
Vol.:(0123456789)1 3

European Journal of Nuclear Medicine and Molecular Imaging (2024) 51:947–950 
https://doi.org/10.1007/s00259-023-06568-8

EDITORIAL
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The European Federation of Organisations for Medical Phys-
ics (EFOMP) has recently published a statement on the role 
of dosimetry in radionuclide therapy (RNT) [1]. This state-
ment relies on article 56 of the European Council direc-
tive 2013/59/Euratom to advocate the need for personalized 
dosimetry to plan and monitor RNT. As a reminder, this Eur-
atom article states that “For all medical exposure of patients 
for radiotherapeutic purposes, exposures of target volumes 
shall be individually planned and their delivery appropri-
ately verified taking into account that doses to non-target 
volumes and tissues shall be as low as reasonably achievable 
(ALARA) and consistent with the intended radiotherapeutic 
purpose of the exposure.” It is important to bear in mind that 
nuclear medicine physicians do not prescribe Gray to a target 
but administer a ponderable dose in Bequerels of a human 
medical product delivered by a radiopharmacist. Article 1 
of Directive 2001/83/EC defines a “medicinal product” as 
“Any substance or combination of substances presented as 
having properties for treating or preventing disease in human 

beings; Any substance or combination of substances which 
may be used in, or administered to, human beings, either 
with a view to restoring, correcting or modifying physiologi-
cal functions by exerting a pharmacological, immunological 
or metabolic action, or to making a medical diagnosis”. Con-
trary to what was claimed years ago by some of the authors 
of the EFOMP statement [2], there is no conflict between 
the registration of radiopharmaceuticals and the Euratom 
Directive. There is no contraindication to dosimetry-based 
posology in the European regulation relative to medicinal 
products as long as it is supported by clinical data.

We therefore agree with the position of the European 
Association of Nuclear Medicine, proposing different lev-
els of compliance with the directive depending on the treat-
ment modality [3]. There is indeed a difference in the level 
of evidence for the 2 types of RNT, i.e., selective internal 
radiation therapy (SIRT) and radiopharmaceutical therapy 
(RPT), also referred to as targeted radionuclide therapy 
(TRT). In contrast to SIRT, the clinical benefit of dosimetry 
in RPT is not yet demonstrated despite some dose–effect 
correlations highlighted. Without a proven clinical benefit, 
a modification of the regimen of an approved drug outside 
of a clinical trial, either based on dosimetry or not, is defined 
as an off-label use. In the absence of safety and efficacy data, 
the patients must be informed and give their consent, while 
the prescription should clearly be mentioned as off-label. 
While physicians are used to prescribing drugs off-label, 
the practice is highly supervised, at least in France, and the 
personal responsibility of physicians is involved if adverse 
events occur. Off-label prescription should be exceptional 
and used only if there is no other option.

SIRT with microspheres is currently the only RNT 
modality where dosimetry has a proven benefit in terms of 
clinical outcome, i.e., tumor control probability (TCP) [4–6], 
non-tumor complication probability (NTCP) [7], and months 
of progression-free survival (PFS) or overall survival (OS). 
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These results were obtained thanks to two clinical trials, one 
retrospective analysis [5] and one prospective with dosim-
etry as the primary objective [8]. In the 2000s, the body sur-
face area (BSA) method and single-compartment dosimetry 
were recommended for resin and glass microspheres [9]. The 
turning point came in the early 2010s, when retrospective 
studies showing promising results were published [10, 11] 
and clinical investigation was promoted in a context where 
the respective resin and glass microsphere manufacturers 
competed for market share. International recommendations 
now propose treatment planning strategies based on dosim-
etry objectives depending on the treatment strategy and the 
clinical endpoint [12–14]. Scientific and clinical pieces of 
evidence, as well as patients interests, have prevailed in this 
context, demonstrating that the role of dosimetry cannot be 
reduced to a pros and cons debate.

Do we have clinical data to guide treatment planning for 
RPT? It appears that although dose–effect relationships are 
well documented, a clear clinically proven benefit in terms 
of TCP, NTCP, or months of survival is still pending [15].

For example, the correlation between bone marrow 
absorbed dose and platelets has been shown in radioiodine 
treatments [16], [177Lu]Lu-DOTATATE in neuroendocrine 
tumors (NET) [17, 18], and [177Lu]Lu-PSMA in metastatic 
castration-resistant prostate cancer (mCRPC) [19]. However, 
it has not yet been shown to improve treatment outcomes. 
Until proven otherwise, blood cell counts are an economi-
cally and clinically more efficient technique than dosimetry 
to monitor RPT bone marrow toxicity. Not to mention that 
grade 3 bone marrow toxicity remains rare [17, 20, 21] 
except in patients already heavily treated with chemother-
apy in whom the capacities of hematopoietic regeneration 
seemed more limited and who presented more difficulties 
recovering from myelodysplastic disease [22, 23]. Further-
more, regardless of the bone marrow absorbed doses, the 
non-responding or even progressive disease itself seems to 
be one, if not the most important, factor for bone marrow 
impairment [24].

The kidney is another organ that has been investigated 
for dose–effect relationships with 177Lu-DOTATATE and 
[177Lu]Lu-PSMA. The results of the ILUMINET trial 
[25] suggested that the treatment of NET with [177Lu]Lu-
DOTATATE could be monitored with renal dosimetry, but 
achieved similar PFS and OS than the NETTER-1 trial [21, 
26] which was conducted with a standard regimen. Another 
study has implemented a treatment regimen based on renal 
dosimetry [27] by increasing the injected activity up to the 
presumed maximum tolerated renal absorbed dose, which 
did not improve the PFS compared to the aforementioned 
studies. In patients treated with [177Lu]Lu-PSMA, a recent 
retrospective study reported 3 cases of radiation-induced 
nephropathy following extensive treatment with [177Lu]Lu-
PSMA [28]. While authors argued that individual dosimetry 

might have helped prevent these events, it is important to 
note that those patients received from eight to ten cycles 
with substantially higher cumulative activity than patients 
in the VISION trial (maximum 6 treatment cycles) [20] or 
patients in real life data (median of three to four cycles) 
and that the incidence of this toxicity remains extremely 
low (< 1%) and has not been found in the literature in simi-
lar populations [29]. In addition, this exceptionally high 
number of treatment cycles can only be seen in the absence 
of alternative treatment options, in a situation where the 
risk of chronic kidney disease is outweighed by the risk of 
tumor progression. These results illustrate well that although 
dose–effect relationships have been demonstrated, dosimetry 
is not the only parameter influencing the treatment outcome.

Regarding lesion dosimetry, it is associated with blood 
prostate–specific antigen (PSA) [30] for [177Lu]Lu-PSMA 
and with radiological response [31] for [177Lu]Lu-DOTA-
TATE, but not with PFS or OS. As suggested by Alipour 
et al. [31], there are other factors than tumor response and 
absorbed dose that influence PFS and OS in NET. This may 
explain the dichotomy between RPT and SIRT. Indeed, 
SIRT is a loco-regional treatment for locally advanced or 
early-stage disease; therefore, local disease control, which 
correlates well with dosimetry, is strongly correlated with 
survival.

Another explanation could be that standard RPT regi-
mens have been validated in clinical trials with a positive 
risk–benefit balance. The search for a clinical benefit from 
dosimetry may upset this balance if the tolerance limit of 
an organ is sought, with no guarantee of improved efficacy.

Nuclear medicine centers are facing a systemic and global 
shortage of healthcare professionals [32], in a context of 
increasing RPT [33] and stable healthcare costs per gross 
domestic product, except in the COVID era [34]. RPT 
healthcare workers (nuclear medicine physicians, radiop-
harmacists, medical physicists, technologists, etc.) should 
focus on clinically relevant tasks that have a proven benefit 
to the patient, i.e., dosimetry for SIRT, implementation of 
new RPT techniques, improvement of treatment follow-up 
based on imaging biomarkers, etc.

We should harness our multidisciplinary energy and 
apply for more funding to conduct more clinical trials with 
ancillary research to optimize this therapeutic option and 
improve patient outcomes. Cancer is becoming a chronic 
disease, so we need to manage time by limiting toxicities by 
trying to de-escalate and optimize drug treatments and ioniz-
ing irradiation through multidisciplinary research in physics, 
pharmacokinetics, dosimetry, and radiobiology.

Clinical dosimetry is one tool among others (quantifica-
tion, radiomics, dynamic imaging, etc.) in the field of ther-
agnostics. There is a potential for dosimetry to contribute to 
the development of new therapeutic strategies, new radiop-
harmaceuticals, new indications, etc., but this needs to be 
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supported by clinical evidence [35] and should be done in 
a cost-effective manner. As recently stated by the Medical 
Physics Department of the Memorial Sloan Kettering Cancer 
Center, “If dosimetry is to become more than an academic 
exercise, we need to show that it makes a significant differ-
ence to clinical outcomes with RPT” [36]. A similar debate 
has been raging among oncologists and hematologists since 
the advent of chemotherapies and now targeted therapies, 
on the need for adaptive or individualized rather than fixed 
dosing. Only irrefutable clinical evidence of the crucial 
role of therapeutic drug monitoring and pharmacokinetics 
or pharmacodynamics analysis in the optimization of anti-
neoplastic regimens could balance the economic and logis-
tic complexity of this technique implementation in clinical 
routine [37–39]. This debate has marked the entire history 
of medicine. Although important in itself, expert opinion 
provides the weakest level of evidence; randomized prospec-
tive phase III trials with independent safety and efficacy data 
monitoring boards are the gold standard for assessing the 
clinical benefit of a new drug or new indication. It is then up 
to the regulatory authorities to carefully review the data and 
audit the trial sponsors and investigational sites for approval.
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