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Large language models streamline
automated machine learning for clinical
studies

Soroosh Tayebi Arasteh 1 , Tianyu Han 1 , Mahshad Lotfinia 1,2,
Christiane Kuhl1, Jakob Nikolas Kather 3,4, Daniel Truhn 1,5 &
Sven Nebelung 1,5

A knowledge gap persists between machine learning (ML) developers (e.g.,
data scientists) and practitioners (e.g., clinicians), hampering the full utiliza-
tion of ML for clinical data analysis. We investigated the potential of the
ChatGPT Advanced Data Analysis (ADA), an extension of GPT-4, to bridge this
gap and performML analyses efficiently. Real-world clinical datasets and study
details from large trials across various medical specialties were presented to
ChatGPT ADA without specific guidance. ChatGPT ADA autonomously devel-
oped state-of-the-art ML models based on the original study’s training data to
predict clinical outcomes such as cancer development, cancer progression,
disease complications, or biomarkers such as pathogenic gene sequences.
Following the re-implementation and optimization of the published models,
the head-to-head comparison of the ChatGPT ADA-crafted ML models and
their respective manually crafted counterparts revealed no significant differ-
ences in traditional performance metrics (p ≥0.072). Strikingly, the ChatGPT
ADA-craftedMLmodels often outperformed their counterparts. In conclusion,
ChatGPT ADA offers a promising avenue to democratize ML in medicine by
simplifying complex data analyses, yet should enhance, not replace, specia-
lized training and resources, to promote broader applications in medical
research and practice.

Machine learning (ML) drives advancements in artificial intelligence
and is about to transform medical research and practice, especially in
diagnosis and outcome prediction1,2. Recently, the adoption of ML for
analyzing clinical data has expanded rapidly. Today, ML models have
an established and evolving role in various areas of public health and
medicine, spanning image analysis, public health, clinical-trial perfor-
mance, and operational organization2. ML models are used in variable
contexts such as augmenting medical knowledge, assisting clinicians,
or taking on administrative tasks3. Several developments, such as

increases in (i) available data generated during clinical care, (ii) avail-
able computational processing capacities, and (iii) research activities,
favor the more widespread future utilization of ML models in
medicine4. However, the complexity of developing, implementing, and
validating those models renders them inaccessible to most clinicians
andmedical researchers5. It also limits their utilization to those people
or groups that combine expertise in medicine and data science.

Automated machine learning (AutoML) is an established dis-
cipline that aims to make ML accessible to non-technical experts. In
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medicine, the principle feasibility and use of AutoML platforms, such
as the Classification Learner of MATLAB (MathWorks Inc.), Vertex AI
(Google LLC), and Azure (Microsoft Corporation), have been
demonstrated6–11, enabling non-technical experts to createMLmodels.
These software solutions automate algorithm training and fine-tuning
by providing dedicated interfaces to build and run a particular ML
model. The user needs to direct the software to the desired output. So
far, however, models using natural language commands and their
conversion to Python code have not been implemented.

Powerful large languagemodels (LLMs)12, such as ChatGPT’s latest
version, GPT-413 (Generative Pre-Trained Transformer-4, OpenAI, CA,
US), expand the repertoire of AutoML platforms by offering a well-
accessible option to theuser14,15.While conversingwith humans inplain
language, LLMs can reason and perform logical deduction. Recently,
the ChatGPT Advanced Data Analysis (ADA), formerly known as
ChatGPT Code Interpreter, has been made available as an extension
and beta feature that may be used to analyze data andmath problems,
create charts, and write, execute, and refine computer code16.
Instructing ChatGPT ADA can be straightforward, such as “Analyze this
patient data and build a machine-learning model predicting 12-month
mortality rates”. Given this prompt, ChatGPT ADAwill execute the task
and provide feedback on the procedure. However, its validity and
reliability in advanced data processing and analysis for large clinical
trials have not yet been evaluated.

Our objective was to study the validity and reliability of ChatGPT
ADA in autonomously developing and implementing MLmethods. We

included real-world datasets from four large clinical trials of various
medical specialties that applied MLmodels for advanced data analysis
(Fig. 1). We hypothesized that (i) ChatGPT ADAmay be used intuitively
and does not require prior training, resources, and guidance in ML
theory and practice to implement advanced ML methods efficiently
and accurately and that (ii) the results of these implementationsmatch
those of specialized data scientists. We provide evidence that
advanced LLMs like ChatGPT ADA simplify complex ML methods,
increasing their accessibility in medicine and beyond.

Results
Across four large clinical-trial datasets, ChatGPT ADA autonomously
formulated and executed advanced ML techniques for disease screen-
ing and prediction. Its performance matched the hand-crafted and
customizedMLmethods re-implemented based on the original studies.
Figure 2 illustrates an exemplary interaction with ChatGPT ADA, high-
lighting the prompts and responses for autonomous prediction.

After briefly summarizing each clinical trial and associated data-
set, we compare the ML methods head-to-head for each trial. We
includeMLmethods developed and executed byChatGPTADAagainst
the performance metrics of the originally published ML methods (as
reported in the original studies) and the validatory MLmethods (as re-
implemented by a seasoned data scientist, S.T.A. with five years of
experience in ML). Because individual patient predictions were una-
vailable in the original studies, the best-performingMLmethods of the
original studies were re-implemented. We conclude our analysis by

Fig. 1 | Study design. Real-world datasets and study details from four large clinical
trials were collected and input into the ChatGPT Advanced Data Analysis (ADA)
tool. The tool autonomously selected the appropriatemachine-learningmodels for
the analysis following prompting. The models were expert-checked and compre-
hensively evaluated. The ChatGPT ADA-based predictions were compared to the

original studies (benchmark publication) and the validatory predictions following
the re-implementation of themodels. Figure 1 was provided by a freelancer service
(fiverr.com). Copyright rests with the authors. The figure constitutes original
material and has not been published before.

Article https://doi.org/10.1038/s41467-024-45879-8

Nature Communications |         (2024) 15:1603 2



presenting the explainabilitymetrics determined byChatGPTADA and
confirmed by our re-implementation.

Metastatic disease [endocrinologic oncology]—predicting
metastatic disease in pheochromocytoma and paraganglioma
Pamporaki et al. utilized cross-sectional cohort data from the US,
Germany, Poland, and the Netherlands, and employed MLmethods to
predict metastatic disease in patients diagnosed with pheochromo-
cytoma or paraganglioma using blood test results17. These tumors are
referred to as the ‘great masquerader’ because of their unspecific
clinical presentation secondary to largely variable catecholamine
excess, which poses diagnostic challenges17. The original study’s
training and test set cohorts comprised 493 and 295 patients (Table 1).
Using predictions by 12 clinical experts as their reference, the authors
implemented multiple supervised ML models, i.e., the decision tree
classifier, support vector machine, Naïve Bayes, and AdaBoost18

ensemble tree classifier. In the original study, the latter model per-
formed best and significantly outperformed the clinical care specia-
lists, with an area under the receiver operating characteristic curve
(AUROC) of 0.942 versus 0.815 (best-performing clinical expert,
p <0.001). Using the same (training and test) dataset distribution as
the original study but withholding specific guidance on data pre-
processing orMLmethodology,we promptedChatGPTADA topredict
metastatic disease in the test set while. ChatGPT ADA selected a Gra-
dient BoostingMachine (GBM)19 model for its prediction and achieved
a slightly improved performance relative to its best-performing pub-
lished counterpart in terms of AUROC values (0.949 vs. 0.942), accu-
racy (0.922 vs. 0.907), and F1-scores (0.806 vs. 0.755) (Table 2). The
entire conversation with ChatGPT ADA regarding prompts and
responses is detailed in Supplementary Note 1.

After re-implementing and optimizing the best-performing ML
model from the original study, i.e., the AdaBoost18 ensemble tree
classifier, as our validatory ML model, we performed a head-to-head
comparison. The performance metrics were similar (validatory re-
implementation: AUROC=0.951 ± 0.014 [95% CI: 0.920, 0.977];
ChatGPT ADA: AUROC=0.949 ±0.015 [95% CI: 0.917, 0.974]) and not
significantly different (p =0.464) (Table 3 and Fig. 3).

Esophageal cancer [gastrointestinal oncology]—predicting car-
cinoma of the distal esophagus and oesophagogastric junction
Gao et al. used sponge cytology testing and epidemiologic data to
screen for esophageal squamous cell carcinoma and adenocarcinoma
of the oesophagogastric junction20. The authors obtained multicohort
data from 14,597 participants in China (Table 1) to design six ML
models, i.e., logistic regression, adaptive boosting, Light Gradient
Boosting Machine (LightGBM)21, extreme gradient boosting, Random
Forest (RF)22, and support vector machine23, to predict high-grade
intraepithelial neoplasia and carcinoma based on 105 cytologic and 15
epidemiologic features. The best-performing model was the
LightGBM, which achieved an AUROC value of 0.960 in the test set. In
contrast, ChatGPT ADA selected the GBM and outperformed the ori-
ginal model at an AUROC value of 0.979 (Table 2). Supplementary
Note 2 details the entire conversation with ChatGPT ADA for this
dataset.

The head-to-head analysis of the ChatGPT ADA-selected ML
model and our validatory re-implemented ML model indicated
largely similar AUROC values of 0.979 ± 0.004 [95% CI: 0.970,
0.986] and 0.978 ± 0.005 [95% CI: 0.967, 0.986], respectively,
which were not significantly different (p = 0.496) (Table 3
and Fig. 3).

Fig. 2 | Screenshots of an example interaction with ChatGPT ADA to analyze
the endocrinologic oncology dataset. ChatGPT ADA autonomously selects and
applies the appropriateMLmodel for the provideddataset, generating predictions
for the test data. The model also displays deeper insights in response to follow-up

queries about the reasoning and parameters guiding its choices. Note: The “Show
work” option visible in the images allows users to view the intermediary Python
code offered by the tool.
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Hereditary hearing loss [otolaryngology]—predicting patho-
genic genetic variants
Luo et al. aimed to identify patients with hereditary hearing loss based
on particular gene sequences, i.e., the sequence variants at 144 sites in
three genes24. Using data from 1778 patients and controls (Table 1), the
authors implemented six supervisedMLmodels, i.e., the decision tree,
random forest, k-nearest neighbor, adaptive boosting, multilayer
perceptron models, and the support vector machine23. The latter ML
method performed best (AUROC value of 0.751) and outperformed
three clinical experts. The ChatGPT ADA-selected predictive model,
i.e., the RF classifier, outperformed the original model regarding
AUROC values (0.773) yet demonstrated inferior performance
regarding accuracy (0.767 vs. 0.812) and F1-score (0.845 vs. 0.861)
(Table 2). Supplementary Note 3 details the entire conversation with
ChatGPT ADA for this dataset.

The head-to-head analysis of the ChatGPT ADA-selected ML
model and our validatory re-implemented MLmodel indicated largely
similar AUROC values of 0.773 ±0.024 [95% CI: 0.726, 0.817] and

0.762 ±0.026 [95% CI: 0.714, 0.812], respectively, which were not sig-
nificantly different (p =0.624) (Table 3 and Fig. 3).

Cardiac amyloidosis [cardiology]—predicting the
cardiomyopathies
Huda et al. attempted to identify patients at risk of cardiac amyloidosis,
a now treatable condition predisposing to heart failure, using various
cohorts and established medical diagnoses retrieved from health
records25. Using data from 2142 patients and controls (Table 1), the
authors designed three ML models, i.e., logistic regression, extreme
gradient boosting, and RF classifier. They found the latterMLmodel to
performbest (AUROC value of 0.930 [internal validation set]). Because
the external validation dataset was not publicly available, we used the
original study’s internal validation set to prompt ChatGPT ADA as
above. The ChatGPT ADA-selected predictive model, i.e., the RF clas-
sifier, outperformed the original model regarding the AUROC (0.954)
and the other performance metrics (Table 2). Supplementary Note 4
details the entire conversation with ChatGPT ADA for this dataset.

Table 1 | Characteristics of the clinical trials whose datasets were included

Metastatic disease17 [endocrinologic
oncology]

Esophageal cancer20

[gastrointestinal
oncology]

Hereditary hearing
loss24 [otolaryngology]

Cardiac Amyloidosis25

[cardiology] (*)

Training set Test set Training set Test set Training set Test set Training set Test set

Patient number

Total [n] (with disease/without dis-
ease [%])

493
(34/66)

295
(19/81)

7899
(3/97)

6698
(2/98)

1209
(76/24)

569
(77/23)

1712
(50/50)

430
(50/50)

Patient sex

Female/male [%] 49/51 57/43 0/100 0/100 49/51 39/61 N/A N/A

Patient age [years]

Median
Mean ± standard deviation
Range (minimum, maximum)

42
42 ± 18
(4, 83)

48
47 ± 16
(11, 82)

56
56 ± 9
(39, 82)

55
56 ± 9
(24, 86)

N/A
18 ± 15
(N/A, N/A)

N/A
34 ± 12
(N/A, N/A)

N/A N/A

Location of clinical trial US, Netherlands Germany, Poland,
Netherlands

China China China China US US

(*) indicates that theoriginal data split and, consequently, theexternal validationdatasetwasunavailableper theoriginal study. In linewith thepublishedmethodology,we randomly allocated80%of
patients and controls to the training set (n = 1712) and 20% to the test set (n = 430). N/A not available.

Table 2 | Benchmark publication—ML models and their published performance metrics as a function of clinical-trial dataset

AUROC Accuracy F1-score Sensitivity Specificity

Metastatic disease [endocrinologic oncology]17

Best-performing ML model (original study): AdaBoost18 ensemble tree 0.942 0.907 0.755 0.833 0.922

ChatGPT ADA: GBM 0.949 0.922 0.806 0.841 0.941

Best-performing clinical expert 0.815 0.830 N/A 0.800 0.850

Mean of clinical experts [n = 12] 0.710 0.722 N/A 0.664 0.755

Esophageal cancer [gastrointestinal oncology]20

Best-performing ML models (original study): LightGBM 0.960 N/A N/A 0.945 0.919

ChatGPT ADA: GBM 0.979 0.985 0.538 0.457 0.995

Hereditary hearing loss [otolaryngology]24

Best-performing ML model (original study): Support vector machine 0.751 0.812 0.861 0.925 N/A

ChatGPT ADA: RF 0.773 0.767 0.845 0.834 0.541

Mean of clinical experts [n = 3] N/A N/A N/A 0.789 0.470

Cardiac amyloidosis [cardiology]25

Best-performing ML model (original study): RF 0.930 0.870 0.875 0.870 0.870

ChatGPT ADA: RF 0.954 0.892 0.894 0.903 0.884

Indicated are the performance metrics of the best-performing ML models as published in the original studies, of the ChatGPT ADA-based ML models, and, if available, of individual or numerous
clinical experts.
AdaBoostadaptiveboosting,AUROCarea under the receiver operatingcharacteristic curve,ChatGPTADAChatGPT advanceddata analysis,GBMgradient boostingmachine, LightGBM light gradient
boosting machine, N/A not available, RF random forest.
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The head-to-head analysis of the ChatGPT ADA-selected ML
model and our validatory re-implemented MLmodel indicated largely
similar AUROC values of 0.954 ±0.010 [95% CI: 0.934, 0.972] and
0.952 ±0.010 [95% CI: 0.931, 0.969], respectively, which were not
significantly different (p =0.539) (Table 3 and Fig. 3).

Explainability analysis
The interpretation of model predictions, especially in situations
demanding transparency and trust, relies on our capacity to grasp the
importance of individual features. To study the ability of ChatGPT to
provide metrics of explainability, we utilized the SHapley Additive
exPlanations (SHAP)26 analysis that helps quantify each feature’s con-
tributions to a model’s predictions. We instructed ChatGPT ADA to
perform the SHAP analysis autonomously without providing specific
guidance. Figure 4 details the top 10 most influential features (ranked
by their overall impact as determined by the mean absolute SHAP
values) contributing to the best-performing MLmodel of each clinical
trial. SHAP values measure a feature’s influence on a model’s output.
High absolute SHAP values signify substantial impact, and positive
SHAP values elevate the model’s prediction above the baseline.

Discussion
The availability of LLMs for advanced data processing27,28, specifically
those with the capacity to write, execute, and refine code like ChatGPT
ADA, marks a pivotal shift in the convergence of data science and
clinical research and practice. Our investigation of four large clinical
trials underscores the potential of these tools to simplify complex ML
methods and increase their accessibility in medicine and beyond. If
implemented with due diligence, these tools enhance, not replace,
specialized training and resources, democratizing access to advanced
data processing and, potentially, revolutionizingdata-drivenmedicine.

While ML and “Big Data” are touted as revolutionizing
healthcare29, clinicians regularly deal with too many patients in too
little time30. Yet, they make hundreds of decisions each day that are
primarily based on eminence and not on published data or studies31.
Consequently, a valid and reliable tool that automates data processing
may decentralize the monopoly of evidence held by specialized insti-
tutions. While clinicians remain at the center of patient care, ML
methods can assist their expertise, e.g., by identifying at-risk patients
for specific conditions based on electronic health records or by ana-
lyzing complex datasets such as genomic sequences. Intentionally, we

Fig. 3 | Benchmark validatory re-implementation—receiver operating char-
acteristic (ROC) curves of MLmodels as a function of the clinical-trial dataset.
The ROC curves of the ChatGPT ADA-based ML model (blue, solid curve) and the
validatory ML model as re-implemented by a seasoned data scientist (red, dotted
curve) are shown. The True Positive Rate (sensitivity) is plotted versus the False
Positive Rate (1-specificity). The diagonal gray line represents the line of no dis-
crimination. Source data are provided as a Source Data file. Bootstrapping54 with

replacements and 1000 redraws on the test sets (number of independent samples:
Endocrinologic Oncology dataset, n = 295; Gastrointestinal Oncology dataset,
n = 6698,Otolaryngologydataset,n = 569; Cardiology dataset,n = 430)was applied
todeterminemeans andmeasures of statistical spread, i.e., standarddeviations and
95% confidence intervals (CI). AUROC area under the receiver operating char-
acteristic curve, ChatGPT advanced data analysis.
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designed our study to include variable data types such as clinical data,
demographic data, cytologic data, genetic sequencing data, Interna-
tional Classification of Disease codes, and laboratory values from
clinical trials spanning endocrinology, gastrointestinal oncology,
genetics, and cardiology. Beyond empowering clinicians to use the
clinical data to their patients’ advantage, utilizing LLMs for advanced
data analysis provides a less costly and more efficient alternative to
hand-crafted ML models32.

In assessing accuracy, validity, and reliability, our study utilized
datasets from original studies to gauge the robustness of predictions
on previously unseen data. External validation is paramount in evalu-
ating the model and its broader applicability. However, it is worth
noting that external validation was absent in the Cardiac Amyloidosis
dataset. Across various datasets, models chosen by ChatGPT ADA
consistently demonstratedperformanceonparwith, or exceeding, the
hand-crafted ML methods used in the original studies. When com-
paring performance metrics, i.e., AUROC, accuracy, F1-score, sensi-
tivity, and specificity, no significant differences were found between
the optimized models re-implemented by our data scientist and those

autonomously chosen by ChatGPT ADA. This observation demon-
strates ChatGPT ADA’s ability to select, train, and refine suitable and
performant ML models autonomously.

We also assessed the risk of overfitting, which occurs when a
model excels on training data but may not generalize well to unseen
data. When evaluating the model’s execution across training and vali-
dation datasets for each clinical trial, we observed that ChatGPT ADA
had implemented strategies to increase model robustness and gen-
eralizability, like regularization, model selection based on validation,
and choosing simpler models. However, even though these strategies
may be helpful, users should still regularly check performancemetrics
for signs of overfitting.

Per the design of our prompting strategy, we did not ask ChatGPT
ADA for specific explanations of why it selected a particularMLmodel.
However, the tool displayed a surprisingly deep understanding of the
clinical trial and appropriate analysis methods. For most clinical-trial
datasets, ChatGPT ADA employed a median imputation strategy. In
contrast, it used a zero-imputation strategy for the Hereditary Hearing
Loss dataset. When asked to explain, ChatGPT ADA indicated that its

Fig. 4 | Model explainability through the top 10 predictive features for the
ChatGPT ADA-selectedmachine-learningmodels. An explainability analysis was
performed for each clinical trial including (a) Metastatic Disease [Endocrinologic
Oncology], b Oesophageal Cancer [Gastrointestinal Oncology], c Hereditary
Hearing Loss [Otolaryngology], and d Cardiac Amyloidosis [Cardiology], and
ChatGPT ADA-selected machine-learning model. Indicated are SHapley Additive
exPlanations (SHAP) values of each predictive feature that measure the feature’s
influence on model predictions. High absolute SHAP values signify substantial
influence. The features are ranked from top to bottombasedon themean absolute
SHAP values (color-coded on the right). In c, specific gene locations are indicated.
Please refer to the Methods for more details on abbreviations. Box plots indicate
the ranges (x-axes) of each feature (y-axes). Crosses indicate (arithmetic) means,
boxes the ranges (first [Q1] to third [Q3] quartile),with the central line representing
the (arithmetic) median (second quartile [Q2]). Whiskers extend to 1.5 times the

interquartile range above Q3 and below Q1. Any data point outside this range is
considered an outlier (dots). Mind the different scales for the color codes and
SHAP values. Source data are provided as a Source Data file. ChatGPT ADA per-
formed the SHAP analysis on the training sets (number of independent samples:
Endocrinologic Oncology dataset, n = 493, Gastrointestinal Oncology dataset,
n = 7899, Otolaryngology dataset, n = 1209, and Cardiology dataset, n = 1712).
Plasma MN plasma concentrations of metanephrine, plasma NMN plasma con-
centrations of normetanephrine, SDHB succinate dehydrogenase complex iron-
sulfur subunit B, Plasma MTY plasma concentrations of methoxytyramine, AGC
atypical glandular cells, DNA deoxyribonucleic acid, Chron. chronic, Cong. con-
genital, Dias. diastolic, Sys. systolic. Note: The feature “Hyp. heart w/ HF & Stg 1–4
Unsp. CKD” refers to “Hypertensive heart with heart failure coexisting with
unspecified stage 1–4 chronic kidney disease”, while “Prev. hist. PGGLs” refers to
“Previous history of Pheochromocytomas and Paragangliomas”.
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choice was informed by the dataset’s inherent characteristics and
semantics: “The data represents the presence (1) or absence (0) of
certain genetic variants in patients. Given this binary representation,
median imputation (which would yield either 0 or 1) might introduce
bias. In genetic studies, undetected or missing variants are often
interpreted as absent, making zero-imputation align with this under-
standing”. This statement is supported by pertinent literature
studies33. Contrarily, our seasoned data scientist, with a limited com-
mand of genetics, used median imputation, underscoring the value of
domain-specific knowledge when setting up domain-specific ML
methods.

We did not find signs of “hallucinations”, i.e., factually erroneous
responses27,34. Critically, we performed the statistical analysis step-by-
step to ascertain the accuracy, reliability, and consistency of the
model’s outputs. Specific safeguarding measures, such as the provi-
sion of intermediary Python code throughout the different phases of
building and executing the ML model, have been implemented by the
manufacturer and improve comprehensibility and transparency. If
coupled with more general safeguarding measures, e.g., increasing
user awareness of hallucinations, enhancing the LLM’s inherent
robustness35, and implementing regular auditions and quality checks,
the tool’s validity and reliability can be ascertained36. We assessed the
consistency in ChatGPT ADA’s behavior and analysis choices for each
clinical-trial dataset by prompting the tool multiple times in different
chat sessions. It consistently selected the same ML model and para-
meter settingswhenprovidedwith identical datasets, instructions, and
prompts. The only variation occurred when computational resources
were limited. In those instances, the tool communicated its primary
model choice but temporarily opted for an alternative.

Regarding ease of use, ChatGPT ADA substantially reduces the
complexity of developing and implementing ML methods by taking
tabular data, suggesting how to deal with it, building the model, and
outputting the results in the desired format. Not least due to its ability
to communicate with the user, the tool offers a natural and effective
way to work with ML models. At the same time, the automatization
simplifies the associated workflow. However, as with any innovation,
utilizing LLMs in clinical research and practice has multifaceted
implications, from data privacy to data security to model interpret-
ability, reliability, and associated ethical concerns37–41. Upholding
patient data privacy seems particularly challenging as—on the one
hand—users may be enticed to disclose confidential (or proprietary)
information, let alone sensitive personal data such as race and ethni-
city, to use the model most efficiently. On the other hand, OpenAI
continuously trains themodel using earlier user interactions, including
prompts, which are retained as part of the ever-enlarging training data
and cannot be deleted. Consequently, it is the user’s responsibility to
weigh the tool’s advantages and benefits against its disadvantages
and risks.

ChatGPT ADA, as a tool, democratizes access to advanced ML
methods, enabling clinicians and researchers of all backgrounds to
harness its capabilities. Besides being a potential cornerstone for their
broader utilization in clinical research and practice42, the improved
accessibility holds thepotential of (i) acceleratingmedical research, (ii)
confirming or contradicting earlier research, and (iii) improving
patient care. However, when using the tool more widely, several
potential challenges and limitations must be acknowledged. First, the
tool’s commercial and proprietary distribution is concerning because
(i) its ‘black-box’ nature limits transparency andmay reduce trust in its
outputs43, (ii) commercial bias may be in opposition to the idealized
concept of unbiased scientific or clinical deliberation, and (iii) algo-
rithmic bias secondary to themodel’s potentially skewed foundational
data may perpetuate unbalanced outcomes, for example, by not
representing those patients adequately that had been under-
represented in the foundational data44. In the absence of benchmark
publications for comparison, users must be more vigilant in

ascertaining accuracy and reliability, for example, by seeking external
validation whenever possible.

Regarding transparency and trust, we conducted a SHapley
Additive exPlanations (SHAP) analysis45 to better understand how
ChatGPT ADA works on and with the respective datasets. The tool
successfully identified and plausibly quantified the importance of
numerous variables across the trials. For instance, its predictions
centered on sex, age, and laboratory values (Metastatic Disease
[Endocrinologic Oncology] dataset), specific cytologic features
such as the presence of atypical glandular cell and nuclear width
features (Esophageal Cancer [Gastrointestinal Oncology] dataset),
specific gene variants such as c.235delC and p.V37I that are asso-
ciated with hearing loss46,47 (Hereditary Hearing Loss [Otolaryngol-
ogy] dataset), and the previous history of (diagnosed)
cardiomyopathy (Cardiac Amyloidosis [Cardiology] Dataset). The
in-built ability to autonomously extract key features contributing to
the model’s predictions increases transparency, improves under-
standing, and furthers trust in ChatGPT ADA48.

Our study has limitations: First, clinical ML projects require a
reliable and sound database following consistent data pre-processing.
While we assessed ChatGPT ADA’s performance in the presence of
well-curated clinical-trial datasets, real-world clinical data are often-
times less curated and characterized by data quality issues such as
missing and irregular values49,50. Successfully applying ML methods to
more complex real-world clinical data regularly necessitates more
advanced and nuanced pre-processing and statistical methods. Here,
ChatGPT ADA’s effectiveness remains to be assessed. Second, given
their publication in 2021, we cannot exclude the possibility of two
original studies24,25 being part of the training that was concluded in
2021. Given the large sizes of the included datasets consisting of
hundreds to thousands of patients, previous publications on the same
dataset (or a specific subset), e.g., ref. 51, may have been included as
partof themodel’s trainingdata. Third, even thoughChatGPTADAand
the original studies implemented the same model, we found different
performance metrics, e.g., for the Cardiac Amyloidosis dataset where
random forest classifiers were implemented. Possible sources of
variability are the specific approaches used for data pre-processing,
dataset splitting,model configurations, and hyperparameter selection.
Despite our best efforts to standardize each model’s implementation
and execution, inter-model comparability is inherently limited. Fourth,
because the LLM’s response is closely related to how it is prompted52, it
is unclear whether the performance metrics are subject to change if
themodel is prompted differently. Consequently, our work represents
a mere starting point for exploring the potential of LLMs in clinical
research and practice. Future research must validate our findings
across different medical domains.

In conclusion, advanced LLMs like ChatGPT ADA are a potentially
transformative step forward in data-driven medicine, making intricate
ML methods more accessible. By way of example, our study demon-
strates that such tools may streamline advanced data analyses for
researchers, both experienced and inexperienced in ML, and hold the
potential to reduce the burden of data pre-processing and model
optimization substantially. Given the tools’ novelty, limitations, and
challenges, they should be applied as enhancements to specialized
training, resources, and guidance, not substitutes. Nonetheless, in this
dawning era of data-driven medicine, these tools may bridge the
chasmbetween complexMLmethods and their practical application in
medical research and practice.

Methods
Ethics statement
The methods were performed in accordance with relevant guidelines
and regulations and approved by the ethical committee of theMedical
Faculty of RWTH Aachen University for this retrospective study
(Reference No. EK 028/19).
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Patient cohorts
The patient datasets were retrieved from public repositories as indi-
cated in the original studies on metastatic disease prediction17, eso-
phageal cancer screening20, hereditary hearing loss24, and cardiac
amyloidosis25.

In the included Endocrinologic Oncology study17, cross-sectional
data from Germany, Poland, the US, and the Netherlands was used to
assess the ability of the dopamine metabolite methoxytyramine to
identify metastatic disease in patients with pheochromocytoma or
paraganglioma. To this end, ten features were available.

The included Esophageal Cancer study20 fromChinawas centered
on endoscopic screening and included multiple data sources from
questionnaires to endoscopy data, i.e., cytologic and
epidemiologic data.

The included Hereditary Hearing Loss study24 contained genetic
sequencing data to diagnose this condition in a Chinese cohort. Indi-
viduals were categorized based on hearing loss severity and variations
in three genes (GJB2, SLC26A4, MT-RNR1).

The included Cardiac Amyloidosis study25 utilized electronic
health records to identify patients with cardiac amyloidosis from a
dataset spanning 2008-2019, sourced from IQVIA, Inc., focusing on
heart failure and amyloidosis. While the original study used external
datasets for validation, thesewere inaccessible. Therefore, our analysis
adhered to the original study’s internal validation strategy: 80% as the
training set and 20% for testing, resulting in 1712 individuals for
training and 430 for testing. For further information on the individual
datasets, the reader is referred to Table 1 or the original studies.

Experimental design
We extracted the original training and test datasets from each
clinical trial. All datasets were available in tabular format, albeit in
various file formats such as comma-separated values or Excel
(Microsoft Corporation). No modifications to the data format,
specific data pre-processing or engineering, or selecting a particular
ML method were necessary to prompt ChatGPT ADA. GPT-413, the
current state-of-the-art version of ChatGPT, was accessed online
(https://chat.openai.com/) following the activation of the Advanced
Data Analysis feature. Initially, we operated the August 3 (2023)
version, while, during the project, we transitioned to the September
25 version. A new chat session was started for each trial to exclude
memory retention bias.

In the first phase, ChatGPT ADA was sequentially prompted by (i)
providing a brief description of the study’s background, objectives,
and dataset availability, (ii) asking for developing, refining, and
executing the optimal ML model based on the individual study’s fra-
mework and design, and (iii) producing patient-specific predictions
(classification probabilities) without revealing the ground truth. The
same training and test datasets as in the original studies were used.We
deliberately refrained fromoffering specificML-relatedguidancewhen
ChatGPT sought advice on improving prediction accuracy. Instead,
ChatGPT ADA was tasked with (i) autonomously choosing the most
suitable and preciseMLmodel for the given dataset and (ii) generating
predictions for the test data. Figure 2 provides an exemplary interac-
tion with the model.

Using the provided ground-truth test set labels, we calculated the
performance metrics for ChatGPT ADA’s results using Python (v3.9)
using open-source libraries such as NumPy, SciPy, scikit-learn, and
pandas.

The performancemetrics were compared against thosepublished
in the original studies (“benchmark publication”). In some clinical
trials, the clinical care specialists’ performance was also reported, and
these metrics were included for comparison. Notably, inputting and
analyzing each dataset through ChatGPT ADA took less than five
minutes. Detailed transcripts of the interactions with ChatGPTADA for
every dataset are presented in Supplementary Notes 1–4.

Data pre-processing and ML model development
In the second phase, a seasoned data scientist re-implemented and
optimized the best-performing ML model of the original studies
using Python (v3.9) using open-source libraries such as NumPy,
SciPy, scikit-learn, and pandas and the same training datasets as
outlined above (“benchmark validatory re-implementation”). This
re-implementation and optimization was necessary because indivi-
dual patient predictions were unavailable in the original studies,
precluding head-to-head model comparisons and detailed statis-
tical analyses. More specifically, the data scientist optimized
the data pre-processing and theMLmodel in close adherence to the
original studies, yet complemented by his expertise and experience
while aiming for peak accuracy.

The following provides trial-specific details on the data pre-
processing and the conceptualization of the specific ML models.

Metastatic disease [endocrinologic oncology]. Re-implemented
(validatory) ML model: The training set contained 30 missing values,
while the test set contained 15 missing values. Median values from the
training set were used to impute the missing values in both datasets.
Ten distinct feature vectors were constructed from the dataset vari-
ables. The feature vectors were partially categorical and partially
numerical. The categorical features were: (1) previous history of
pheochromocytoma or paraganglioma (yes/no), (2) adrenal/extra-
adrenal location of primary tumor (adrenal/extra-adrenal), (3) pre-
sence of Succinate Dehydrogenase Complex Iron-Sulfur Subunit B
(SDHB) (yes/no/not tested), (4) tumor category of primary tumor
(solitary, bilateral,multifocal), and 5) sex (female/male). The numerical
features were: (1) age at diagnosis of first tumor [years], (2) spherical
volume of primary tumor [cm3], (3) plasma concentration of meta-
nephrine (MN) [pg/ml], (4) plasma concentration of normetanephrine
(NMN) [pg/ml], and (5) plasma concentration of methoxytyramine
(MTY) [pg/ml]. Categorical datawere translated into numerical integer
values, e.g., female (0) and male (1) for sex. An Adaptive Boosting
(AdaBoost)18 ensemble tree classifier was employed and optimized
using a 10-fold cross-validation grid search. This optimization led to
selecting parameters like amaximumdepth of 2 for individual decision
trees, a count of 200 trees, and a learning rate of 0.01. Stagewise
additive modeling was chosen, utilizing a multiclass exponential loss
function.

ChatGPT ADA-crafted ML model: A check for missing data mir-
rored the findings above, leading the model to resort to a median
imputation strategy. Numerical datawere standardized using standard
scaling, while categorical data were converted to integer values. The
selected classification technique was a Gradient Boosting Machine
(GBM)19 with parameters set as follows: maximum tree depth: 3,
number of trees: 100, minimum samples per leaf: 1, minimum samples
for split: 2, and learning rate: 0.1. The logarithmic loss function was the
chosen evaluation metric, with the quality of splits being evaluated
using the Friedman mean squared error53. No validation dataset was
incorporated, and the model was not subjected to any specific reg-
ularization techniques.

Esophageal cancer [gastrointestinal oncology]. Re-implemented
(validatory) ML model: The training dataset included 147 feature vec-
tors,whereas the test dataset included 169. A comprehensive list of the
feature vectors can be found in the literature:20. Excess feature vectors
in the test set were excluded to maintain consistency, aligning it with
the training dataset. Consequently, neither the training nor the test
datasets contained missing values. Categorical data were mapped to
numerical integer values. Imbalanced dataset distributions were
addressed by conferring inverse frequency weights upon the data. In
line with the original study, the DS selected the Light Gradient
Boosting Machine (LightGBM)21 with the gradient boosting decision
tree algorithm. The configuration for the classifier was as follows: an
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unspecifiedmaximum tree depth, 300 trees, a capof 31 leaves per tree,
and a 0.1 learning rate. The logarithmic loss function served as the
evaluation metric. The model integrated both L1 and L2 regularization
techniques.

ChatGPTADA-craftedMLmodel: Thepre-processingmirrored the
approach above, identifying a class imbalance. The selected classifier
was the GBM with parameters including a maximum tree depth of 3,
100 trees,minimum samples per leaf of 1, minimum samples for a split
of 2, and a learning rate of 0.1. The model’s performance was assessed
using the logarithmic loss function, with the quality of tree splits
evaluated using the Friedman mean squared error. No validation
dataset was incorporated, and the model was not subjected to any
specific regularization techniques.

Hereditary hearing loss [otolaryngology]. Re-implemented (valida-
tory) ML model: The training and test sets included 144 feature vec-
tors, i.e., sequence variants at 144 sites in three genes24. The values of
the training set were numerical, i.e., 0 (individual has no copies of the
altered allele [98.2% of the values]), 1 (individual has one copy of the
altered allele [1.6%]), and 2 (individual has two copies of the altered
allele [0.2%]), while only one value was missing. The values of the test
set were numerical, too, with a similar distribution: 0 (98.3%), 1 (1.5%),
and 2 (0.2%), while no values were missing. Missing data points were
addressed by imputing the median of the training data. All feature
vectors were then subject to MinMax scaling. A Support Vector
Machine23 was the best-performing classifier per the original study,
configured with the Radial Basis Function kernel, gamma set to 1, and
enabled shrinking. Model optimization leveraged a 5-fold stratified
cross-validation using grid search. The regularization cost parameter
was defined at 100.

ChatGPT ADA-crafted ML model: The pre-processing was closely
aligned with the methodology above, with one notable exception:
Missing data was addressed by zero-imputation. The classifier chosen
was the Random Forest (RF)22, with the following framework para-
meters: no explicitly definedmaximum depth for individual trees, tree
count of 100, minimum samples per leaf of 1, and minimum samples
per split of 2. At each split, the features considered were the square
root of the total features available. 5-fold cross-validation was
employed without the use of a grid search. Regularization was
achieved by averaging predictions across multiple trees. Boot-
strapping was chosen to create diverse datasets for training each
decision tree in the forest.

Cardiac amyloidosis [cardiology]. Re-implemented (validatory) ML
model: The dataset comprised 1874 numerical (0 or 1, indicating the
presence or absence) feature vectors25. There was no value missing in
the dataset. The feature vectors underwent standard scaling for nor-
malization. The classifier chosen was the RF, with the following para-
meters:maximumdepth for individual trees of 20, total tree numberof
200,minimumsamples per leaf of 2, andminimumsamples per split of
5. For each tree split, the square root of the total features determined
the number of features considered. A 5-fold cross-validation was
combined with a grid search for optimization. Regularization was
effectuated by averaging the predictions over multiple trees. The
model did not utilize bootstrapping.

ChatGPT ADA-craftedMLmodel: As there was nomissing value in
the dataset and the values were binary, the data underwent no scaling
or standardization. The selected classifier was the RF. Parameters for
the model were as follows: an unspecified maximum depth for indivi-
dual trees, a tree count of 1000, minimum samples per leaf of 1, and
minimum samples per split of 2. For each tree split, the features con-
sideredwere the square root of the total feature count. Themodel was
validated using 5-fold cross-validation without grid search. Regular-
izationwas achieved by averaging predictions across several trees, and
the model utilized bootstrapping22,54.

Because ChatGPT ADA provides all intermediary Python code
during data pre-processing and ML model development and execu-
tion, wemeticulously analyzed the code for accuracy, consistency, and
validity.

Explainability analysis
We used SHapley Additive exPlanations (SHAP)26 to analyze feature
contributions to the model’s predictions. ChatGPT ADA was tasked
with autonomously performing a SHAP analysis to be narrowed down
to the top 10 features. To ensure accuracy, the seasoned data scientist
(S.T.A. with five years of experience) reviewed the Python code pro-
vided by ChatGPT ADA and re-implemented the procedure in Python
using SHAP library26 with TreeExplainer55 to confirm the model’s
outputs.

Reproducibility analysis
We evaluated the consistency of the tool’s responses using separate
chat sessions (to avoid memory retention bias), yet the same datasets,
instructions, and prompts on three consecutive days. The model
consistently reported the same responses and qualitative and quanti-
tative findings.

Statistical analysis and performance evaluation
The quantitative performance evaluationwas performed using Python
(v3.9) and its open-source libraries, such as NumPy and SciPy. Unless
noted otherwise, performance metrics are presented as mean, stan-
dard deviation, and 95% confidence interval (CI) values.

Using the published ground-truth labels from the original studies
as reference (“benchmark publication”), we calculated a range of
performance metrics based on ChatGPT ADA’s predictions of the test
set labels:AUROC, accuracy, F1-score, sensitivity, and specificity. These
performance metrics are presented alongside those reported in the
original studies, if available (Table 2).

Once the per-patient predictions were available following the re-
implementation and optimization of the select ML models (“bench-
mark validatory re-implementation”), we calculated the performance
metrics outlined above using the ground-truth labels for the re-
implemented (validatory) ML models and their ChatGPT ADA-based
counterparts. We adopted bootstrapping54 with replacements and
1000 redraws on the test sets to ascertain the statistical spread (in
terms of means, standard deviations, and 95% confidence intervals),
and to determine if the metrics were significantly different. We
adjusted for multiple comparisons based on the false discovery rate,
setting the family-wise alpha threshold at 0.05. Notably, the com-
parative evaluation of the performance metrics was conducted in a
paired manner. Bootstrapping was applied to both models. The
threshold for calculating the F1-score, sensitivity, and specificity was
chosen based on Youden’s criterion56.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets utilized in this study were extracted from public reposi-
tories. The raw data for predicting metastatic disease in pheochro-
mocytoma or paraganglioma17 is available on Zenodo: https://doi.org/
10.5281/zenodo.7749613. Esophageal cancer screening-trial data20 is
available on GitHub: https://github.com/Gaooooye/Esophageal-
cAncer-Screening-Trial. The hereditary hearing loss trial data24 is
available on Mendeley: https://data.mendeley.com/datasets/
6mh8mpnbgv/1. The data on cardiac amyloidosis (“derivation data-
set”) is available per the original study25 at https://www.nature.com/
articles/s41467-021-22876-9. Source data of Figures are provided in
this paper. Source data are provided in this paper.
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Code availability
ChatGPT Advanced Data Analysis (previously known as “Code Inter-
preter”) was utilized for analyses andmay be accessed via https://chat.
openai.com for ChatGPT Plus users. Source codes for training, evalu-
ating, and optimizing the ML models, as well as for data pre-proces-
sing, statistical analysis, and visualizations, are publicly available at
https://github.com/tayebiarasteh/LLMmed. The code was developed
in Python v3.9.18 using open-source libraries including shap (v0.44.0),
NumPy (v1.26.2), SciPy (v1.11.4), lightgbm (v4.1.0),mne (v1.6.0), pandas
(v2.1.1), and scikit-learn (v1.3.0). All source codes are permanently
archived on Zenodo and are accessible via ref. 57.

Materials availability
The hardware used in our experiments included an Intel CPU with
eight cores and 16 GB RAM. No GPU was utilized.
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