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Abstract 
Motivation: Unraveling the transcriptional programs that control how cells divide, differentiate, and respond to their environments requires a 
precise understanding of transcription factors’ (TFs) DNA-binding activities. Calling cards (CC) technology uses transposons to capture transient 
TF binding events at one instant in time and then read them out at a later time. This methodology can also be used to simultaneously measure 
TF binding and mRNA expression from single-cell CC and to record and integrate TF binding events across time in any cell type of interest with
out the need for purification. Despite these advantages, there has been a lack of dedicated bioinformatics tools for the detailed analysis of 
CC data.
Results: We introduce Pycallingcards, a comprehensive Python module specifically designed for the analysis of single-cell and bulk CC data 
across multiple species. Pycallingcards introduces two innovative peak callers, CCcaller and MACCs, enhancing the accuracy and speed of pin
pointing TF binding sites from CC data. Pycallingcards offers a fully integrated environment for data visualization, motif finding, and comparative 
analysis with RNA-seq and ChIP-seq datasets. To illustrate its practical application, we have reanalyzed previously published mouse cortex and 
glioblastoma datasets. This analysis revealed novel cell-type-specific binding sites and potential sex-linked TF regulators, furthering our under
standing of TF binding and gene expression relationships. Thus, Pycallingcards, with its user-friendly design and seamless interface with the 
Python data science ecosystem, stands as a critical tool for advancing the analysis of TF functions via CC data.
Availability and implementation: Pycallingcards can be accessed on the GitHub repository: https://github.com/The-Mitra-Lab/pycallingcards.

1 Introduction
Cells divide, differentiate, and respond to their environments by 
modulating the expression of their genes. Such transcriptional 
changes are orchestrated by transcription factors (TFs), which 
bind to regulatory DNA sequences and recruit chromatin 
remodelers, RNA polymerase II holoenzyme, and other general 
TFs. Due to their central role in organizing gene expression, TFs 
are the subject of intense study and there are many outstanding 
questions about the mechanisms they use to enact gene expres
sion programs (Zeitlinger 2020). Since TFs act by binding 
DNA, either directly or indirectly, efforts to answer these ques
tions are greatly aided by methods such as ChIP-Seq (Park 
2009), DamID (Greil et al. 2006), ChIP-exo (Rossi et al. 2018), 
Cut-and-Run (Baas et al. 2005), Cut-and-Tag (Kaya-Okur et al. 
2019), and Transposon Calling Cards (CC) (Wang et al. 2007, 
2011, 2012, Liu et al. 2020, Kfoury et al. 2021) that are used to 
map the genome-wide binding of a TF of interest.

The CC method is unique in that it can record binding 
events at one time point that can be read out at a later time 
(Cammack et al. 2020). In the CC method, a TF is fused to a 
transposase (most often PBase), and the transposase-TF fu
sion inserts transposons in the genome proximal to where the 
TF binds, leaving the transposon as a “Calling Card” mark
ing the transient binding of the TF. The preferred type of 
transposon used in the CC method is an engineered PBase 
transposon called a self-reporting transposon (SRT). SRTs 
carry a ubiquitous promoter that drive the transcription of a 
reporter gene with no poly-A termination signal, so that the 
transcript continues into the adjacent genome, allowing 
transposon insertions to be read out via RNA sequencing. 
This reaction is compatible with single-cell platforms, and 
thus single-cell Calling Cards (scCC) (Moudgil et al. 2020), 
enable the readout of TF binding events and RNA-gene ex
pression from tens of thousands of individual cells in parallel. 
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This permits the analysis of TF function in heterogeneous tis
sues. Finally, if the transposase is not fused to a TF it has a 
natural affinity for the BRD4 chromatin modifier which is as
sociated with enhancers and superenhancers (Gogol-D€oring 
et al. 2016). Thus, a “default” CC experiment records en
hancer utilization.

Most methods that measure TF binding in bulk samples 
(Zhang et al. 2008, Meers et al. 2019) as well as single-cell 
methods that measure RNA-expression or chromatin accessi
bility (Satija et al. 2015, Stegle et al. 2015, Wolf et al. 2018, 
Eraslan et al. 2019, Granja et al. 2021) have a number of as
sociated bioinformatics tools to aid in the analysis of the data 
generated by these methods. Heretofore, there were no equiv
alent packages for the comprehensive analysis of CC data. 
Previously, Python modules such as ccf_tools (for python2) 
(Kfoury et al. 2021) and Blockify (Moudgil et al. 2020) were 
utilized to call CC peaks, but neither are user-friendly, nor do 
they provide an integrated environment for visualization, 
comparison with orthogonal RNA-seq and ChIP-seq data
sets, or motif finding. Because CC data are substantially dif
ferent from other ’omics data such as RNA-seq, ChIP-seq, 
and ATAC-seq, it is usually not appropriate to use the exist
ing packages for those methods to analyze CC data as many 
of the statistical assumptions used in these packages are not 
valid for CC data (Park 2009, Saliba et al. 2014, Buenrostro 
et al. 2015, Kolodziejczyk et al. 2015). As a result, there is a 
critical need for a dedicated package that integrates peak- 
calling, visualization, and the downstream analysis of CC 
and scCC data to facilitate investigation into TF function.

In this paper, we present Pycallingcards, a Python (Sanner 
et al. 1999) module to analyze both scCC and bulk CC data 
in human, mouse, and yeast. This package introduces two 
new peak callers, CCcaller and Model-based Analysis for 
Calling Cards (MACCs), which improve the accuracy and 
speed of identifying TF binding sites from CC data. In order 
to benchmark these peak callers, we mapped 20 million 
PBase transposon insertions (Brd4 directed), the largest such 
dataset generated to date. Our analysis shows that CCcaller 
and MACCs are more accurate and efficient than previous 
peak callers. Pycallingcards also contains many new func
tions that allow for the integrative analysis of CC data and 
RNA-seq data to discover the relationship between TF bind
ing and gene expression. Pycallingcards is designed for use in 
Jupyter notebooks, and this interface allows for rapid data vi
sualization and exploration. The package can also help 
researchers compare CC data with other relevant genomic 
datasets in order to better understand the functional conse
quences of TF binding, and it is designed to be accessible to 
researchers with even a limited computational background. 
Finally, Pycallingcards can interface with the Python data sci
ence ecosystem to provide a scalable and extensible frame
work for the development of new CC data-related and 
machine learning methods.

To highlight the utility of Pycallingcards, we used it to 
reanalyze two published datasets: scCC Mouse cortex data 
(Moudgil et al. 2020) and bulk glioblastoma (GBM) CC data 
collected in female and male samples (Kfoury et al. 2021). 
The mouse cortex data both maps the binding of Brd4 and 
measures the gene expression in each cell, in parallel. In this 
study, we reveal cell-type specific binding sites and identify 
potential mechanisms by which Brd4 may regulate develop
ment. The GBM data were collected to provide insights into 
the epigenentic basis of sex differences in GBM by mapping 

Brd4 binding in an isogenic murine model comprised male 
and female astrocytes that were transformed via a combined 
loss of neurofibromin and p53 function (Kfoury et al. 2021). 
Using Pycallingcards, we found previously unidentified TF 
regulators of the transcriptional differences between sexes, 
thus providing new insights for future study and treatment. 
These analyses form the basis of a detailed and user-friendly 
Jupyter notebook-based tutorial available at https://pycalling 
cards.readthedocs.io/en/latest/ to facilitate the adoption of 
this package.

2 Results
2.1 Overview of Pycallingcards workflow
A schematic overview of typical Pycallingcards workflows 
for single cell and bulk CC is displayed in Fig. 1. Since the 
PBase transposase (PBase) naturally interacts with the Brd4 
TF, by analyzing unfused PBase, one can map Brd4 binding 
across the genome. In order to map a specific TF of interest, 
transposons inserted by a TF-PBase fusion as well as unfused 
PBase are mapped separately; transpositions deposited by the 
TF-PBase are compared to those deposited by the unfused 
PBase, which is used as a background distribution. Regions 
that are enriched for TF-PBase insertions over background 
accurately reflect TF binding sites (Wang et al. 2012, 
Cammack et al. 2020, Moudgil et al. 2020). In scCC experi
ments, mRNA expression levels and the locations of transpo
son insertions are collected for each cell in a heterogeneous 
sample. Cells are first clustered by their mRNA expression 
profiles to identify the different cell types or subtypes present 
in the sample and then peaks of TF binding are called for 
each cluster. Peaks are then compared to identify genomic 
regions that are differentially bound between cell types. For 
bulk CC experiments, two or more conditions are typically 
analyzed with the primary goal being to call peaks in each 
condition to then identify differentially bound geno
mic regions.

For scCC data, Pycallingcards interacts with Scanpy (Wolf 
et al. 2018) and uses its functionality to analyze the scRNA- 
seq data and perform filtering, dimensionality reduction, and 
clustering of cells. Pycallingcards initially reads insertion data 
from a qbed file, where each line represents a single insertion 
and contains chromosome, insertion start site, insertion end 
site, number of reads, orientation of insertion, and the cell 
barcode associated with the insertion (detailed protocols to 
implement CCs, as well as to generate qbed files from raw se
quencing reads are provided here; Moudgil and Mitra 2019, 
Moudgil et al. 2019). Normally, each dataset contains a large 
number of insertions. Pycallingcards peak calling methods 
aim to find putative TF binding sites by identifying genomic 
regions with higher-than-expected insertion densities. Three 
distinct methods for peak calling are available in 
Pycallingcards, each with several adjustable parameters; how
ever, different methods and parameters typically yield fairly 
consistent results. We recommend plotting some genomic 
regions using the Pycallingcards Plotting submodule or by us
ing the WashU Epigenome browser (Li et al. 2019, 2022) to 
tune the parameters and assess data quality. Users can then 
identify TF motifs enriched under a set of peaks using Homer 
(Heinz et al. 2010); this analysis can be used to evaluate the 
quality of the dataset, as one would expect to identify the mo
tif of the TF being analyzed, but it can also be used to charac
terize the binding preferences of a TF for which no motif 
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Figure 1. Overview of Pycallingcards. (a) Pycallingcards workflow for scCC data. Pycallingcards reads insertion data from a qbed file and then calls peaks 
(to create a bed file, left column). It then creates a cells-by-peaks Anndata object (h5ad file) Pycallingcards interfaces with Scanpy to complete 
preprocessing, clustering, and differential expression analysis of the RNA-seq data collected for each cell (right column). Pycallingcards then uses Mudata 
object to store the combined scCC and scRNA-seq data (h5mu file). (b) Data structure in Pycallingcards for bulk CC data. Pycallingcards reads insertion 
data from a qbed file and calls peaks, which generates a bed file. It later creates a groups/samples-by-peaks Anndata object (h5ad file) (b, left column). If 
bulk RNA-seq is provided, it uses normalized counts and results from differential gene analysis (b, right column). (c) Downstream Analysis. Pycallingcards 
provides functionality to compare called CC peaks with Chip-seq signal (when available), perform a footprint analysis to narrow down TF binding regions, 
find motifs, allow for visualization of the dataset through the WashU Epigenome Browser, perform differential peak analysis, pair CC data with RNA-seq 
data, and identify related SNPs by intersecting peaks with a GWAS database.
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exists or to identify putative TF–TF interactions. Peak anno
tation is accomplished using bedtools (Quinlan and Hall 
2010) and pybedtools (Dale et al. 2011), which are used to 
label each peak by finding the two closest genes. For scCC, a 
cells-by-peaks Anndata object for CC is generated, which 
contains information about insertion number, peak locations, 
and cell barcodes. The CC Anndata and RNAseq Anndata 
objects are then merged into one Mudata object in order to 
share data and conduct additional analyses (Bredikhin et al. 
2022). Differential peak analysis among clusters can then be 
performed using several custom tools to identify peaks with 
significantly different numbers of CC insertions between clus
ters of cells. Pycallingcards also enables investigation of the 
relationship between TF binding and gene expression by inte
grating RNA-seq data with CC data to identify which peaks 
might control which genes. Finally, Pycallingcards provides 
tools for intersecting TF binding sites found by scCC with the 
GWAS Catalog (Buniello et al. 2019) to find TF binding sites 
with possible links to disease.

The workflow for bulk CC data analysis is identical to the 
scCC workflow for importing the data, peak calling, and an
notation. At this step, a groups-by-peaks Anndata object is 
created according to the experimental condition (group) and 
then a differential peak analysis is typically performed for the 
different groups. This object can also track biological repli
cates within each group. If bulk RNA is also sequenced, it is 
often very informative to investigate the relationship between 
TF binding sites and the RNA expression levels of nearby 
genes across the various experimental conditions. Peaks iden
tified through either scCC or bulk workflows can then be 
intersected with GWAS data.

Pycallingcards also has the ability to infer the exact binding 
sites of TFs, which can be especially useful for yeast data, 
where the TF often leaves a noticeable “footprint” so that 
insertions are deposited on either side of the binding site, but 
not at the site itself (Shively et al. 2019). For such data, we 
have included a function for footprint analysis that uses a 
Gaussian mixture model (Reynolds 2009) to identify the ex
act TF binding site.

2.2 Peak calling with Pycallingcards
Pycallingcards contains two novel methods for peak calling, 
CCcaller and MACCs. Both methods are inspired by aspects 
of the MACS2 package that is commonly used to analyze 
ChIP-Seq data (Zhang et al. 2008) but they are tailored spe
cifically for use with CC data. These methods allow 
Pycallingcards users to call the peaks accurately, conve
niently, and rapidly. Pycallingcards also contains an imple
mentation of Blockify (Moudgil et al. 2020), which utilizes 
Bayesian Blocks (Scargle et al. 2013) to segment CC data.

Like MACS2 (Zhang et al. 2008), MACCs scans the ge
nome using a specified window and step size and looks for 
regions with significantly more experimental insertions than 
background insertions. It merges consecutively enriched win
dows and then finds the center of this candidate peak. Next, 
MACCs determines whether the experimental insertions un
der the peak are significantly enriched over background by 
parameterizing a Poisson model using the number of back
ground insertions observed under or adjacent to the peak. 
Since the PBase transposase inserts exclusively into TTAA tet
ranucleotides, MACCs accounts for the relative TTAA densi
ties when comparing the number of transpositions across the 
different genomic regions. Candidate peaks that pass a P- 

value threshold are then considered bona fide CC peaks. 
There is also a background-free version of this algorithm that 
computes significance by comparing the number of transposi
tions under the candidate peak to the number of insertions in 
the neighboring genome defined by lambda window size (fur
ther details are included in the Supplementary Information).

CCcaller differs from MACCs in that it uses a greedy algo
rithm (Edmonds 1971) to identify candidate peaks. CCcaller 
starts from first insertion on each chromosome and extends 
the candidate peak if the next nearest insertion is within a 
user-specified number of base pairs. Candidate peaks are 
then promoted to CC peaks exactly as described for the 
MACCs method. The CCcaller method is computationally ef
ficient because every insertion is only considered once. It also 
covers as many insertions as possible because it tries to in
clude every insertion as part of a peak.

To compare the performance of different methods, we 
compared five different methods: CCcaller, MACCs, 
Blockify in Pycallingcards (Blockify), the original Blockify 
(Blockify_original), and ccf_tools. For each method tested, 
we used the default parameters. We downloaded CC data 
from GEO (see Supplementary Table S1). We used HyPBase 
Brd4 bulk CC data in HCT116 to examine peak calling per
formance for data without background and SP1 scCC data 
in HCT116 to test peak calling performance for CC data 
with background.

To benchmark the different peak callers, we plotted the av
erage Chip-seq signal (ENCODE Project Consortium et al. 
2012, Zhang et al. 2020) under the different sets of called 
peaks (see Fig. 2c). We first compared Brd4 CC peaks with 
H3K27ac signal measured by ChIP-seq. Since Brd4 binds at 
H3K27ac histones, we expect strong enrichment of ChIP-seq 
signal under the called peaks. We saw strong enrichment of 
H3K27ac signal under peaks called by all five methods, with 
only minor differences in performance. However, when SP1 
scCC data were analyzed and compared to a previously pub
lished SP1 ChIP-seq dataset (Zhang et al. 2020), MACCs, 
CCcaller, and ccf_tools outperformed Blockify (see Fig. 2c 
right panel). This can be partly explained by the fact that 
Blockify tends to call much wider peaks than the other meth
ods, despite the fact that the total number of insertions 
assigned to a peak is similar across methods (Fig. 2d). 
Blockify (as well as Blockify_original) often calls extremely 
wide peaks for CC data with low numbers of insertions (e.g. 
single-cell data, see Supplementary Fig. S2), so in such instan
ces, we recommend using MACCs or CCcaller. To better un
derstand the concordance between the different peak calling 
methods, we plotted the percentage of peaks called by each 
method that overlap with a peak called by a different method 
(Fig. 2e). CCcaller and MACCs call very similar sets of peaks, 
while ccf_tools, Blockify, and Blockify_original are more dis
cordant. Since CCcaller and MACCs also showed the highest 
enrichment with ChIP-seq signal (Fig. 2c), our analysis sug
gests one of these should be the peak calling method of choice 
(see also Supplementary Table S9). We also called motifs for 
peaks from SP1 scCC data and SP1 ranked at the top for ev
ery method. To better quantify the result, we designed a sim
ulation with authentic peaks (directed insertions) and 
“background” peaks (undirected insertions into TTAAs), 
allowing us to systematically benchmark the various peak 
calling methods against this standard in the Supplementary 
Information.
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We next benchmarked the five peak calling algorithms on 
their computational performance. To determine how their 
runtimes scale with dataset size, we performed two separate 
experiments. First, to benchmark background-free peak call
ing, we mapped PBase insertions (directed by the Brd4 pro
tein) in the K562 cell line (see Fig. 2c and d), using >20 
million transposition events, the largest dataset of transposon 

insertions produced to date. Then, to benchmark peak calling 
with a background distribution, we used previously pub
lished SP1 and Brd4 CC data collected from HCT116 cells 
(Moudgil et al. 2020). We downsampled the data, called 
peaks, and plotted the runtime versus total insertion number 
for each method. CCcaller runs significantly faster than the 
other methods, running 7–10� faster than MACCs and 

Figure 2. Peak calling methods for Calling cards data. (a) Overview of MACCs. (b) Overview of CCcaller. (c) Chip-seq signal in calling cards peaks for the 
different peak calling methods in Pycallingcards (left: peaks calling without background, HCT116 Brd4 data; right peaks calling with background, HCT116 
SP1 data). (d) The percentage of insertions contained under all called CC peaks is plotted for different methods (pink bars). On the same plot, the 
cumulative peak length of all called peaks is plotted (blue bars, left: peaks calling without background, K562 Brd4 data; right peaks calling with 
background, HCT116 SP1 data). (e) Percentage of peaks that overlap between the different peak calling methods. [left: K562 Brd4 data (no background 
peak calling); right: HCT116 SP1 data (peaks calling with background)]. (f) Computational time required for each of the different peak calling methods in 
Pycallingcards [left: K562 Brd4 data (no background peak calling); right: HCT116 SP1 data (peaks calling with background)]. (g) Memory required for 
different peak calling methods in Calling cards data (left: peaks calling without background, K562 Brd4 data; right peaks calling with background, HCT116 
SP1 data).
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ccf_tools and 2- to 3-fold faster than Blockify when process
ing datasets with more than five million insertions (Fig. 2f), 
while requiring very little memory (Fig. 2g). Taken together, 
our results suggest that CCcaller and MACCs are the most 
accurate peak callers and that CCcaller is the most computa
tionally efficient algorithm and can be used to call peaks for 
large CC datasets in <5 min on a personal computer.

2.3 Differential peak analysis
It is often important to identify regions of the genome that 
are differentially bound by a TF in two different biological 
conditions. Pycallingcards provides functionality to compare 
TF binding sites across two samples (or cell types, for scCC) 
and find peaks where there is significantly more binding in 
one sample than the other. This can be challenging as the 
samples may have slightly shifted peaks centers at a given ge
nomic region, leading to false positive differential peak calls. 
Pycallingcards employs two different strategies to deal with 
this problem. In the first strategy, Pycallingcards combines 
the insertions from the samples and calls peaks on the joint 
dataset. Then, a Fisher’s exact test or binomial test is utilized 
to determine if the number of insertions under each peak is 
significantly different from others. In the second strategy, 
peaks are called separately in each sample and then overlap
ping peaks are combined between samples and then signifi
cance tests are performed on the combined peaks as above. 
The details and workflow of this analysis can be found in the 
Supplementary Information.

2.4 Integrating CCs with RNA-seq
In scCC experiments, scRNA-seq data are always collected in 
parallel with CC insertion data. For bulk CC experiments, it 
is often useful to collect RNA-seq data either from the same 
biological samples under different experimental conditions or 
from cells with the TF of interested knocked out compared to 
wild-type control cells. When such data are available, it 
enables the integration of CC data with the corresponding 
RNA-seq data to identify which TF binding events affect the 
transcription of nearby genes and to quantify the magnitudes 
and directions of the effects.

For scCC experiments, Scanpy is utilized for the normaliza
tion, filtration, dimensionality reduction, clustering, and 
identification of differentially expressed genes from scRNA- 
seq data (reference Fig. 1). Next, regions of the genome that 
are differentially bound are identified (using a Fisher’s exact 
test or binomial test), allowing for the direct comparison of 
changes in TF binding with the gene expression changes of 
nearby genes across different cell types. For bulk CC experi
ments, differential peak analysis is performed to identify 
changes in TF binding across the different experimental 
groups. Then either the DEseq2 (Love et al. 2014) or 
PyDESeq2 (Muzellec et al. 2022) is used to find differential 
genes in bulk RNA-seq data. Next, for each experimental 
group, correlations between TF binding and gene expression 
changes can be readily identified. Such correlations can be 
used to infer the gene targets, and thus biological roles, of the 
analyzed TF.

The CC-peak/DE gene pairs can be used to generate spe
cific hypotheses. For example, often TF binding correlates 
with the activation of a nearby gene that plays an essential 
role in disease or is expressed in a specific cell type. To 
quickly reveal such connections, we can search the GWAS 
Catalog (Buniello et al. 2019) to find all SNPs within CC 

peaks to generate hypotheses about the mechanism by which 
genetic variation might play a role in disease. For the mouse 
genome, the Liftover (Hinrichs et al. 2006) tool (with some 
modifications) is used to map from the mouse genome 
(mm10) to the human genome (hg38) to determine if any 
trait-associated SNPs exist in the orthologous human geno
mic region.

2.5 Additional functionality in Pycallingcards
Pycallingcards has a variety of other useful tools for the 
analysis of CC data. For example, it can compare CC peaks 
with signals from different -omics datasets (e.g. Chip-seq, 
RNA-seq), to validate peak calls and to extract additional bi
ological inferences from CC experiments. It can also calculate 
and plot the signal around peaks and make heatmaps. 
Pycallingcards can also provide a genome-wide view of CC 
peaks by plotting peak density along whole chromosomes to 
give an overview of the dataset. It is also designed to easily 
connect with WashU Epigenome Browser to produce publica
tion quality figures and visualize CC data against a backdrop 
of different genomic features or hundreds of orthogonal data
sets. Additionally, for yeast CC data, footprint analyses can 
be performed to find more accurate TF binding sites. We 
highlight the utility of the tools available in Pycallingcards 
through a set of vignettes using real data below.

2.6 Analysis of single-cell CCs mouse cortex data
To demonstrate the core functions and procedures of 
Pycallingcards for single-cell data, we reanalyzed the Brd4 
scCC dataset in the mouse cortex (Moudgil et al. 2020) (see  
Fig. 3). In this dataset, there are 111 382 insertions and 
35 950 cells in total. For each cell, mRNA expression levels 
and CC insertions are recovered, providing insights into the 
gene regulatory networks that guide cell fate specificity and 
homeostasis.

To analyze this dataset, we first used Scanpy to filter cells 
and genes, reduced the data dimensionality, and clustered 
cells to identify their cell types. This analysis identified six 
cell types and 18 different subtypes. Clusters were assigned to 
cell-types by referring to the original paper (Moudgil et al. 
2020) and these assignments were stored in an Anndata ob
ject. Next, CCcaller was used to call peaks (see Fig. 3a). Each 
Brd4 binding site is captured as a peak, and a total of 902 
peaks were called. The locations of these peaks are visualized 
across the genome in Fig. 3b, using the draw_area function. 
Each peak is then annotated with the two nearest genes using 
the annotation function.

A cells-by-peaks Anndata object was then created from the 
mapped insertions, called peaks, and cell barcode data. The 
scRNA-seq object (created using Scanpy) and the scCC 
Anndata object were then combined with each other to con
nect TF binding and mRNA expression information for every 
single cell. Using the rank_peak_groups function in 
Pycallingcards, binomial tests were then used to identify cell 
type-specific TF binding, and t-tests were used to discover 
genes with cell type-specific expression (see Fig. 3c).

We next used binomial test to look for differentially bound 
peaks across cell types whose neighboring genes displayed 
gene expression changes across the same cell type (log fold
change g P 3 and adjusted P-value 6 :05). This analysis 
identified many peaks whose binding correlated with the ex
pression of nearby genes in a cell type specific manner, sug
gesting these regions represent Brd4-bound enhancers that 
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Figure 3. Application of Pycallingcards to single-cell mouse cortex data. (a) Peak calling with CCcaller. The top two tracks of the plot are the insertion 
data. They show the exact positions of the insertions with the y-axis as log reads number. The middle two tracks display insertion density. The bottom 
track shows nearby genes and the locations of called peaks. (b) The distribution of peaks throughout the chromosomes. Each peak is represented by a 
line whose height is proportional to the log of the insertion number. (c) Selected peaks significantly bound in astrocytes, compared to total data (gray). 
(d) Dot plot of selected peak–gene pairs. (e) UMAP plot for scRNA-seq data of cluster and peak–gene pairs. The UMAP plot for CC data in e is colored 
according to TF binding across the whole cluster. (f) Position of and peak–gene pairs in the genome.
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regulate the associate genes (see Supplementary Notes and 
Supplementary Table S2). For example, the cell types with 
the strongest Brd4 binding at peak chr13:83141353 … 
83148478 also have high expression of the nearby gene 
Mef2c (e.g. in excitatory neurons), and the strong Brd4 bind
ing at chr4:97575305 … 97588788 in astrocytes and subven
tricular zone derived neuroblasts is correlated with higher 
expression levels of the nearby gene E130114P18Rik in these 
cell types (see Fig. 3d).

The ability of Pycallingcards to visualize and integrate differ
ent types of data enables rapid hypothesis generation. For exam
ple, in reanalyzing the mouse cortex data with Pycallingcards, 
we identified a putative regulatory circuit controlling astrocyto
genesis. The TFs Nfia and Zbtb20 are known to bind coopera
tively to bind at multiple loci to promote astrocytogenesis. In 
particular, these TFs are known to directly suppress the expres
sion of Pou3f2 (Medeiros de Ara�ujo et al. 2021), which encodes 
a protein required for upper-layer neuron specification. 
However, the cis enhancers controlling the expression these 
genes are not known. We found a Brd4 binding peak adjacent 
to Nfia on chromosome 4 (peak chr4:97575305 … 97588788) 
that is correlated with its expression (see Fig. 3e). Similarly, a 
binding peak adjacent to Zbtb20 at chr16:43501178 … 
43518253 appears to regulate Zbtb20 expression in astrocytes. 
Finally, there is a binding site at chr4:22490858 … 22500591 
whose Brd4 binding correlates with Pou3f2 expression (high in 
excitatory neurons, lower in astrocytes), leading to the hypothe
sis that Nfia and Zbtb20 block the activity of the Pou3f2 en
hancer in astrocytes, but not in excitatory neurons locus and 
this differential binding contributes to fate specification. Further 
GWAS analyses are included in the Supplementary Information.

2.7 Analysis of bulk GBM CCs data
Pycallingcards also has multiple functions to facilitate the 
analysis of bulk data. We illustrate this by analyzing two 
wild-type (Brd4-directed) CC datasets obtained using a 
model of GBM derived from murine neocortical postnatal 
Day 1 astrocytes engineered with a combined loss of function 
for neurofibromin (NF1) and p53. This model is useful for 
studying sex differences, as male- and female-derived cells 
from littermates are isogenic except at the sex chromosomes 
(Kfoury et al. 2021), yet have quite a differential cellular phe
notype in tumor assays.

We used the CCcaller with a maxbetween value as 1100 to 
call peaks on the joint dataset and then used the annotation 
function to annotate the peaks with the two nearest genes, 
resulting in a groups-by-peaks Anndata object. We identified 
regions of the genome that were differentially bound by Brd4 
by performing Fisher’s exact tests and used the volcano_plot 
function to visualize the differentially bound peaks (Fig. 4a). 
Interestingly, we found that across the genome females were 
more likely to have a differentially bound peaks with 
increased Brd4 binding relative to male samples. We next 
compared the CC data to bulk RNA-seq data for males and 
females, which were collected in triplicate. Using the 
pair_peak_gene function, we compared the expression of 
genes near differentially bound peaks in Fig. 4b. We found 
that if a peak displays more Brd4 binding in one sex, then the 
gene expression of the nearby genes are more differentially 
expressed in that sex (P-value <.001), and this effect is stron
ger for the gene closest to the enhancer (first two rows) than 
for the second closest gene (third and fourth rows). Next, we 
used DEseq2 to find genes that are differentially expressed in 

males and females to find genes that have significant differen
ces in both Brd4 binding and gene expression. The top genes 
are shown in Fig. 4c. We then plotted the relative Brd4 bind
ing in males and females at each of these loci (Fig. 4d–g). 
Brd4 directed CC insertions into female cells are colored red 
and insertions into male cells are colored blue. We found that 
Sema3a, Adam19, and Zic1 all have significantly more Brd4 
binding (and RNA expression levels) in female cells than in 
male cells (see Fig. 4d–f). All of these genes are associated 
with poor outcomes in GBM (Salero et al. 2001, Vadasz et al. 
2018, Angelucci et al. 2019), and suggest that these genes 
may represent sex-specific therapeutic targets. In contrast, we 
observe more Brd4 binding near Nkx2-1 (also known as 
TTF1) and higher expression of this gene in male GBM cells, 
Nkx2-1 has been reported to promote metastasis and its ex
pression is associated with a molecular subtype of IDH- 
wildtype GBM (Prok and Prayson 2006, Wildeboer et al. 
2006, Han et al. 2021, Suwala et al. 2021), which has a poor 
prognosis. Thus, Brd4 binding at Nkx2-1 may contribute to 
the disproportionately poor outcomes observed in male 
patients relative to female patients (see Fig. 4g).

We can also examine the sequence of the peaks to try to 
predict from their motifs the TFs driving the sex differences 
in Brd4 binding (and thus gene expression). Fisher exact test 
is used for differential peaks analysis; female and male sam
ples are selected and motifs are called separately to identify 
significantly bound motifs in each sex (see sub). Four TF fam
ilies, IRF (ISRE, IRF2, IRF3, IRF8, IRF1, IRF4, etc.), ETS 
(GABPA, ETS1, Elf4, ETV1, Elk1, etc.), TEA (TEAD3, 
TEAD, etc.), MADS (Mef2c, Mef2a, CArG), are found in fe
male but not in male CC data. In terms of male samples, the 
HMG (Sox3, Sox10, Sox4, Sox2) family shows an extreme 
difference in motifs from our data (see Supplementary Notes 
and Supplementary Tables S4 and S5).

3 Discussion
Pycallingcards is the first bioinformatics tool to provide a 
comprehensive, efficient, and easy-to-use set of functions for 
the analysis and visualization of CC data. It provides tools to 
integrate CC data with RNA-seq data in order to link geno
mic peaks to the genes they regulate. The application of 
Pycallingcards to CC datasets allows users to rapidly generate 
new hypotheses about the effects of TF binding on gene ex
pression. Thus, Pycallingcards facilitates the analysis and in
terpretation of CC data.

Through the exploration of the mouse cortex data via 
Pycallingcards, we illustrated new hypotheses about genomic 
regions specifying specific cell types and subtypes. Further study 
can be done on the Brd4 regulation of Zbtb20 in mammalian 
neocortical progenitors and postmitotic cells to determine if this 
binding influences cell fate specification. For example, the regu
latory regions that we identified could be targeted using 
enhancer-targeting CRISPR-epigenetic editing to determine their 
roles in astrocytogenesis. Using Calling Cards, Kfoury et al. 
(2021) were able to identify sex differential BRD4-bound en
hancer usage that promotes epithelial-to-mesenchymal transi
tion and cancer stem cell proliferation in males. By integrating 
bulk RNA-seq data with Pycallingcards, sex-specific BRD4 
Calling Cards peak regions were associated with the target 
genes. Additionally, differential motifs were identified. This 
data can be used for further investigation into the therapeutic ef
fect of BET inhibitors in different cancer models. Altogether, 
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this demonstrates the utility of Pycallingcards for the facile 
analysis of CC data. Our reanalysis of published data generated 
several novel hypotheses, such as the role of Nfia and Zbtb20 
binding at the Pou3f2 enhancer in astrocytogenesis, novel bind
ing of Tye7p upon gcr2 knockout, and novel TF families that 
may be involved in sex difference in GBM that were not identi
fied in the original publications (see Supplementary Notes and 
Supplementary Table S6). Furthermore, these analyses could be 
completed in one integrated environment, greatly simplify
ing workflow.

There are two limitations to the current work. First, as this 
is meant to be tutorial and description of this new package, 
we did not conduct extensive biological validation of predic
tions made here. Those studies will be better suited to other 
formats. Second, we presented here only nonparametric 
methods for differential peak analysis (binomial testing). 
Future studies will need to investigate the distributions of CC 
data and the assumptions of parametric approaches to deter
mine if these may further improve the sensitivity and specific
ity of detecting differential insertion sites. Nonetheless, given 

Figure 4. Application of Pycallingcards to bulk glioblastoma CC data. (a) Volcano plot for female and male peaks. The dots on the left-hand side indicate 
peaks with more Brd4 binding in females and the dots on the right hand display more Brd4 binding in males. The x-axis is the log fold change and the y- 
axis is the log P-value. (b) Heatmap for calling cards and RNA-seq expression. The first two lines plot the relative Brd4 binding in males and females at 
differentially bound peaks. The following lines display the relative gene expression of the nearest (first six rows) and next-nearest (second six rows) 
genes. (c) Dot plot of selected calling cards gene pairs. (d–f) Peaks near gene Sema3a, Adam19, and Zic1. Red symbols and density plots represent Brd4 
insertions and insertion density in females, whereas gray symbols and plots represent Brd4 binding in males. (g) Peaks near gene Nkx2-1. Blue symbols 
and density plots represent Brd4 insertions and insertion density in males, whereas gray symbols and plots represent Brd4 binding in females.
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the flexibility of the python framework, future methods 
should be readily incorporated into the package, which will 
be maintained at the Github (https://github.com/The-Mitra- 
Lab/pycallingcards).

Finally, because Pycallingcards integrates with Scanpy and 
the Python data science environment, there is now the poten
tial to leverage the multitude of python-based deep learning 
APIs to create novel methods for the analysis of multi-omics 
biological data. Additionally, as more CC data are produced, 
we will better understand the distributions of CC data and 
the variance among samples and cells, allowing for better 
null models and more accurate statistical analyses for differ
ential peak calling. In the future, CC might also be able to 
combine with other single cell genomic measurements, such 
as ATAC-seq, spatial RNA-seq, and single cell HiC. 
Pycallingcards provides a foundation upon which future ana
lytical packages can build for all of these technologies and 
enables the efficient downstream analysis of all types of 
CC data.

4 Material and methods
Detailed methods are provided in the Supplementary 
Information. Tutorials and example jupyter notebooks are 
available at https://github.com/The-Mitra-Lab/pycallingcards.
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