3+) patients. Each of the functional connect
ivity graphs (FCN, uLAN, fLAN) representing relational in
formation between each electrode pair generates unique 
centrality values at each channel (FCN-EIG, uLAN-EIG, 
fLAN-OUT). Together with the HFO-RATE, this makes 
four HFO measures that characterize each channel. For 
each of these measures, we calculated the mean centrality 
rank of the top 50% most important SOZ channels 
(SOZ50), resulting in four features. Although we saw that 
there was not a significant group difference between the 
Class-1 and Class-3+ patients (P > 0.05, n = 28), we noted 
that overall, the Class-1 centrality and HFO-RATE scores 
tended to be slightly higher than those of Class-3+ (Fig. 4A 
and D). This was repeated for the mean of all SOZ scores 
(SOZALL), the mean of the top 10% highest SOZ scores 
(SOZ10) and the single highest SOZ scores (SOZTOP) 
with all showing relatively similar results but no significant 
group difference (P > 0.05, n = 28) (Supplementary Fig. 2).

HFO centrality and rate in critical 
resection percentage compared with 
patient outcome
Given the limitations of comparing SOZ with outcome, we 
developed a method to compare directly with the planned re
section. We compared each of our HFO measures with RV to 
see how well they could distinguish between Class 1 and 
Class 3+ patients by calculating the CReP in the 28 patients. 
Specifically, we calculated the CReP from the top 30% most 
important channels (CReP30) ranked by centrality and 
HFO-RATE scores respectively. By comparing these features 
between Class-1 and Class-3+ patients, we saw that patients 
with good outcome generally have a higher CReP30 than 
that of patients with poor outcome (Fig. 5A and D). While 
this difference between the groups was determined to not 
be significant, we noted it to have a moderate trend (P =  
0.1358, n = 28). Likewise, this was repeated for CReP calcu
lated from the top 40% (CReP40), top 20% (CReP20) and 
top 10% (CReP10) most important channels with trends 
of group differences detected at CReP20 (P = 0.103, n =  
28) and CReP10 (P = 0.061, n = 28) (Supplementary Fig. 2).

SOZ network centrality scores in 
patients with definitive surgery
As shown in Fig. 1B, there was a disparity in the amount of SOZ 
resected in different patients, leading to a natural stratification. 
We focused on the DS patients because they were expected to 
become seizure free (see Discussion). Once again for each of 
the centrality (FCN-EIG, uLAN-EIG, fLAN-OUT) and 
HFO-RATE measures, we computed the mean rank of the 
top 50% most important SOZ channels (SOZ50) to derive 
four features. Here we saw a more prominent differentiation 
of the SOZ features for outcome with Engel Class 1 patients 
(DS-1) generally having higher scores than that of class 3 or 4 
patients (DS-3+), although the difference was yet again not 
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significant (P > 0.05, n = 17) (Fig. 4B and E). These were re
peated for SOZALL, SOZ10 and SOZTOP with all showing 
no significant group differences (P > 0.05, n = 17) 
(Supplementary Fig. 3). This suggests that while there is some 
enrichment of the good outcome features relative to the poor 
outcome features, comparison with SOZ is not a strong pre
dictor of surgical outcome. For completeness, the same analysis 
was also performed for the PS patients which resulted in a sig
nificant group difference within the SOZTOP (P = 0.029, n =  
11) feature set although post hoc t-test revealed no significant 
differences for any features (P > 0.05, n = 11) (Fig. 4C and F
and Supplementary Fig. 4). We thus conclude that comparing 
HFO centrality and rate with SOZ is not a reliable predictive 
biomarker of surgical outcome.

High critical resection percentage in 
definitive surgery patients
We computed the CReP from the top 30% most important 
channels (CReP30) for each of our four measures 
(FCN-EIG, uLAN-EIG, fLAN-OUT, HFO-RATE) for the 

DS patients. DS-1 patients generally had higher CReP than 
that of DS-3+ (Fig. 5B and E). A global Hotelling’s test 
showed a strongly significant difference between the two pa
tient classes (P < 0.0001, n = 17) with post hoc t-test show
ing significant differences between the outcomes for every 
feature (P < 0.05, n = 17). These analyses were repeated for 
the other percentile groups (CReP 40, CReP 20 and 
CReP10) with each showing significant group differences 
(P < 0.05, n = 17) (Supplementary Fig. 3). These calculations 
were also performed in the PS cohort; no significant differ
ences were detected between the classes (P > 0.05, n = 11) 
(Fig. 5C and F and Supplementary Fig. 4).

Patient classification with network 
centrality features
These results demonstrated that features based on the RV 
may be good predictors of surgical outcome for definitive sur
gery patients. To test this, we built a classifier to distinguish 
DS-1 from DS-3+ patients. We selected the set of CReP30 fea
tures as they demonstrated a very significant global difference 

A B C

D E F

Figure 4 Distribution of the top 50% highest seizure onset zone (SOZ50) mean centrality ranks. Comparison between Class 1 (blue, 
n = 18) and Class 3+ (red, n = 10) for (A) all patients, (B) definitive surgery patients (n = 12,5), (C) palliative surgery patients (n = 6,5) with SOZ50 
computed for the outcloseness centrality (fLAN-OUT) of the forward propagating network, eigenvector centrality (uLAN-EIG) of the undirected 
lag asymmetry network, eigenvector centrality (FCN-EIG) of the FCN, and the ranked HFO rate (HFO-RATE). While it seems that the mean SOZ 
centrality ranks and ranked HFO rates (HFO-RATE) are generally higher in class-1 definitive surgery group compared to that of the class-3+ group 
there was no statistical significance detected for group differences for each stratified patient sets (all patients, definitive surgery and palliative 
surgery) (Hotelling’s T2 P = 0.914, 0.227, 0.966; T2 = 0.975, 5.652, 0.572; n = 28, 17, 11, respectively). (D–F) The ROC curves were used to 
demonstrate the effect size for each feature in distinguishing between class-1 and class-3+ for each respective stratified patient sets (A–C). Boxes 
represent the interquartile range with the horizontal line being the median and whiskers extending 1.5 times the interquartile range. Jittered data 
points are overlaid on top of the box plots.
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between surgical outcomes. We then trained a Naïve Bayes 
model with a combination of the CReP30 for the four features 
(fLAN-OUT, uLAN-EIG, FCN-EIG, HFO-RATE), and per
formed leave-one-out cross-validation on each of the 17 pa
tients. The AUC of the cross-validated model was 0.83 
(Fig. 6A), which was significantly better than a random classi
fier with an AUC of 0.5 (P = 0.008 bootstrap hypothesis test, 
95% CI = 0.636, 1.031, n = 17). This ROC curve shows excel
lent specificity: at threshold ‘B’ there are no false positives, i.e. 
all nine predictions of good outcome were correct (see confu
sion matrix in 4B, corresponding to the point B in 4A). 
Additionally, the algorithm showed a high positive predictive 
value (PPV) of 100% (9/9) at the 80% predicted class 1 cer
tainty (Fig. 6C) which significantly (P = 0.007, permutation 
test) outperforms prediction of surgical outcome based on 
clinical data of SOZ resection percentage with a PPV of 71% 
(12/17) at 80% SOZ resection. However, as the certainty 
drops, the algorithm becomes less accurate. This is assessed 

via a calibration curve (Fig. 6D). For comparison, to see how 
well HFO-RATE performs alone we built a Naïve Bayes model 
with just CReP30 HFO-RATE with leave-one-out cross- 
validation as we did above and obtained an AUC of 0.72, 
which was not significantly different from a random classifier 
with an AUC of 0.5 (P > 0.05 bootstrap test, 95% CI = 0.459, 
0.974, n = 17). Additionally, the PPV at the 80% predicted 
class 1 certainty for HFO-RATE-only classifier was 88% 
(7/8) and was not significantly different than predicting out
come based on SOZ resection percentage (P = 0.122, permu
tation test) (Supplementary Fig. 5). This suggests that 
HFO-RATE alone is not greatly predictive of surgical out
come. Overall, these results show that a classifier based on a 
combination of HFO centrality and rate features can be used 
to determine post-surgical outcomes with a high level of speci
ficity for definitive surgery patients.

Until this point, we have excluded Class 2 patient data 
from all analyses because it is ambiguous whether to include 

A B C

D E F

Figure 5 Distribution of the overlap of the resected volume with the top 30% (CReP30) highest-ranked channels. CReP calculated 
for the outcloseness centrality (fLAN-OUT) of the forward propagating network, eigenvector centrality (uLAN-EIG) of the uLAN, eigenvector 
centrality (FCN-EIG) of the FCN, and the ranked HFO rate (HFO-RATE) comparing between Class 1 (blue, left) and Class 3+ (red, right) for (A) 
all patients (Class 1, 3 n = 1810), (B) definitive surgery patients (n = 12,5), (C) palliative surgery patients (n = 6,5). Statistically significant main 
effects of group differences were detected using Hotelling’s T2 for the definitive surgery group (P = 1.25 * 10−5, T2 = 27.996, n = 17) but not for 
the all patients group (P = 0.136, T2 = 7.002, n = 28) nor the palliative surgery group (P = 0.978, T2 = 0.454, n = 11). Post hoc comparisons using 
t-test were performed for each individual features within the definitive surgery group as the main effect was found to be significant (P < 0.05, t >  
2.2, n = 17 for all features). Significant differences were denoted by * for P < 0.05, ** for P < 0.01 and *** for P < 0.001. Boxes represent the 
interquartile range with the horizontal line being the median and whiskers extending 1.5 times the interquartile range. Jittered data points are 
overlaid on top of the box plots. (D–F) ROC curves computed to show the effect sizes for each individual features for comparing between Class-1 
and Class-3+ for each patient set above (A–C). (E) The AUC of the definitive surgery group ROC curves = 0.85 (95% CI = 0.663, 1.037, n = 17), 
0.75 (95% CI = 0.507, 0.993, n = 17), 0.9 (95% CI = 0.75, 1.05, n = 17) and 0.817 (95% CI = 0.609, 1.024, n = 11), respectively for fLAN-OUT, 
uLAN-EIG, FCN-EIG and HFO-RATE.
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them as ‘good’ or ‘bad’ outcome, and thus it is unclear how 
to utilize those data when building a classifier. However, 
once the classifier is created, it is important to assess how it 
would work with all patients including Class 2. We therefore 
applied the Naïve Bayes classifiers to all DS Class 2 patients 
(n = 6). Due to the cross-validation, there were 17 classifier 
models. We averaged the response of each DS-2 patient to 
all models to show their predicted probability (Fig. 6C). 
There was minimal variability across the model predictions 

(Supplementary Fig. 6). We found that 4/6 of the DS-2 pa
tients were predicted to be class 1 with mean 100% probabil
ity, while the other two were predicted to have poor outcome. 
Examining all six patients in aggregate, we compared 
the CReP30 features across DS-1, DS-2 and DS-3+ 
(Supplementary Fig. 7). Class 2 patients were significantly dif
ferent than Class 3+ patients (n = 11, P < 0.05 Hotelling’s 
T2), but not than Class 1 patients (n = 17, P = 0.0181, P >  
0.05 Hoteling’s T2). We also assessed the clinical response 

A B

C D

Figure 6 Naïve Bayes model results for the classification of patient outcome for DS patients. (A) The ROC curves computed from 
the leave-one-out Naïve Bayes validation set posterior probabilities for the model with the CReP30 feature based on HFO-RATE (grey) and the 
model with CReP30 of centralities and HFO-RATE (yellow). The statistical significance of the AUC of the ROC curve was evaluated for both 
curves. While the AUC of the HFO-RATE ROC was not significantly different (AUC = 0.72, 95% CI = 0.459, 0.974, P = 0.138 via bootstrap test, 
n = 17), the AUC of the centrality + HFO-RATE ROC was significantly different from a random classifier (AUC = 0.83, 95% CI = 0.636, 1.031, P =  
0.008 via bootstrap testing, n = 17). (B) Confusion matrix computed from the chosen point ‘B’ in A with perfect specificity and an accuracy of 83%. 
(C) Violin plot of the leave-one-out Naïve Bayes posterior probabilities for the model with centralities features and HFO-RATE. Boxes represent 
the interquartile range with the horizontal line being the median and whiskers extending 1.5 times the interquartile range. Jittered data points are 
overlaid on top of the box plots. Results for DS-1 (n = 12) and DS-3+ (n = 5) patients are from leave-out cross-validation. DS-2 patient data are the 
mean and standard deviations of each patient (n = 6) to all 17 cross-validation models (see Supplementary Fig. 6). (D) Calibration curve of the 
centrality + HFO-RATE model. This plot demonstrates that the algorithm is very accurate when it is more certain (higher probability) of the 
outcome.
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of each of these six patients individually to see if there was a 
difference between those with predicted good and bad out
comes (Fig. 7). We found that of the four with predicted 
good outcome, three of them had prolonged seizure-free per
iods (>4 years) and only had a single, brief period of break
through seizures. We were conservative and included these 
patients as Class 2 despite the prolonged seizure freedom. 
The fourth has had 10 seizures in 7 years (previously had >  
30 seizures per year).

Discussion
In this article, we evaluated HFO network propagation 
properties as a predictive biomarker of surgical outcome. 
Our results demonstrate that detection of HFO functional 
networks is complementary with HFO rate to predict patient 
outcome within definitive surgery patients. The high accur
acy of these measures allowed us to seek an even more im
portant goal: to see if incorporating HFO data, which are 
invisible to clinicians and not part of the standard of 
care,61 could predict outcome better than current clinical 
methods. We used several objective HFO measurements to 
build a cross-validated Naïve Bayes model that successfully 
predicts patient outcome based upon the planned resection 
margins in patients where most of the SOZ were resected.

One of the previous possible limitations of HFOs’ effect
iveness as a clinical tool may be that prior research has been 
restricted to HFO rate on single channels. Epilepsy is recog
nized as a network disorder, in which the interactions be
tween channels is critical to evaluating the epileptic 
network.28,30,62 Many studies have shown that different cen
trality measures can quantify epileptic networks within 
standard EEG to be potential biomarkers for epileptic tis
sue.40,45,46,63,64 Similar analyses in the context of HFOs are 
also promising, as analysing the connectivity of EEG in the 
HFO frequencies or HFOs themselves shows correlation 

with patient outcome or can improve specificity to 
epilepsy.31-36 However, network analysis with HFOs is chal
lenging because some channels have few events, and most of 
the detected events on one channel are not detected on neigh
bouring channels even when there is a clear network dis
charge—which is precisely the data that are most important 
to analyse the network (e.g. Fig. 2). In the current work, we 
used the unique approach of characterizing functional HFO 
networks using our automated HFO detections as a marker 
for time windows to perform correlational analysis of all 
high frequency intracranial EEG activity across all channels.

This work presents several novel findings that can improve 
future work with HFOs and other EEG biomarkers. The first 
is stratification of patients into definitive versus palliative sur
gery. The primary purpose of implanting intracranial EEG is 
to determine the SOZ and decide what to resect. The overlap 
between those two decisions, although crucial, is rarely re
ported. In our cohort, which we assume is similar to most cen
tres, there are two very different groups of patients: those in 
whom the SOZ was resected (DS) and those where it was 
not (PS). As shown in Fig. 1B, 55% of our PS patients 
(6/11) had good outcomes, which may actually be better 
than clinicians were hoping. This is compared with 71% 
(12/17) good outcomes in the DS patients, which is probably 
worse than clinicians were hoping but is typical for surgical 
programs.65 It is notable that five of the Class 3+ patients 
had 100% of their SOZ resected, and two Class 1 patients 
had none of it resected. This is a critical clinical scenario: 
the outcome in these patients was unrelated to the SOZ resec
tion. While the good outcome in a PS patient is a welcome sur
prise, the failure in the DS patients is frustrating for clinicians 
and patients. It would be highly useful to identify poor out
comes before the surgery. This scenario is an ideal testbed 
to analyse the potential role of HFOs: can HFO data help dis
tinguish which patients will have good or bad outcomes in pa
tients with complete resection of the SOZ? In other words, 
can HFOs add information to standard clinical practice, 

Figure 7 Number of seizures per year post-surgery for all patients predicted to have good outcome. Combining the results of the 
Naïve Bayes algorithm in Fig. 6, there were 13 patients predicted to have good outcome. Nine of them were Class 1 and did not have any seizures after 
surgery for 6–8 years (black) (n = 9). The other four were Class 2, three of whom had seizure-free periods more than 4 years long (UMHS47, 19, 38).
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beyond what is already available to the treating physicians? 
We propose that new biomarkers of surgical outcome should 
focus on the DS group, where the ‘standard of care’ (resecting 
the full SOZ) is being met, to determine if the new biomarkers 
might improve upon that standard. Here, we note that be
cause the decision of where to resect is integrally connected 
to the clinically-defined SOZ, it is impossible to predict if a 
patient would remain as DS or PS if a different number of 
SOZ channels had been chosen. However, a review of each 
patient’s electrode numbers showed the assignation to 
DS/PS would most likely remain unchanged even with ran
dom changes in the SOZ channels (data not shown).

The second contribution is to demonstrate that comparing 
HFOs—or any potential biomarker—with SOZ is not an 
ideal method for predicting outcome. Most prior HFO 
work has looked for correlations with the SOZ, which is read
ily available and easily testable, but is highly dependent on re
viewer61 and is often not a fair representation of the surgical 
resection. Although numerous studies have shown that inter
ictal HFO rates are higher in SOZ versus non-SOZ tissue, and 
that resection of these areas corresponds to good surgical 
outcome,18,21-23 the first prospective study was unable to pre
dict which patients would have good outcome using this 
method.25 Concordantly, our results also suggest that while 
HFO-based SOZ features show some minor trends that cor
relate with outcome groups, these trends are not significant 
enough to identify which patients will have good outcome. 
Furthermore, from a translational point of view, one other 
concern is that simple comparison with SOZ merely tries to 
recapitulate the standard of care, rather than providing new 
complementary information. In short, the clinical team is al
ready finding the SOZ, and it has known limitations in pre
dicting outcome—it is not an ideal benchmark for a 
biomarker meant to improve care.

Those concerns about SOZ led us to develop an additional 
measurement that is independent and complementary to the 
SOZ. Our CReP measurement compares the percent of over
lap between a biomarker and the proposed resection. Not 
only is the SOZ sometimes not fully resected, but the surgical 
resection usually removes electrodes outside the SOZ, which 
affects outcome independent of the SOZ. However, past 
work that compared with the entire resected volume suffered 
from low specificity because many ‘unimportant’ channels 
are also resected (e.g. removing the entire right temporal 
lobe when only hippocampal electrodes are abnormal).49,66

Thus, the CReP focuses on a percentile of the most important 
channels. We find that CReP features are better at distin
guishing between surgical outcomes than the SOZ features 
and are promising as a predictor of good outcome.

This method is designed to provide clinicians with a prob
ability of surgical success during the most critical time of sur
gical planning, after all information has been acquired and 
they decide what to resect. Our tool is designed to be a ‘final 
check’ that might identify epileptic networks that were not 
visible using standard tools. As a pseudo-prospective way 
of testing the performance of our classifier, we tested our 
model against Class 2 patients who were initially held out 

of the model due to their inconsistent grouping from other 
studies.14,22,45,46 We showed that Class 2 patients that we 
classified with a high probability of being a good outcome 
patient coincide with the low post-surgical seizure resur
gences further validating our model. We cannot directly 
combine the cross-validation (Class 1, Class 3+) and held- 
out data (Class 2). However, when viewed together we esti
mate that a pseudo-prospective analysis of all 23 DS patients 
(Classes 1, 2, 3+) would have predicted a good outcome in 13 
patients (nine Class 1, four Class 2), and 12 of those would 
have been seizure free for at least 4 years.

However, we do recognize some limitations here including 
the existence of a moderate class imbalance with more DS-1 
patients than DS-3+ patients due to our strict criteria. 
Another limitation, which is present in all HFO research, is 
that it is still unclear how to identify ‘normal’ versus ‘abnor
mal’ HFOs.67 Regardless, our resulting classifier was able to 
achieve high accuracy in our cohort while maintaining a high 
level of specificity. Finally, although our analysis could not 
test this, a straightforward next step will be to determine if 
altering the planned resection to include key channels can 
improve outcome. This is readily testable within the model 
and can be implemented in future clinical trials.

In summary, we offer a different perspective for translating 
HFOs as a biomarker for epilepsy by characterizing their inter
ictal HFO functional networks. We identified that restricting 
analysis to patients with definitive surgery is a better demon
stration of how HFOs can predict outcome. Within this clinical 
context of definitive surgery, our results indicate that spatial– 
temporal patterning of HFOs forms functional networks, and 
that the addition of network centrality was more predictive 
of outcome than HFO rate alone. SOZ was not a reliable 
way to predict outcome, so we developed a novel tool, CReP, 
which was very successful. These findings together have broad 
implications to the development of HFOs, as well as other EEG 
signals, as predictive biomarkers of surgical outcome. Our find
ings further bolster the status of HFO as a promising biomarker 
for epilepsy and provide a basis for how HFO can be used as a 
clinical tool informing clinical decisions.
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