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Efficient encoding of large antigenic spaces
by epitope prioritization with Dolphyn

Anna-Maria Liebhoff 1,2, Thiagarajan Venkataraman2,
William R. Morgenlander 2, Miso Na 2, Tomasz Kula 3,4, Kathleen Waugh5,
Charles Morrison6, Marian Rewers 5, Randy Longman7, June Round 8,
Stephen Elledge 3,4, Ingo Ruczinski9, Ben Langmead1 &
H. Benjamin Larman 2

We investigate a relatively underexplored component of the gut-immune axis
by profiling the antibody response to gut phages using Phage Immunopreci-
pitation Sequencing (PhIP-Seq). To cover large antigenic spaces, we develop
Dolphyn, amethod that usesmachine learning to select peptides from protein
sets and compresses the proteome through epitope-stitching. Dolphyn com-
presses the size of a peptide library by 78% compared to traditional tiling,
increasing the antibody-reactive peptides from 10% to 31%. We find that the
immune system develops antibodies to human gut bacteria-infecting viruses,
particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries
designedwith Dolphyn enable the assessment of a wider range of proteins in a
single experiment, thus facilitating the study of the gut-immune axis.

The human gut microbiome is a critical determinant of human health.
However, themechanismsunderlying the interactions between thehost
and the diverse microorganisms in the gut, including bacteria, fungi,
phages, archaea, and other members of the microbiota, remain largely
unknown. Gut phages, which infect bacteria in the gut, are increasingly
recognized as important contributors to the host-microbe-immune
axis. These bacterial viruses have been described as the “puppet mas-
ters” of gut bacteria1. The immune system, which defends against for-
eign invaders and protects tissue homeostasis, plays a major role in gut
related health. Host antibodies may, for instance, directly impact the
composition of the bacterial population in the gut by neutralizing
specific gut phages. Recent data2 support the presence of immune
responses to gut phages, along with the importance of anti-gut phage
antibodies in inflammatory bowel disease3. However, exhaustively
characterizing the immune response to gut phages requires testing a
very large number of potential antigenic targets. Camarillo-Guerrero

et al., recently published a database of gut phage sequences, most of
which have not been previously described1. Though it is smaller than
that of gut bacteria, the gut phage metaproteome is still too vast to be
represented via oligonucleotide library synthesis.

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a technique
for profiling the reactivity of an individual’s antibody repertoire to a
wide range of antigens. Previous publications demonstrate the con-
cordance between PhIP-Seq data and peptide ELISA data4,5. This tech-
nique involves designing peptides that tile across proteins,
synthesizing oligonucleotide libraries that encode the peptides, and
cloning the oligo libraries into a phage display vector. Phage display
and immunoprecipitation are used to test serum samples for antibody
binding to all peptides in parallel, since DNA sequencing is used to
determine the relative abundance of the immunoprecipitated popu-
lation. Reference protein sequences from public databases typically
serveas thebasis for thesephagedisplay libraries that normally consist
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of 56–90 amino acid long peptides. PhIP-Seq libraries have been
designed to span the humanproteome6, common viruses7, allergens8,9,
selected gut bacteria10, and protein toxins11, providing insights into
health and disease.

To date, PhIP-Seq libraries have been designed primarily using
Pepsyn, a software tool that performs uniform peptide tiling across
proteins12. Typically, Pepsyn is used to generate peptides that overlap
by half the tile size, in order to prevent disrupting epitopes. This
approach results in roughly 2× coverage of the input proteome.
Representing the gut phage proteome in this manner would be
intractable, which motivated us to develop a newmethod for creating
more efficient representations of large antigenic spaces.

We reasoned that an efficient peptide library would selectively
include antibody epitopes that tend to be targeted by the human
immune system (public epitopes). Since the study of gut phages
remains underdeveloped, their proteins are largely absent from data-
bases such as the Immune Epitope Database13. However, it has been
recently reported that public epitopes tend to contain amino acid
sequence features that are important for interactions with germline-
encoded antibody domains14. This suggests the potential to identify
peptide sequences that are more likely to contain public epitopes by
their amino acid composition. Indeed, previous studies15,16 have also
developed models to achieve this goal.

Our compact library design method, named Dolphyn, employs
two components. The first is a binary machine-learning classifier of 15

amino acid peptides that was trained on our large public epitope
reactivity database. The second component is a new strategy for
combining multiple regions of a protein into one peptide, for simul-
taneous testing within a single synthesized oligo. To demonstrate its
utility, we used Dolphyn to create a PhIP-Seq peptide library and
profiled gut phage proteome antibodies of healthy individuals.

Results
Tiling peptide libraries tend to contain only a small proportion of
reactive peptides. Figure 1A shows the proportion of reactive peptides,
with the highest proportion (15.4% per 100 individuals) found in the
VirScan library7. The low fraction of reactive peptides, even in libraries
dominated by human pathogens, highlights that new library designs
could be made significantly more efficient.

We propose a new method for designing PhIP-Seq libraries for
proteomes that are too large to tile exhaustively with Pepsyn. Our
method effectively compresses the PhIP-Seq library to a practical size,
while minimizing lost sensitivity to detect protein-level reactivity.

In the following subsections, we analyze epitope characteristics,
with a particular emphasis on epitope length and predictive patterns.
We then formulate a binary classifier to predict presence of epitopes
within 15-amino acid peptides. Next, we introduce the Dolphyn algo-
rithm, which efficiently compresses large sets of proteins into concise
peptide libraries. To validate the algorithm, we compare a conven-
tional library design with one produced by Dolphyn. Finally, we
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Fig. 1 | Antibody epitope analysis using programmable phage display of pep-
tide libraries. A Complexity and reactivity of previously published peptide
libraries. Bars show number of peptides included in each library and the percen-
tage of peptides that are reactive in at least 1% of samples from the Vaccine
ResearchCenter (VRC) cohort.BThe Public EpitopeData Set includes a k-mer scan
and an alanine scan of 544 virus-derived 56 amino acid long immunodominant
peptides in 59 individuals (425 samples). The k-mer scan consists of k = 15–45
amino-acid-long sub-peptides of the wildtypes, starting every 5 amino acids. The
alanine scan consists ofmodified versions of thewildtype peptidewhere triplets of

amino acids were replaced with three alanines. Wildtype alanines are replaced by
glycines. C Compilation of alanine scans from reactive peptides and individuals.
Each gray line is the difference of the alanine peptide at that position to the
wildtype reactivity in one individual. Only lines indicating a single epitope were
included and shifted to the center. Blue line indicates median. D Summarized
k-mer scans. A peptide is considered reactive if more than one percent of samples
react to it. The Training Set indicates those peptides used in the prediction model
introduced in Fig. 2. | Source data are provided as a Source Data file.
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construct and evaluate a pilot library encompassing gut phage pro-
teins, employing and comparing the traditional and novel library
design methods.

Epitopes contained in reactive peptides
To identify biochemical features associated with public epitopes, we
selected highly immunogenic peptides (wildtype) for examination in a
cohort of 59 individuals (425 samples). The resulting Public Epitope
Data Set elucidates the fine specificities of antibody epitope selection
using two types of sub-peptides, the alanine scan and the k-mer scan
(Methods and Fig. 1B, data available).

The alanine scan library of peptides contains a series of peptides
identical to each of the native peptide sequence but with triple alanine
substitutions scanning from N- to C-terminus of each peptide. Triple
alanine substitutions can interrupt antibody binding and thus reveal

the precise determinants of an epitope within a longer peptide
sequence. Figure 1C normalizes, centers, and overlays this information
for all individuals with reactivity to a native public epitope. 80% of the
mean reactivity curve spans 14 amino acid positions, suggesting that
most linear public epitopes can be captured by peptides of this length.

Figure 1Dpresents the results of the k-mer scan to assess reactivity
for various peptide lengths. The k-mer scan considers sub-peptides of
varying lengths (k = 15–45 amino acids) derived from the wildtype
sequence. They are tiled in steps of five amino acids along the
sequence. As expected, the number of non-reactive peptides increased
with shorter peptide lengths. Wildtype peptides that are reactive may
contain one or more epitopes, whereas the shorter sub-peptides
derived from the wildtype peptides are likely to contain only one
epitope. Shorter peptides are also unlikely to contain many excess
amino acids outsideof a reactive epitope, as compared to the 56amino
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Fig. 2 | Binary classification of 15-mer peptides containing an epitope. A ROC
curves for random test and training sets and random forest out-of-bag (OOB) set.
5% of the training data was split off as a test set, with no overlap of wildtypes
between the sets. B Various peptide features were used in a random forest model,
such as the frequency of natural and DIAMOND encoded amino acids (AA) and AA-
pairs, and AA-side chain properties; 556 features were included in total. C Top nine
most important features in random forest model. The x-axis indicates the fre-
quency of the AA sequence feature (max 15/15) and the y-axis shows the proportion
and standard error of reactive peptides in individuals in the VRCcohort. The dotted

line indicates the reactivity ratio of all 3456 peptides in the dataset. The number
indicates the mean decrease in impurity, an importance score of a feature. D ROC
curves on 2263 independent 56-mer Epstein-Barr virus (EBV) peptides, 945 rhino-
virus peptides and 4016 human cytomegalovirus (CMV) peptides, tested on the
VRC cohort. E ROC curve of 15-mer peptides in an Enterovirus peptide library,
tested on the DAISY cohort, for random forest and BepiPred-3.0 predictions.
A,D, ETPR/FPR is true/false positive rate, respectively.| Sourcedata are provided as
a Source Data file.
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acid long peptides. 15-mer peptideswere therefore selected to serve as
a dataset for training a binary classifier to predict whether or not a
peptide includes an epitope.

Binary classification of epitope peptides
We trained a random forest classifier using peptides that are reactive in
many individuals and an equally sized set of peptides that are not
reactive in the Public Epitope Data Set cohort. Our model and training
data are freely available on GitHub.We providemodels for peptides of
amino acid lengths 15–45.

Figure 2A shows that our classifier fits the data well (Area under
the ROCCurve (AUC) 0.99 on the whole dataset, training set was 95%),
with the test-set (5%) AUCof 0.67. The higher out-of-bagAUCof0.76 is
likely due to existing peptide sequence similarity in the training data,
while the test set was selected to avoid sequence similarity to better
measure generalized prediction capability.

The 556 features used for themodel (Fig. 2B) included frequencies
of amino acids, amino acid pairs, as well as frequencies of classes of
amino acids defined by the DIAMOND alphabet reduction17 and side-
chain type. We found that amino acid frequencies were informative
regardless of whether the model included their positions along the
peptide. Furthermore, we explored using protein structures predicted
by BepiPred-2.018 and RePROF19 as features in our model. Including
these models provided insufficient enhancement of classification
performance to justify the additional computational costs associated
with extracting and incorporating these features.

We discovered the most important features in predicting if a 15-
mer contained an epitope to be the amino-acid side-chain

frequencies. All four side-chain types were among the nine most
important features (Fig. 2C). The number of positively charged amino
acids in the peptide was most crucial. For instance, Fig. 2C illustrates
that if a 15-mer peptide contains between 5 to 8 amino acids with a
positively charged side chain, it has a higher likelihood of containing
an epitope.

The frequency of amino acids in the DIAMOND serine group
(including threonine and alanine) is themost important feature. Lysine
(K) frequency is also important, as is its DIAMOND group (including
arginine, glutamic acid, aspartic acid, glutamine and asparagine), and
K-DIAMOND pairs. Interestingly, a recent study also found lysine to be
an important feature of epitopes. A germline encoded feature of
antibodies called the “GRAB” motif was described as playing an
important role in recognizing public epitopes14. In humans, these
epitopes enrich lysines on their borders if recognized by antibodies
using a lambda light chain.

To assess performance on an independent dataset, we collected a
set of Epstein-Barr virus (EBV) peptides, rhinovirus peptides and
human cytomegalovirus peptides that hadbeenpreviously screened in
the VirScan study by Xuet al.7. Given the high prevalence of rhinovirus,
cytomegalovirus and EBV infection worldwide20, these datasets pro-
vided valuable ground-truth for evaluating the presence of epitopes in
these peptides. Since the VirScan peptides are 56 amino acids long,
whereas our random forest model was trained on 15-mers, we eval-
uated all possible 15-mers within the 56-mer peptides and used their
mean to generate the ROC curve shown in Fig. 2D. Despite the
necessary transformation to adopt the random forest model, it pre-
dicted antibody epitopes of EBV peptides with an AUC of 0.68.
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We then used the random forest model to predict epitopes from
seven Enterovirus strains and selected 757 peptides with low and high
probability. For evaluating antibody binding to these peptides with 55
human samples,we defined a peptide as reactive if at least one of these
demonstrated reactivity. The ROC curve (AUC=0.7) is shown in
Fig. 2E, confirming that the model can distinguish epitope-containing
peptides from non-reactive peptides based on amino acid composi-
tion. For the sake of comparison with an independent epitope pre-
diction tool, we also determined the average BepiPred-3.0 score15 for
the probability of a 15-mer containing an epitope. Depending on the
amount of data given to the algorithm as input, the resulting ROC
curves have an AUC ranging from 0.54 to 0.74. The lower score is
based on the same input data that is used for the random forest; the
higher score results from having the surrounding protein sequence
inform the prediction. These results indicate that other algorithms
may be comparable in performance but would likely involve further
adaptation for use in our specific application.

Dolphyn: a novel algorithm for peptide library design
Simple tiling methods like Pepsyn6 divide a protein into peptides of
equal length with some overlap (Fig. 3A). This approach has been used
to design libraries shown in Fig. 1A, which wastes resources on syn-
thesizing, cloning, and sequencing peptides that have a very low
probability to be targeted by antibodies. To improve library efficiency,
we developed an algorithm called Dolphyn that selects and combines
peptides that have a higher probability of eliciting antibody reactivity.

Dolphyn predicts whether each 15-amino-acid sub-peptide (15-
mer) of a protein contains an epitope using the random forest model
described above (Fig. 2). For each protein, depending on its length,
Dolphyn selects a multiple of three non-overlapping 15-mers with the
highest epitope probability (Supplementary Fig. S1). 15-mers are
selected if their probability of containing an epitope is greater than0.5.
Then, sets of three 15-mers are combined using Dolphyn’s stitching
step and separated via a flexible and inert linker sequence GGGGS (see
Supplementary Fig. S2 for evaluation of different linkers). A pseudo-
code description of this algorithm is given in Box 1.

Since the goal of Dolphyn is to represent a smaller, more reactive
portion of the original proteome, some epitopes may be missed,
especially when there are multiple epitopes located at overlapping
positions, or when there are fewer than three epitopes predicted on a
protein. Furthermore, because Dolphyn stitches together peptides
from different locations across a protein, reactivity data must be
interpreted at the protein level.

Dolphyn is available as a modular Python package, with para-
meters controlling epitope peptide length, the linker sequence, the
probability cutoff, the training data for the classifier, and the
classifier itself (Fig. 3B). For example, users can replace the classi-
fier with Immune Epitope Database epitopes or their own
classifiers.

To evaluate the efficiency of Dolphyn and Pepsyn libraries based
on cost-effectiveness, we accumulated the number of reactivities
detected per new peptide added to the library (Fig. 3C). In order to

BOX 1

Dolphyn algorithm pseudo code

for each protein_sequence:

//PREDICTION STEP

for each 15mer in 15-amino-acid-sub-peptide:

probabilities[15mer] = contains_epitope(15mer) // C1

threshold = 0.5

epitope_15mers = select_non_overlapping(probabilities > threshold) // C2

//STITCHING STEP

np = number_of_peptides = length(epitope_15mers) / 3 // C3

linker_seq = GGGGS // C4

for i in 0 to number_of_peptides:

library_peptide[i] = epitope_15mers[i] + linker_seq +
epitope_15mers[i+ np] + linker_seq +
epitope_15mers[i+ (np*2)] + stop_codon //C5

//COMMENTS

C1: with random forest model, trained on public epitope dataset (Fig. 2)

C2: epitope_15mers ordered by probability

C3: if 2 or less epitopes predicted: no library peptide made,

for 3-5 epitopes -> one peptide, for 6-8 epitopes -> two peptides, etc

C4: see Supplementary Fig S2 for evaluation of different linkers

C5: this puts highest probability 15mer on 1st position of 1st peptide and 2nd highest probability on 1st position of 2nd

peptide etc

Supplementary Fig. S1 provides an illustration and further explanation.
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detect the same number of immune responses as a Dolphyn library, a
Pepsyn library requires about three times the number of peptides.

Compressing the gut phage database for antibody profiling
Camarillo-Guerrero et al.1 constructed the Gut Phage Database, which
contains 142,810 phage genomes derived from metagenomic analysis
of stool samples. Roughly one third are marked High Quality and 5%
were detected in samples from individuals marked as North American
(Fig. 3D). The Gut Phage Database also contains reference amino acid
sequences for phage proteins. The authors clustered all proteins at a
95% similarity threshold, resulting in a number of clusters equal to 4%
the number of proteins, indicating that the Gut Phage Database con-
tains many homologous proteins.

We used the Gut Phage Database reference to design a phage
display library for antibody profiling and evaluating Dolphyn. We
considered only high-quality phages that appeared in at least one
North American individual, leaving 84,000 protein clusters. A Pepsyn-
designed library that tiles these clusters would contain over 480,000
56 amino acid long peptides, whereas a Dolphyn designed library
requires only about 100,000 peptides each comprised of three 15-
mers separated by G4S linkers (Table 1).

To compare Pepsyn versus Dolphyn library performance, we
created a pilot library by selecting the 112 phages detected in 50 or
more North Americans. We selected one representative from each
protein cluster present in these phages. Using Pepsyn’s standard tiling
strategy, these proteins are covered 1.77 times using 23,745 56-mers
(with 28 amino acid overlaps), whereas Dolphyn covers a third of the
proteome, using 5266 56-mers (Table 1). Dolphyn therefore com-
presses these phage proteomes by nearly five-fold over the traditional
approach. In the design of the full gut phage database proteome
library, we observe a similar compression.

Figure 3E presents the protein composition of 12 selected phages
from the pilot library. Heatmap colors represent the number of pep-
tides in the library for each protein. Many proteins are shared across
phages, and phages within Gut Phage Database-defined phage clusters
share most proteins. Dolphyn omits some of the smaller proteins
where the number of potential epitopes required for efficient sketch-
ing is less than three. Consequently, theseproteins are not represented
in a Dolphyn-designed library, which is one limitation of imposing a
required minimum of 3 peptides per protein.

Effect of stitching on antibody detection sensitivity
Dolphyn creates stitched peptides by combining potential epitopes
from the same protein. Specifically, we used the 15-mer with the highest
probability determined by the random forest classifier at the first posi-
tion, followed by the second and third highest probabilities at positions
twoand three, respectively. In largerproteins that required compression

onto multiple peptides, Dolphyn distributes the highest probability
epitopes over the first positions of each stitched peptide so as to max-
imize the total number of independently reactive peptides per protein.

Our pilot library includes both individual 15-mers and their cor-
responding stitched versions. Figure 4A shows reactivity data from
these peptide sets for four representative samples, where two ormore
peptideswere reactive.Weobserve thatonlyone individual 15-merwas
typically reactive, with a preference for the higher probability epitopes
(Fig. 4B). The log fold change values for the stitched version were
similar to those of the reactive individual 15-mer (Fig. 4A), indicating
effective representation of the epitope. Supplementary Fig. S4 shows
all the reactive peptides for one representative sample in the same
style as Fig. 4A. Supplementary Fig. S5 indicates how the stitched
peptides were validated by the individual epitope library.

Reactivity of Dolphyn libraries
Weprofiled plasma samples from 51 healthy individuals using the three
pilot sub-libraries. The Dolphyn library contained a three times higher
ratioof reactive peptides (log(hfc) > 0 in at least one sample) compared
to the Pepsyn library, in which 90% of the peptides were found to be
non-reactive (Fig. 4C). Individual predicted epitopes displayed only a
slightly higher ratio of reactive peptides compared to Pepsyn. How-
ever, it should be noted that these peptides are only 15 amino acids
long versus the 56 amino acid long Pepsyn peptides and would there-
fore be expected to harbor fewer public epitopes if randomly selected.

Immune response of healthy individuals to gut phages
We then explored the immune response to gut phages in the 51 healthy
individuals (Fig. 4D). Using a Phage Aggregate Reactivity score
(PhARscore, Methods), we detected antibody reactivity to a cluster
(PC_4) of phages in most individuals. Phages in this cluster have a Gut
Phage Database-predicted taxon belonging to theMyoviridae phylum.
The predicted phage hosts in this cluster are primarily Proteobacteria,
especially E. coli.

As the Gut Phage Database does not provide predictions of phage
taxonomy or host for all phages, we used BLAST to add annotations to
the phage genomes. The Blast E. coli heatmap annotation indicates
phages with genomes that had an alignment to an E. coli reference in
the NCBI nt database. These alignments largely correspond to
prophage sequences that have integrated into their host bacterium.

Dolphyn libraries recover observations made with Pepsyn
We confirmed that E. coli phages and Myoviridae-annotated phages eli-
cited a stronger immune response compared to other phages via Wil-
coxon test. The mean PhARscore (Methods) for each phage across all
samples is significantly higher in all three annotations for both library
designs (Fig. 5A). We noted that the few highly prevalent phages appear
to elicit an immune response more commonly across all samples in our
cohort, which includes only North American individuals (Fig. 5B).

We investigated what protein level targets drive the immune
response to the highly reactive phage cluster in healthy individuals.
Figure 5Cdisplays thenumberof reactivepeptides in theproteins of the
four most reactive phages in five individuals with the most robust
antibody responses according to their PhARscores. We observe that
some proteins are detected by several individuals’ antibodies, but
overall, the individuals exhibited distinct immune response profiles.
The proteins are ordered by size, and a higher number of reactive
peptides is expected andobserved for larger proteins (towards the left).

Dolphyn-designed libraries demonstrate similar discovery power
(accuracy) for identifying protein antibody targets in 53 individuals, as
shown in Fig. 5D. Dolphyn peptides only recall about a third of the
proteins (131) that are reactive in Pepsyn (469) partially because Dol-
phyn does not include some proteins. However, Dolphyn detected
several protein targets (79) thatwerenot reactive in the Pepsyn library,
potentially due to multiple independent epitopes being

Table 1 | Peptide library design statistics for Gut Phage Data-
base protein sets

Pilot Library North American
Phageome

Phages 112 7614

Proteins 8023 588,783

Protein clusters 3354 84,306

Amino acid length of representative
proteins concatenated

750,776 15,637,136

Pepsyn tiles 23,745 484,761

Dolphyn tiles 5266 106,762

Pepsyn coverage 1.77 1.74

Dolphyn coverage 0.32 0.31

Compression ratio (Dolphyn/Pepsyn) 0.22 0.22

The Pilot Library was synthesized and evaluated in this study.
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simultaneously bound by a combination of weak antibody interac-
tions.When including these reactive proteins as ground truth,Dolphyn
achieves higher performance (Supplementary Fig. S3).

The pilot phage library designed with Pepsyn produced several
key observations that were recapitulated by the Dolphyn library. The
Principal Component Analysis shown in Fig. 5E is based on sample
PhARscores. Color is used in the plot to highlight phage attributes. The
rightmost plots show the four identified phage clusters of the heat-
map, initially found using the Pepsyn-designed library (Fig. 4D). We
observed that the Dolphyn-designed library preserved the same clus-
tering for our cohort.

Discussion
Here we introduce the Dolphyn algorithm for efficiently converting
large antigenic spaces into tractable peptide libraries for antibody
profiling applications. The algorithm reduces the number of peptides

in a library for a given proteomeby 78%. Conversely, Dolphyn peptides
are roughly three times as likely to be reactive, versus peptides from
uniformly tiled proteins. Dolphyn peptides recall 29% of the gut phage
proteins that exhibited reactivity with Pepsyn designed peptide tiles.
Some of the lost recall is attributed to Dolphyn’s exclusion of specific
proteins from its representation (e.g. proteins with fewer than three
predicted epitopes).

Dolphyn employs a random forest model to select peptides pre-
dicted to contain an epitope based on their amino acid content.
Training themodel onpublic epitopes,wediscovered that themajority
of public linear epitopes span about 15 amino acids and that side-chain
information appears to be themost influential factor for distinguishing
peptides with and without epitopes. We apply this principle to com-
pression of synthetic antigenic spaces. However, our epitope predic-
tion model could also be used in vaccine research or other
immunobiology applications. In the future, it will be important to
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investigate whether using outputs frommore complex algorithms like
Alphafold221 can improve predictions. The Dolphyn pipeline is set up
to accept new models.

The algorithm’s stitching step combines three potential epitopes
into one library peptide. While the prediction model enables the
prioritization of protein regions during compression, the stitching
step notably enhances peptide reactivity.

Our algorithm is aimed at maximizing detection efficiency of
immune responses to very large protein sets. We have focused in
this study on identifying features of linear public epitopes, which
would require the fewest number of peptides to detect the greatest
number of individual immune responses. Notably, including private
epitopes would by definition detect only very few individual
responders per library member. It is important to note that features
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predictive of private epitope selection may be similar or entirely
different.

Additionally, it should be acknowledged that anti-T7 phage anti-
bodies, if present, might introduce background noise to assay results.
To enhance the sensitivity of future assays, we recommend consider-
ing the incorporation of a PCR spike-in control, which could facilitate
the detection and quantification of this library-wide background noise.

The trade-off for a compressed library design is reduced antibody
binding resolution. Utilizing Dolphyn libraries, we explored general
antibody reactivity to proteins or species rather than identifying spe-
cific epitopes. In case an investigator prefers to maximize sensitivity
and mappability at the expense of encoding efficiency, an enhanced
tiling approach can be employed, as recently demonstrated by Na22,
which targets small and tractable antigenic spaces, for example a
reduced set of viral species.

Using phage display libraries designed with Pepsyn and Dolphyn,
we studied the immune response of healthy individuals to gut phage.
We found that the majority of individuals showed reactivity to E. coli-
infecting Myoviridae. Both libraries captured this relationship. It
remains to bedeterminedwhether these antibodies are functional (e.g.
enhancing or neutralizing), and what sorts of health-related pheno-
types, if any, associate with these immune responses.

In short, Dolphyn libraries require much fewer peptides to reveal
key patterns in antibody reactivity, giving it an advantage over libraries
that contain regularly spaced overlapping peptides. Themodularity of
Dolphyn, such as the interchangeability of the epitope prediction
module, further highlights its potential for future applications in
peptide library design for the immunological study of large pro-
teomes, such as the entire gut, skin, or lung microbiome.

Methods
We confirm that our research complies with all relevant ethical reg-
ulations.We used data and serum samples frompreviously established
cohorts and studies that were approved by the Vaccine Research
Center (VRC)/National Institutes ofAllergy and InfectiousDiseases, the
Institutional Review Board of Johns Hopkins University and The Col-
orado Multiple Institutional Review Board. All samples were obtained
under informed consent.

Peptide libraries and cohorts
Public epitope library (for the study of the nature of epitopes and
training the random forest classifier). This T7 bacteriophage display
library contains 357 56 amino acid longwildtype peptides that showed
frequent antibody reactivity (public epitope peptides) in a previous
VirScan study7. Within each of these wildtype peptides, a series of
shorter peptides of length 15, 20, 25, 30, 35, 40 and 45 amino acids
were designed to tile across the original 56 amino acid peptide in steps
of 5 amino acids (Fig. 1B). In addition, each of the wildtype peptides
was subject to triple alanine mutation scanning, including peptides
identical to each of the native peptide sequence but with triple alanine
substitutions scanning from N- to C-terminus of each peptide. This
library contains 46,070 peptides, and has also been used by Shrock
et al.14 with a different cohort. The amino acid sequences are available
as row names within the Public Epitope Data Set file hfc_pubEpito-
pes.csv on Zenodo.

Gut phage database - phageome pilot library (for evaluating the
performance and demonstrating the utility of the Dolphyn algo-
rithm). This library contains 48,128 peptides that are 56 amino acids
long and is divided in three subsets of peptides, representing the same
112 prevalent phages in 3354 protein cluster representatives:

1) 19,117 peptides (length = 15 amino acids) that are likely to con-
tain an epitope based on the random forest predictions (value > 0.5).
These encoding oligonucleotides are padded on the 5’ end to make
them the same length as the other two peptide libraries (56 amino

acids), with three stop codons and a random sequence generated with
a pseudo-randomgenerator, i.e. the Python random.choice() function.

2) 5266 peptides designed with the Dolphyn algorithm. 15-mer
epitope peptides are grouped if they are present together on more
than one protein. A Dolphyn peptide is created for every three epitope
15-mers, that are available per protein group. The 15-mer having the
highest-probability epitope goes first, then a GGGGS linker, then the
15-mer having the second highest probability, then a GGGGS linker,
then the 15-mer having the third highest probability, then a stop
codon, creating a peptide of 56 amino acid length. If two or more
Dolphyn peptides are created per protein set, the second highest
probability 15-mer gets the first position on the second peptide and all
other epitopes are ranked and positioned accordingly.

3) 23,745 Pepsyn peptides created by tiling the protein sequence
with 56 amino acid long peptides and overlapping by 28 amino acids. If
the protein length is not amultiple of 28, a full 56-mer is created at the
C-terminus of the protein, potentially overlappingmore than 28 amino
acids of the previous tile.

All three sub-libraries were reverse translated with the Python
Pepsyn package’s revtrans command to obtain 168 nucleotides long
oligonucleotides. A 16 nucleotides long prefix (AGGAATTCCGCTG
CGT) and suffix (ATGGTCACAGCTGTGC) were added to each oligo for
PCR amplification, making the oligonucleotides 200-nt long. Sequen-
ces of oligonucleotides for all three sub-libraries are available in thefile
PhageScan_PeptideAnno.tsv on GitHub. The oligonucleotide library
was synthesized by Twist Bioscience (San Francisco, CA).

Enterovirus sublibrary (for evaluating the prediction performance
of the random forest classifier). This library contains 1514 peptides
derived from seven reference enterovirus sequences. The sequences
were selected using the cd-hit tool to represent each species of
Enterovirus A, B, C, D and Rhinovirus A, B, C. Based on the selected
sequences, we designed two sets of peptides using Dolphyn and
Pepsyn algorithms. A first set of peptides consists of 757 epitope
peptides with a length of 15 amino acids were selected using the ran-
dom forest scoring method. An identical second set was generated by
adding a stop codon to the C-terminus of the first set of epitope
peptides.

To convert the designed amino acid peptides to oligonucleotide
sequences of uniform length, the Pepsyn algorithmwas employed. The
function ‘revtrans’ reverse-translated the amino acids sequences into
DNA sequences by randomly choosing codons based on the E.coli
codon usage table, with a frequency threshold of 0.1. Since the
designed peptides varied in length, they were padded to a length of
120nt with a linker sequence, GCAAGTCCTGCAGCTCCAGCCCCT
GCAAGCCCAGCAGCTCCAGCACCAAGTGCACCTGCTGGCGGAGGAG
GTTCTGGCGGGGGCGGGAGC. Prefix AGGAATTCCGCTGCGT and
suffix GTCGTGACTGGGAAAC were added for cloning purposes. Pep-
syn’s ‘recodesite’ command was used to eliminate all EcoRI (GAATTC)
and HindIII (AAGCTT) sites in the oligonucleotide sequences, as they
were used to clone the library inserts into the T7 vector. Sequences of
oligonucleotides for all three sub-libraries are available in the file
EnteroEpitopes.csv on GitHub. The oligonucleotide library was syn-
thesized by GenScript Biotech (Piscataway, NJ) using their oligonu-
cleotide library synthesis platform.

Enterovirus (EV) library screening cohort (usedwith the Enterovirus
sublibrary for evaluating random forest prediction performance).
The Diabetes Autoimmunity Study in the Young (DAISY) (clinical-
trials.gov identifier: NCT03205865) is a longitudinal study of children
at high risk for development of Type 1 Diabetes (T1D) due to genetic
markers or family history. The cohort comprises approximately 7%
African American, 30% Hispanic, and 63% non-Hispanic white, with the
remaining participants being of biracial or other ethnicity. The study
follows participants from birth, collecting blood samples annually for
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autoantibody testing and other biological samples for future analysis.
If T1D-related autoantibodies are found, the subjects are closely
monitored for the onset of the disease. The DAISY cohort was recrui-
ted between 1993 and 2004, and follow-up data is available until
February 201823. To conduct a PhIP-Seq screen with the Enterovirus
sublibrary, a total of 55 patient samples were selected from a subset
of six subjects, consisting of three T1D positive and three T1D
negative individuals, three male and three female, aging 0-7 years.
Othermeta-data, such as sex/gender and age, were not provided to the
study team.

Vaccine Research Center (VRC) cohort (used with the Gut Phage
DatabasePhageomePilot Library, andpreviouslywithVirScan (EBV
results)). The Vaccine Research Center (VRC) cohort has been descri-
bed previously24 and is comprised of 801 healthy community volun-
teers in the greater Baltimore/Washington DC area recruited for
research studies. Of the 801 individuals, 535 are of European genetic
ancestry, 194 of African genetic ancestry, 32 of Asian genetic ancestry
and 40 belonging to other ancestral groups. The VRC cohort included
446men, 351 women and 4 unknown. Their ages ranged from 18 to 70
years, with an average of 35.79 years. VirScanwas performed on all 801
VRC subjects. A subset of 50 subjects were selected for a PhIP-Seq
screen with the Gut Phage Database pilot library set. Of the 50 indivi-
duals, 41 are of European genetic ancestry, 4 of African genetic
ancestry, 4 of Asiangenetic ancestry and 1 belonging to other ancestral
groups. Thegroup consistedof 22men and 28womenbetween ages 18
and 64, with an average age of 39. The study was approved under the
NIAID/NIH protocol “VRC000: Screening Subjects for HIV Vaccine
Research Studies” (NCT00031304).

Public Epitope Data Set cohort (used with the Public Epitope
Library to create the Public Epitope Data Set). 425 plasma samples
(Supplementary Table S1) for public epitope testing were obtained
from the Genital Shedding (GS) Study (Uganda and Zimbabwe;
2001–2009) in 59 women, which evaluated the relationship between
hormonal contraceptive use, genital shedding of HIV, and HIV disease
progression among individuals with known dates of HIV seroconver-
sion, aging 19–37 years25. Antiretroviral treatment was recommended
for study participants with CD4 cell counts below 250 cells/mm3,
consistentwith local treatment guidelines at the time theGS Studywas
performed. Data for CD4 cell count and viral loadwere collected in the
GS Study25 data on the timing of antiretroviral treatment initiation was
obtained by review of clinic records. For the Public Epitope Data Set,
samples were treated independently, as individual antibody responses
change over time.

Statistics & reproducibility. We worked with data and serum samples
from previously published cohorts and studies, for which no statistical
methodwas used to predetermine sample size. No data were excluded
from the analyses, except when stated explicitly for a sub-result. The
exclusions are traceable in the published analyses scripts. Randomly
selected subsets of samples were used from the VRC cohort and the EV
cohort to generate certain datasets. The investigators were blinded
during sample selection and outcome assessment.

Experimental methods
Library construction. Each oligonucleotide pool was resuspended in
ultrapureH2O to a concentration of 10 ng/µl. Afirst roundof 2 cycles of
PCR was performed using 1 ng of library DNA and the primers
GCGCAAATGGGCGGTAGGCGTGAGGAATTCCGCTGCGT (forward)
and GATTAACCCTCACTAAAGGGAAAGCTTGCACAGCTGTGACCAT
(reverse). The PCR product was purified and a second round of 12
cycles of PCR was performed on all recovered PCR product with the
primers CGCAAATGGGCGGTAGGCGTG (forward) and ATTAACCCTC
ACTAAAGGGA (reverse). The amplified DNA was purified using a PCR

purification column, digested with EcoRI and HindIII, gel purified and
ligated with EcoRI/HindIII digested T7FNS2 vector arms according to
the manufacturer’s instructions26. The ligated inserts were packaged
with the T7Select packaging kit (Millipore Sigma, St. Louis, MO) as per
manufacturer’s instructions. An adequate number of packaging reac-
tions to ensure a 100X coverage of the library were set up, pooled and
a pre-amplification phage stock was prepared by the plate amplifica-
tion method. The pre-amplification phage library stock was titered,
mixed with DMSO at a final concentration of 10% and stored at –80 °C
for the long term. A post-amplificationworking stock of the librarywas
prepared for PhIP-Seq, using the liquid amplificationmethod, ensuring
that aminimumplaque formingunits (pfu) of at least a 100X the library
size was used as input. The post-amplification library was titered and a
pfu of 100,000X the size of the library wasmixedwith each sample for
PhIP-Seq.

Phage immunoprecipitation sequencing (PhIP-Seq). PhIP-Seq was
performed as previously described12. Briefly, 0.2 µl of serum sample
was incubated with the phage library overnight at 4 °C. The serum-
phage mixture was then incubated with a mixture of 20 µl magnetic
protein A beads (Invitrogen cat# 10001D) and 20 µl protein G beads
(Invitrogen cat# 10004D) for 4 h to immunocapture serum IgG anti-
bodies and antibody-bound phage. The phage-antibody complexes
captured on the beads were washed to remove unbound phage. After
bead washing, peptide-coding DNA inserts from the phage were PCR
amplified with forward and reverse primers containing dual indexed
adapters suitable for Illumina sequencing. The PCR amplicons were
pooled and subjected to DNA sequencing on an Illumina NextSeq 500
instrument.

Computational methods
Preliminary analysis of PhIP-Seq data. The output from short-read
sequencing of the immunoprecipitated phage libraries underwent
initial processing using the edgeR pipeline as previously described27.
Particularly, sequencing reads of a phage library member were coun-
ted via exact matching of the first 50 peptide coding nucleotides and a
pseudocount was added. The magnitude of reactivity to each library
member relative to mock immunoprecipitations, as defined by a fold
change and associated p-value, was determined using the edgeR
package in R28. Significant reactivity or hits were defined as library
members with counts greater than 15, fold change greater than five,
and p value less than 0.001 (referred to as hit foldchange (hfc)
throughout this manuscript). All other analysis of PhIP-Seq data was
performed subsequent to this initial processing.

Phage aggregate reactivity score (PhARscore). To facilitate inter-
pretation of complex antibody reactivity profiles, we modified the
ARscore algorithm to aggregate antibody reactivity to all peptides that
represent each phage29. The Gut Phage Database contains many
homologous proteins, resulting in peptides that represent multiple
proteins and phages. Phage-association of each peptide was tracked at
every clustering step during the library design. Phage aggregate
reactivity scores (PhARscores) were calculated for each phage repre-
sented by ≥25 peptides in a sublibrary (112 phages in the Pepsyn sub-
library, 88 phages in the dolphyn sublibrary). PhARscores from each
sublibrary were generated separately.

PhARscores for a givenphagewere calculatedbycomparingmean
log2 foldchange of each phage-associated peptide set to distributions
of mean log2 foldchange values of the same number of randomly
drawn peptides from the same sublibrary. This process was then
repeated whereby, in each iteration peptides from strongly reactive
phage (PhARscore >1)were removed from thepool of peptides used to
generate random distributions. This process was performed a max-
imum of seven times or until no new phage met the reactivity
threshold.
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ML training set. The 15-mers of the Public Epitope Data Set serve as
training data. A 15-mer from the Public Epitope Data Set is considered
to be reactive if 2 or more samples have a log(hit-foldchange) >0. For
negative examples, we choose 15-mers with high count on the (empty)
bead samples with no reactivity in any sample, to avoid including
sequences that may not show reactivity due to technical reasons. The
dataset was constructed to have the same number of positive and
negative examples (balanced dataset). The advantage of this dataset is
that many similar training examples (sequences) are contained with
differing labels. When splitting test- and training-set (5/95%), we
ensured that sequences derived from the same wildtype were not
present in both sets.

Random forest classifier. For binary classification of 15 amino acid
long peptides, a Random Forest model (Python scikit-learn package
version 0.24.2 RandomForestClassifier) was trained on 556 features
(Fig. 2D). Default values formodel parameterswere used, including the
number of trees (nestimators = 100) and setting the random_state = 42
for reproducibility.

A random forest model combines several features’ impact. A
particular feature’s importance (impurity based) is measured and can
be extracted from themodel.We report the top 9 features in Fig. 2C. A
higher importance value indicates that the feature is more effective at
distinguishing the two classes. The RandomForestClassifier also pro-
vides out-of-bag scores, summarizing the prediction performance of
the random forest model on out-of-bag samples, which were used
for Fig. 2A.

EBV random forest testing. 2263 Epstein-Barr Virus (EBV) peptides,
945 Rhinovirus peptides and 4016 Human cytomegalovirus (CMV)
(independent 56-mers, Pepsyn design) from the VirScan library were
used to assess our model predictions. 801 samples from the VRC
cohortwere used to establish a ground truth as towhether a peptide is
reactive or not. A positive label (to contain a public epitope) is given
when at least eight members (1%) of the cohort showed reactivity. All
sub-15-mers were evaluated with the Random Forest classifier. The
mean probability of all 15-mers in the 56-mer determines the prob-
ability score for the peptide, from which the ROC curve in Fig. 2B was
constructed.

BepiPredepitopepredictiononenterovirus sublibrarypeptides. For
the ROC curve generated in Fig. 2E, BepePred-3.0 was run with default
settings through https://biolib.com/DTU/BepiPred-3 in two experi-
ments. The first included the 15 amino acid long sequences of the
Enterovirus sublibrary. The second experiment used the seven refer-
ence enterovirus sequences as input. In both experiments, the
BepiPred scores for an epitope at each residue were averaged over the
15 amino acids contributing to a peptide. For creating the ROC curve,
the same labels were used as in the validation of the random forest,
derived from the Enterovirus library screening cohort.

Principal component analysis. The Principal Component Analysis
(Fig. 5E) was conducted with the base R (version 3.6.3) function
prcomp (stats package) based on the PhARscore vector of all samples
for each phage. The first two principal components were plotted and
per panel colored differently for various phage meta information.

BLAST for additional phage annotation. To annotate phage genomes
according towhether they potentially infect E.colior other Bacteria,we
used blastn version 2.13.0+ to scan the entire NCBI nt database for
similarity. We considered that if a phage genome was contained in a
bacterial genome in the database, the phage may have infected that
bacterium and was sequenced alongside when the reference genome
was created. A BLAST hit to a viral taxonomymight indicate a potential
taxonomic annotation for these novel phages.

For the binary annotation in this manuscript, an assignment is
used that indicates whether an E.coli genome is among the top 15
BLAST hits that have an e-value < 1E−6.

Metadata analysis of the gut phage database. The Gut Phage
Database1 containsmetadata for all phages. Thepredictedphage taxon
and predicted host was used to annotate the heatmap in Fig. 4D.
Furthermore, this metadata contains a list of sample identifiers, cor-
responding to the cohort used in the study, of whose metagenomic
samples the phage genomes were derived. We counted the amount of
samples annotated as North American to i) select the locally prevalent
phages in our pilot library and ii) conduct the prevalence study
in Fig. 5B.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The pro-
cessed PhIP-Seq and public epitope reactivity data are available on
Zenodo at https://doi.org/10.5281/zenodo.7979556. The further pro-
cessed data used for figures and tables are provided in the SourceData
file. Source data are provided with this paper.

Code availability
The GitHub repository contains scripts, such as the Jupyter Notebook
scripts for deriving the results (folder Manuscript Analyses), the Dol-
phyn pythonpackage and themachine learningmodels as described in
themanuscript. It is available at https://github.com/kepsi/Dolphyn and
on Zenodo (https://doi.org/10.5281/zenodo.7979556)30.
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