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cancer pathology: a literature review
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Abstract

This review discusses the profound impact of artificial intelligence (Al) on breast cancer (BC) diagnosis and manage-
ment within the field of pathology. It examines the various applications of Al across diverse aspects of BC pathology,
highlighting key findings from multiple studies. Integrating Al into routine pathology practice stands to improve
diagnostic accuracy, thereby contributing to reducing avoidable errors. Additionally, Al has excelled in identifying
invasive breast tumors and lymph node metastasis through its capacity to process large whole-slide images adeptly.
Adaptive sampling techniques and powerful convolutional neural networks mark these achievements. The evaluation
of hormonal status, which is imperative for BC treatment choices, has also been enhanced by Al quantitative analysis,
aiding interobserver concordance and reliability. Breast cancer grading and mitotic count evaluation also benefit
from Al intervention. Al-based frameworks effectively classify breast carcinomas, even for moderately graded cases
that traditional methods struggle with. Moreover, Al-assisted mitotic figures quantification surpasses manual counting
in precision and sensitivity, fostering improved prognosis. The assessment of tumor-infiltrating lymphocytes in triple-
negative breast cancer using Al yields insights into patient survival prognosis. Furthermore, Al-powered predictions
of neoadjuvant chemotherapy response demonstrate potential for streamlining treatment strategies. Addressing
limitations, such as preanalytical variables, annotation demands, and differentiation challenges, is pivotal for realizing
Al's full potential in BC pathology. Despite the existing hurdles, Al's multifaceted contributions to BC pathology hold
great promise, providing enhanced accuracy, efficiency, and standardization. Continued research and innovation

are crucial for overcoming obstacles and fully harnessing Al's transformative capabilities in breast cancer diagnosis
and assessment.
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Background

Artificial intelligence (AI) has caused a paradigm change
in the world of industrial activity, and its remarkable
effects are expected to spread to the field of pathology in
medicine. Al is the capacity of robots to emulate or equal
human intelligence (HI) [1]. Machine learning, deep
learning, neural networks, natural language processing,
computer vision, and cognitive computing are all key
components of Al. The main goal of Al is to create tech-
nology that enables computer systems to function intel-
ligently and independently, producing results that are on
par with, if not better than, those of HI [2, 3].

Deep learning aims to enhance accuracy and minimize
human error, alongside pathologists without replacing
their role, fostering a collaborative approach for improved
diagnostic outcomes [1]. Deep learning has emerged as a
promising tool for assisting in the diagnosis and grading
of breast cancer (BC), identifying lymph node metasta-
sis, and providing prognostic and predictive information.
This is significant as BC is the leading cancer type among
women (over 10% in several European countries and the
US) [4-6]. The use of Al algorithms in BC is also gain-
ing popularity. Integrating these Al algorithms into the
digital workflow can greatly help pathologists by making
their work more efficient and accurate. It reduces repeti-
tive tasks such as counting mitoses and detecting lymph
node metastases and helps reduce diagnostic errors.

Researchers have used large, high-quality datasets to
develop computer programs that can detect metastasis to
lymph nodes [7]. Additionally, Al algorithms can provide
new tools for pathologists to handle emerging assess-
ments. Moreover, these algorithms may even be able to
replace some expensive molecular tests used in breast
pathology [8]. Breast cancer treatment has evolved, with
neoadjuvant chemotherapy (NAC) now commonly used,
especially for locally advanced cases. With the help of Al
it has become possible to predict the effect of neoadju-
vant chemotherapy [9].

However, the large variability in digital images caused
by variations in preanalytical laboratory techniques,
staining methods, and scanners might make subsequent
image analysis difficult, which is a major factor in the lack
of robustness validation for many Al systems [10-13].

Workflow diagram

Based on the currently available literature, Open-source
Al applications in breast pathology can be summarized
into the following categories based on their purpose.

1. Diagnostic (Table 1): The reported data focus on the
development and evaluation of Al-based tools for
precise diagnosis in breast pathology. It utilizes histo-
logical images and computational methods to distin-
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guish between different grades, detect invasive parts
and localize metastatic spots.

2. Predictive (Table 2): It explores the use of Al to pre-
dict specific outcome or treatment response in BC
patients. This includes the quantification of biomark-
ers including estrogen receptor (ER), progesterone
receptor (PR), HER2 and Ki-67 (some of these are
also prognostic factors) for targeted therapy, the
response to NAC and risk categorization for adjuvant
chemotherapy in ER-positive/HER2-negative breast
cancer.

3. Prognostic (Table 3): This review investigates the
use of Al to assess prognostic features in BC, such as
tumor infiltrating lymphocytes (TILs), mitosis count-
ing and grading levels.

Subsequently, we elucidate the existing commercial
platforms (Table 4) that facilitate the incorporation of
artificial intelligence into breast cancer research.

Al in breast cancer diagnosis

Accurate histopathological diagnosis is crucial for BC as
patient numbers surge and pathologist resources dwindle
[3]. Therefore, efforts have been made to overcome this
concern. Fondén et al. [16] presents a computer-aided
diagnosis (CAD) tool for automated malignancy assess-
ment of breast tissue samples. The method utilizes histo-
logical images and calculates three sets of features related
to nuclei, color regions, and textures. The method was
evaluated rigorously using cross-validation and exter-
nal image sets, achieving accuracy levels ranging from
61.11% to 75.8%. The results demonstrate the tool’s capa-
bility to accurately distinguish between four malignancy
levels (normal, benign, in situ, and malignant) and out-
perform other state-of-the-art methods based on feature
extraction. This approach has the potential to enhance
the CAD of BC and improve early diagnosis, contribut-
ing to the prevention of avoidable deaths. Another study,
conducted by Cruz-Roa et al. [11] introduce a method
called high-throughput adaptive sampling for whole-
slide histopathology image analysis (HASHI). Traditional
convolutional neural networks (CNNs) struggle with
large WSIs due to the enormous number of parameters
required. HASHI addresses this issue by using an effi-
cient adaptive sampling method and a powerful CNN-
based classifier. The method was trained and validated
on three different data cohorts involving nearly 500 cases
and independently tested on 195 studies from The Can-
cer Genome Atlas. The results showed that the adaptive
sampling method effectively handles WSI, achieving
comparable accuracy with fewer samples. The HASHI
demonstrated effectiveness and robustness across
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different sites, scanners, and platforms, with an average
Dice coefficient of 76% on an independent test dataset.
The efforts have even been extended to include a study
performed in the Middle East, specifically in Morocco, by
El Agouri et al. [17]. This study aims to develop a deep
learning-based approach for the efficient classification
of BC histopathological images. Despite the limited data
size used in this study, the classification model demon-
strated good generalization performance, high accuracy,
and sensitivity in detecting carcinoma rates, indicating
the potential of the model to assist the pathologist in pre-
cise BC diagnosis.

The transition from the preinvasive stage of ductal
carcinoma in situ (DCIS) to invasive ductal carcinoma
(IDC) is a pivotal event in breast cancer progression [28].
Myoepithelial cells play a crucial role in the clinical diag-
nosis of DCIS and IDC. Their presence serves as a signifi-
cant diagnostic criterion for pathologists. Additionally,
when evaluating fine needle aspiration (FNA) cytology
smears, the number of myoepithelial cells aids in differ-
entiating between benign proliferative breast disease and
invasive tumors [29]. A study conducted by Yamamoto
et al. [14]. demonstrated that machine learning systems
can classify different histological types of intraductal
proliferative lesions based solely on subtle morphologi-
cal variations observed in myoepithelial cells that cannot
be detected by the human eye and without considering
epithelial tumor cells. This study reveals that myoepithe-
lial cell nuclei in DCIS lesions exhibit a distinct flattened
shape that can be recognized through computational
methods. Additionally, a biological mechanism based on
paracrine cross-talk mechanism has been proposed to
explain the progression of DCIS to IDC. This highlights
the potential of using machine learning algorithms to
enhance our understanding of BC pathology and improve
diagnostic accuracy in identifying specific subtypes of
intraductal proliferative lesions.

Metastasis location is crucial in BC staging, for which
patch-based frameworks are commonly used. These
frameworks extract fixed-size patches from whole slide
images to train a CNN classifier that detects tumor
regions. Histopathologists analyze whole slide images
to identify tumor features and metastasis regions, but
this process is time-consuming and prone to errors [30].
Additionally, efficiency is a challenge due to overlapping
regions, leading to computational redundancy. Wang
et al. [4] addressed this challenge by introducing a new
two-stream network for identifying tumor metastasis
cells in whole slide images. Scan-based frameworks uti-
lize fully CNNs for faster inference by using arbitrary
image blocks. Multiresolution image pyramids, combin-
ing multiple magnification patches, can improve perfor-
mance and promise in BC metastasis location tasks and
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achieve impressive results, with a high FROC score. This
method also indicates a faster inference time compared
to existing approaches. Moreover, the study demon-
strated the effectiveness of the high magnification net-
work, which also contributed to the high FROC score. A
recent application, by Challa et al. [18] proposes the use
of a digital imaging analysis “metastasis AI” detection app
(Visiopharm Integrator System metastasis Al algorithm)
to screen lymph nodes for metastases in BC patients,
aiming to improve diagnostic accuracy and pathologists’
efficiency. The AI algorithm demonstrated an overall
sensitivity and negative predictive value (NPV) of 100%,
making it a promising screening tool before pathologists’
review of H&E-stained slides. The app’s integration with
the clinical workflow reduced the need for immunohisto-
chemical staining in some cases. However, the study had
limitations, including a retrospective design and the need
for pathologists to carefully review and confirm positive
cases identified by the AI algorithm. Steiner et al. [15]
reviewed lymph node metastasis in two modes: unas-
sisted and assisted by the algorithm. The results showed
that the algorithm-assisted pathologists had higher accu-
racy, especially in detecting small cancer cells. The review
time per image was also shorter with the algorithm’s
assistance. Pathologists found it easier to classify images
when using the algorithm. Overall, the study suggests
that using a deep learning algorithm can improve accu-
racy and efficiency in digital pathology.

Prediction of breast cancer behavior

The Ki-67 index is used to provide information about
the growth rate and aggressiveness of the tumor. How-
ever, the evaluation of Ki67 proliferation has long been a
subject of uncertainty among pathologists, necessitating
the development of a standardized method to assess this
important factor. A study by Abele et al. [10] assessed the
Mindpeak Breast Ki-67 Rol and Mindpeak ER/PR Rol
for quantifying Ki-67, ER, and progesterone receptor PR
in breast cancer. This tool demonstrates reliability and
receives confirmation from most pathologists across a
wide range of image variances and indicates the potential
of Al assistance to enhance interobserver agreement and
improve the reliability of immunohistochemical scoring
in real-world clinical settings. However, could we depend
only on Al for this analysis? In this retrospective study,
by Bodén et al. [19] Ki67 areas were assessed using a
human-in-the-loop digital image analysis (DIA) method,
and the results were compared with visual and automatic
approaches. The analysis revealed that visual estimation
performed significantly worse than DIA alone and DIA
with human-in-the-loop corrections, as indicated by a
higher standard deviation of the error in the Ki67 index.
While the addition of human-in-the-loop corrections
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did not improve the overall results, it proved valuable
in addressing major DIA errors related to faint staining
and tumor-stroma separation on an individual case basis.
The study suggests that human-in-the-loop corrections
primarily serve to rectify significant weaknesses in DIA
applications rather than refining quantifications. A recent
study by Shafi et al. [20] used Visiopharm automated ER
DIA, having a fully automated digital workflow with elim-
inating manual intervention for ER immunohistochem-
istry. The process involves scanning ER IHC slides and
streaming them directly into the digital platform with-
out downloading/uploading. The results demonstrate a
high concordance (93.8%) between automated DIA and
pathologists’ manual scoring, making it a reliable tool for
determining ER status in breast carcinoma. While there
are some pitfalls identified, adjustments to the algorithm
or manual annotation can address them effectively. The
integration of automated DIA into routine clinical work-
flow is shown to be feasible, potentially saving time and
labor for pathologists. Moving to HER2, this is the first
study to investigate the correlation between the response
to anti-HER2 NAC and HER2 protein expression using
digital image analysis (Visiopharm HER2-CONNECT
App) in HER2 +BC patients. The study demonstrates an
excellent correlation between HER2 DIA connectivity
and clinical outcomes in patients treated with anti-HER2
NAC. This DIA provides an objective and quantita-
tive assessment of HER2 protein expression and shows
potential as a predictive factor for achieving a pathologi-
cal complete response (pCR). Additionally, HER2 DIA
values are moderately associated with HER2 FISH copy
numbers/ratios, suggesting that HER2 copy number may
be more accurate in predicting HER2 protein expression
than the HER2/CEP17 ratio [13]. To validate this applica-
tion, one of the largest studies in this regard involved 612
invasive breast carcinomas. The data demonstrate that
HER2 IHC DIA is a reliable method for measuring HER2
protein expression, with excellent concordance (87.3%)
with pathologists’ manual scoring and a 16% reduction in
equivocal case numbers. The study also shows that HER2
IHC DIA accurately distinguishes HER2 FISH-positive
and -negative cases, although a small number of discord-
ant cases (0.8%) were observed. The HER2 IHC connec-
tivity value correlates better with HER2 copy number
than the HER2/CEP17 ratio, suggesting that it may be a
more accurate predictor of HER2 protein expression and
response to anti-HER?2 targeted therapy [12].

Predicting the effectiveness of NAC prior to admin-
istration is crucial to avoid unnecessary treatments.
A promising approach was conducted by Shen et al.
[9] This study aims to predict the effectiveness of NAC
in BC patients using Al analysis of H&E images of pre-
chemotherapy needle biopsies. A novel pipeline system
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has been developed, consisting of three independent
models focusing on different cancer atypia characteris-
tics. This system achieved an impressive 95.15% accuracy
in predicting NAC response in a test set of 103 cases.
The authors suggest that this Al system could contrib-
ute to personalized medicine in NAC therapy for breast
cancer. A recent study by Aswolinskiy et al. [22] intro-
duces interpretable computational biomarkers such as
TILS, PROACTING segmentation-based biomarkers
and mitotic count derived from H&E stained slides, for
predicting the response to neoadjuvant chemotherapy
in breast cancer. The approach contrasts with existing
deep-learning models, offering greater interpretability
through hypothesis-driven biomarkers. The PROACT-
ING biomarkers show potential in predicting patho-
logical complete response (pCR). Particularly, the TILs
biomarker exhibits promising sensitivity in TNBC and
Luminal B cohorts, suggesting its clinical application
for distinguishing responders from non-responders and
reducing overtreatment. The study emphasizes the broad
applicability of computational biomarkers, especially in
routine clinical practice with H&E staining, and high-
lights considerations for improved model applicability
and TIL scoring interpretation. Another study by Sae-
dnia et al. [23] introduces a hierarchical deep learning
framework for predicting breast cancer response to NAC
using digital histopathological images. Unlike the previ-
ous study, this model incorporates a patch-level pro-
cessing module, a tumor-level processing module, and
a patient-level response prediction module, providing
a comprehensive approach. The use of a self-attention-
guided convolutional network based on the CoAtNet
architecture at the patch level, coupled with ViT models
at the tumor level, enhances the extraction of local infor-
mation within tumor patches. The study emphasizes the
significance of combining convolutional and self-atten-
tion modules, demonstrating superior performance in
extracting informative features. Importantly, the hierar-
chical model outperforms two-level and patch-level-only
models in predicting NAC response. The study further
explores the importance of systematic strategies for fus-
ing patch and tumor-level information on both tumor
and patient levels, showcasing the necessity of a nuanced
approach for more accurate predictions. Last, this recent
study by Huang et al. [21] uses Al algorithms to achieve
the same purpose. This approach provided robust and
reproducible feature extraction, including information
about the tumor immune microenvironment, such as
TILs by developing of a whole slide image (WSI) feature
extraction pipeline, named IMPRESS, that quantita-
tively evaluates histopathological features extracted from
both H&E-stained and IHC-stained WSIs. Unlike previ-
ous studies, this research leverages the paired H&E and

Page 12 0of 18

IHC images, enabling a robust and reproducible feature
extraction pipeline at the WSI level. The integration of
IHC-stained images provides detailed tumor immune
micro-environment information, enhancing the char-
acterization of the tumor microenvironment. The study
further demonstrates the interpretability and predictive
accuracy of the Al-based automatic feature extraction
pipeline, outperforming models based on pathologists’
assessments and producing abundant reproducible inter-
pretable features. Additionally, the investigation of clin-
icopathologic features in two breast cancer subtypes,
HER2+and TNBC, unveils common and different fea-
ture behaviors, highlighting the immunogenic nature of
breast cancer.

Whitney et al. [31] investigated the use of computer
analysis to predict BC risk categories determined by the
Oncotype DX test. They extracted various nuclear mor-
phology features from 178 patients’ images and used
machine learning classifiers to identify the most dis-
criminating features. The study found that computerized
image analysis could potentially predict the Oncotype DX
risk categories for early-stage estrogen receptor-positive
breast cancer. The accuracy of the models ranged from 75
to 86% when tested on an independent validation set.

Al and breast cancer prognosis

Al has the potential to serve as an assisting tool for
pathologists in grading breast carcinoma, contributing
to a more standardized and efficient diagnosis and sub-
sequent predictable prognosis. Breast carcinoma with a
moderate grade (known as NHG 2) has been an area of
concern. They are often difficult to categorize using con-
ventional methods because they have similarities with
low-grade (NGH1) and high-grade tumors (NHG3) [6]. A
study conducted by Mantrala et al. [27] focused on eval-
uating the concordance between Al and pathologists in
grading breast carcinoma. The study developed an auto-
mated framework based on deep learning to assess the
Nottingham Grading System (NGS). The results revealed
a moderate level of concordance for the overall grading.
Importantly, there were no significant differences in con-
cordance between pathologists alone and pathologists
combined with AI. Wang et al. developed a new method
called DeepGrade to classify this specific category
(NHG2) more accurately. This method helps provide
more consistent and precise grading. The results show
that DeepGrade can also predict the prognosis of NHG2
tumors as effectively as other methods that analyze gene
expression using regular stained tissue samples, which is
faster and more cost-effective. DeepGrade can also pro-
vide additional information about the aggressiveness of
the tumor, which can help doctors make decisions about
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the best treatment options, especially for certain types of
BC and de-escalation of chemotherapy in particular [6].
The evaluation of mitosis in BC is important for prog-
nosis, as it serves as a significant prognostic marker.
Counting mitotic figures helps determine the grading
of the tumor and aids in treatment decisions. Inter- and
interlaboratory variation in manual mitotic count pre-
sents a challenge, which Al coupled with whole slide
imaging aims to address. Pantanowitz et al. [24] evalu-
ated the use of Al in quantifying mitotic figures in whole
slide images of invasive breast ductal carcinoma. In this
study, readers of different expertise levels then counted
mitotic figures with and without Al assistance. The find-
ings demonstrated improved accuracy, precision, and
sensitivity with Al support across all experience levels
while also reducing false positives and saving 27.8% of
time. The study concludes that AI can enhance the preci-
sion and efficiency of mitotic figure quantification, lead-
ing to standardized pathology practices and generating
enthusiasm among pathologists for integrating Al into
routine tasks such as mitotic counting. Even in phyllodes
tumors, accurate mitosis counting is important for grad-
ing. This study, by Chow et al. [25], aimed to determine
the best method for counting mitotic figures in phyllodes
tumors using digital pathology. They compared count-
ing mitoses in 10 high-power fields (HPFs) and counting
mitoses on the WSI. Both methods showed similar cor-
relations with tumor grade, stromal atypia, and stromal
hypercellularity. However, neither method showed signif-
icant correlations with patient age or tumor size.
Approximately 15% of breast cancers are classified
as triple-negative, which has an aggressive nature and a
high risk of recurrence [32]. Tumor-infiltrating lympho-
cytes are considered an important prognostic biomarker
for TNBC [33, 34]. A higher density of TILs is associ-
ated with an improved prognosis [35]. Consequently, it
is fundamental to assess the quantity of TILs accurately
and precisely to better understand and manage TNBC.
Balkenhol et al [26] explored diverse methods for objec-
tively assessing TILs using immunohistochemically
stained sections, correlating findings with patient out-
comes. Employing automated deep learning analysis for
TIL assessment, we scrutinized CD3, CD8, and FOXP3
markers in various tumor regions. Results revealed a
consistent negative correlation between TIL abundance
and recurrence-free survival (RFS) and overall survival
(OS), irrespective of markers or measurement regions.
Ratios between markers (CD3/CD8) were found to be
poorly prognostic and discouraged. Despite the recog-
nized prognostic value of TILs in breast cancer, a lack of
standardized assessment methods hinders comparability
across studies. Current protocols, such as those proposed
by the International TIL Working Group (ITWG) [36],
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often prioritize feasibility and cost reduction. This com-
putational pathology approach demonstrated the robust-
ness of TILs as biomarkers, unaffected by methodological
variables, suggesting potential for data-driven optimiza-
tion of assessment protocols. Focusing on TNBC, exclu-
sively assessing tumor stroma, as per ITWG guidelines,
did not compromise prognostic value. The study suggests
that TILs serve as reliable biomarkers, emphasizing their
stability across markers and measurement regions. While
influenced by the Immunoscore consortium’s method-
ology used in colon cancer [37], this study found both
intra-tumoral and margin TILs to contain prognostic
information. Combining multiple markers through ratios
did not enhance prognostic value, questioning the need
for more than one marker in TNBC TIL assessment. Uti-
lizing multiplex immunohistochemistry and deep learn-
ing, the aim is to minimize human subjectivity. Despite
concerns about accessibility, the study anticipates wide-
spread AI implementation in pathology diagnostics,
translating results into essays using straightforward
staining protocols.

Limitations

The integration of Al-driven solutions in BC diagnos-
tics is transforming the landscape of pathology practices.
These innovative tools empower healthcare profession-
als, improve accuracy, and provide standardized assess-
ments, leading to better patient care and outcomes. As
Al technology continues to advance, we can expect even
more sophisticated solutions that further revolutionize
BC diagnostics and treatment approaches, offering hope
for a future where BC becomes more manageable and
treatable.

1- Both pathologists and the Al tool encountered chal-
lenges in scoring due to restrictions stemming from
various preanalytical variables. Poor sample qual-
ity, staining artifacts, the presence of air bubbles,
and unfamiliar staining patterns posed difficulties
in accurately assessing the samples. These factors
adversely affected the performance of both human
pathologists and the Al tool in scoring the samples.
It highlights the importance of addressing preanalyti-
cal variables to improve the accuracy and reliability
of scoring methods in pathology [10-13].

2- In terms of metastatic localization and marking
numerous pixels in each image, such extensive man-
ual annotation can be challenging and may hinder
the efficiency and scalability of the algorithm. This
process is labor-intensive and time-consuming [4].
In addition, the multiple-pipeline Al system to pre-
dict the efficacy of NAC relies partially on manual
sampling of ROIs from annotated cancer regions [9].
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Additionally, automatic annotations for ductal carci-
noma (DCIS) in situ were not available through using
Deep Grade method to categorize the breast NHG2
tumors and method of HASHI to detect the inva-
sive part. This limitation could affect the accuracy of
the method and to overcome it, manual annotations
DCIS would be necessary [6, 11].

Standardization of mitosis counting and lack of
agreement on area size for mitosis counting: There is
a need to establish standardized methods for count-
ing mitoses, including determining the area to count
in the whole WSL. It is recommended to count multi-
ple screens at x40 magnification to achieve a 3 mma2
area size, equivalent to 10 high-power fields (HPF)
of a standard microscope with a 0.62 field diameter
[38]. The use of H&E-stained tissue sections may lead
to the potential omission of mitotic figures due to tis-
sue or imaging artifacts. The incorporation of addi-
tional biomarkers, such as Phosphorylated Histone
H3 (PHH3), could have helped objectively confirm
the presence of mitotic figures [24].

Regarding the use of this innovative crowdsourcing
dataset method called scalable variational Gaussian
processes (SVGPCR), the process of quantizing seg-
mentation annotations to the patch level results in a
loss of detail, which may limit its effectiveness in rep-
resenting fine details in segmentation problems [39].
The lack of a uniform and established assessment
method for TILs in BC leads to difficulty in compar-
ing studies and a need for guidance in larger valida-
tion studies. A study, by Balkenhol et al. [26] focused
specifically on TNBC, and the generalizability of the
findings to other BC subtypes is unknown. The seg-
mentation of tumor cells using automated algorithms
was not optimal for some tumors, potentially intro-
ducing noise to the analysis.

The algorithm used in the study of Steiner et al. [15]
could detect metastatic tumors but did not provide
information on the positioning of these foci within
the lymph nodes or specific diagnostic features.
Additionally, there is increasing worry about the
potential for overreliance on the algorithm, and the
impact of this issue has not been investigated yet by
researchers.

Some issues do not directly limit the use of Al in
pathology. For instance, incorporating a broader
range of cases can improve the representation and
generalizability of Al models. Furthermore, consider-
ing additional prognostic features and investigating
the influence of staining and scanning variations can
help optimize the performance and applicability of
Al algorithms in real-world clinical settings [31].
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Future directions

Exploring accuracy improvements in Al assistance
through controlled ROI selection, investigating the
impact of AI tools on diagnostic speed and interob-
server variance, addressing ethical considerations, and
ultimately enhancing overall accuracy for personalized
patient treatment [10]. Regarding fast cancer metastasis
detection, further research is needed to limit the use of
pixel annotations through the usage of a two-stream net-
work for learning histopathological images, especially in
metastasis localization. This approach can enhance effi-
ciency and facilitate faster analysis of large-scale data-
sets. This approach holds the potential for accelerating
the identification of cancer metastases and could have
broader implications for high-throughput histopatho-
logical image analysis [4]. The prospect is not limited
to detection only but should extend to determine the
clinical utility and value of assistive tools. By developing
tools that offer detailed information about tumor foci,
such as their position in relation to lymph nodes or spe-
cific diagnostic characteristics (extranodal extension and
lymphovascular invasion), the accuracy of diagnoses can
be improved. It is also important to assess how assistive
reads impact the use of additional diagnostic tests, the
categorization of prognosis, and the organization of cases
based on algorithm predictions. These evaluations will
provide valuable insights into the benefits of intelligent
tools in digital pathology [15, 18].

In the multiple AI pipeline system to predict the NAC
response, the task involves developing an Al system capa-
ble of automatically identifying and classifying specific
nuclear phenotypes exhibited by different cancer sub-
types. This requires implementing advanced automation
techniques within the AI system, enabling it to analyze
and interpret complex nuclear features from histopatho-
logical images or other relevant data sources. By achiev-
ing full automation, the AI system would streamline the
process of identifying distinct nuclear phenotypes asso-
ciated with various cancer subtypes, potentially leading
to more accurate diagnoses and personalized treatment
strategies [9].

Further research is needed to establish a standardized
and data-driven approach for assessing TILs as prog-
nostic biomarkers in breast cancer. Larger studies are
required to evaluate the superiority of different image
analysis algorithms in predicting survival outcomes.
Exploration of additional markers and measurement
regions may provide further insights into the prognos-
tic value of TILs. The implementation of Al and digital
pathology techniques, along with multiplex immunohis-
tochemistry, may contribute to the widespread adoption
of automated TIL assessment in pathology laborato-
ries. Prospective validation studies can build upon these
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findings and help refine the methodology for TIL assess-
ment, leading to improved patient outcomes and person-
alized treatment strategies [26].

In terms of Phyllodes Tumor Mitoses counting, further
research with larger sample sizes and broader timeframes
is needed to validate the findings and ensure generaliza-
bility. The development and validation of an Al algorithm
for accurate mitosis counting in phyllodes tumors could
potentially improve efficiency and consistency in pathol-
ogy practice [25]. Currently, there is a need to establish
consistent methods for counting mitotic figures in whole
slide images (W SIs) used for cancer diagnosis. Determin-
ing the appropriate area to count, selecting hotspots, and
deciding on the counting approach requires evidence-
based studies. Unfortunately, there is no agreement on
the size of the area to count using WSI, with different
studies using varying sizes [40—42]. Until standardized
guidelines are developed, it is recommended to count
multiple screens at x40 magnification, which would pro-
vide an area size of 3mm?2, equivalent to 10 high-power
fields (HPF) of a standard microscope with a 0.62 field
diameter [38].

Using Oncotype DX to integrate morphological and
molecular measurements and improve BC risk assess-
ment, particularly for intermediate-risk patients, can
leverage image analysis and genomic data analysis to
enhance risk stratification and treatment decisions. The
study highlights the need to further explore the impact
of staining and scanning variations on features and clas-
sification results, aiming for more robust Al-based
pathology analysis. Future research could investigate the
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correlation between identified features and long-term
disease recurrence or patient outcomes, establishing a
direct link between Al-based risk assessment and clinical
outcomes [31].

Integrating AI with human expertise can enhance the
accuracy and precision of the process. Specifically, in
tasks such as detecting DCIS and nonmalignant tumor
presentations, manual annotation of regions of interest
(ROIs) remains necessary. Human involvement ensures a
comprehensive understanding of complex cases that may
require expert judgment and interpretation. Thus, the
collaboration between AI and human experts allows for
improved outcomes in these challenging areas of diagno-
sis and assessment [11].

Current commercially available Al platforms/algorithms

in breast pathology

Advancements in Al are revolutionizing BC diagnostics,
significantly improving accuracy, efficiency, and consist-
ency in pathology analysis. Several innovative Al-based
tools are commercially available, offering pathologists
and oncologists valuable support in the fight against
breast cancer.

Mindpeak (Hamburg, Germany) has made a significant
contribution to BC diagnostics with its suite of automated
image analysis software modules. The modules, including
Mindpeak Breast HER2 ROI (region of interest, Mindpeak
Breast Ki-67 HS, and Mindpeak Breast ER/PR, enable the
automated analysis of digital histopathology images of
human invasive breast carcinoma tissue samples without
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Fig. 1 Automated lymph node metastasis detection using Visiopharm. A Downloading lymph node whole slide image metadata from image
managing system; B Streaming the whole slide image in Visiopharm; C Analyzing lymph node metastasis using Visiopharm App; D demonstrating
results with metastasis highlighted on image and measurement of the largest metastasis
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the need for manual fine-tuning in each lab. This stream-
lines the analysis process, making it more efficient and
consistent across different institutions. Furthermore,
Mindpeak’s forthcoming Metastasis Detection software is
expected to aid cancer experts in detecting and visualiz-
ing metastases associated with breast cancer [10].
OWKIN (Paris, France) RlapsRisk " BC is an innova-
tive Al diagnostic tool designed to assist pathologists
and oncologists in determining the most appropriate
treatment pathway for early BC patients. The test is spe-
cifically tailored for adults with ER+/HER2- BC and has
demonstrated superior cumulative sensitivity compared
to standard clinical scoring systems. This tool offers new
possibilities in personalized treatment planning, empow-
ering healthcare professionals to make better-informed
decisions for patients with early breast cancer.
Visiopharm, Fig. 1, (Hovedstaden, Denmark) offers
a range of Al applications for BC diagnostics, certified
under IVDR, ensuring adherence to rigorous regulatory

Fig. 2 Representative images of breast lesions identified by the GALEN Breast (IBEX). A, B Invasive carcinoma; C, D Ductal carcinoma in situ; E, F
Microcalcification. A, C, E original images; B, D, F Images with lesions highlighted by the GALEN Breast (heatmap)
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standards. The Visiopharm ER APP [20] aids in determin-
ing ER positivity and negativity in BC tumors, providing
primary outputs such as the percentage of positive tumor
nuclei and Allred score, which is a combination of inten-
sity and proportion score. The HER2 IHC app utilizes
the HER2-CONNECT " algorithm for automated image
analysis of HER2-stained BC tissue sections, providing
discrete scores corresponding to the HER2 IHC score
per ASCO/CARP guidelines. Both applications streamline
the analysis process and eliminate the need for manual
outlining of tumor regions, saving time and increasing
efficiency for pathologists [12, 13]. Visiopharm Invasive
Tumor Detection (PDS) and Metastasis Detection APP:
Visiopharm’s Invasive Tumor Detection (PDS) is an
automated and objective method for accurately identify-
ing invasive tumor regions. It employs a physical double
stain of p63+CK7/19 to detect invasive tumor compo-
nents, excluding noninvasive components, and signifi-
cantly improves workflow efficiency for pathologists. The
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Metastasis Detection APP simplifies lymph node assess-
ment by accurately detecting and measuring metastases
in H&E-stained lymph nodes associated with breast and
colorectal adenocarcinoma. It improves sensitivity and
specificity compared to manual methods and streamlines
slide sorting, making it a valuable addition to the diag-
nostic workflow [18].

The Paige (New York, United States) Breast Suite
includes Paige Breast and Paige Breast Lymph Node.
Paige Breast effectively detects premalignant and malig-
nant neoplasms, highlighting areas of cancer for con-
fident identification. On the other hand, Paige Breast
Lymph Node uses the same technology employed in
detecting prostate cancer to identify metastases in lymph
node slides with over 98% sensitivity. These applica-
tions enhance diagnostic confidence, prioritize cases for
review, and ultimately lead to better patient outcomes.
Both applications are CE-IVD and UKCA marked, ensur-
ing adherence to the highest quality standards.

IBEX, Fig 2, (Tel Aviv, Israel) GALEN™ BREAST is
another cutting-edge Al-based diagnostic tool designed
to improve productivity and shorten turnaround time
for pathologists. The tool offers a wide array of features,
including case prioritization, slide viewer, IHC preor-
dering, cancer heatmaps, grading, measurements, non-
cancer findings, and Al-driven reporting. With its high
performance in detecting invasive cancer and DCIS,
IBEX GALEN™ BREAST provides unparalleled support
to pathologists in accurate diagnosis and treatment plan-
ning. However, there are still limitations of AI applica-
tions for breast pathology.

The adoption of Al in pathology practice holds several
expected benefits, including automation, elimination of
tedious tasks, improved accuracy, and efficiency. There
is significant enthusiasm among pathologists regarding
the potential of Al in routine practice. Further research
is needed to assess the impact of Al on patient outcomes
and evaluate whether existing scoring systems need revi-
sion in light of AI’s potentially higher accuracy. Stand-
ardization efforts should be pursued, including defining
equivalent units of measurement between glass slides
and WSIs to ensure consistency in quantifying mitoses.
The successful integration of Al into routine workflows
requires continued learning and exploration of best prac-
tices. Challenges related to data quality, algorithm valida-
tion, and regulatory considerations need to be addressed
to ensure reliable and ethical implementation of Al in
pathology [24].

Conclusion

In summary, this review highlights the potential of Al in
assisting pathologists in various aspects of BC diagnosis
and assessment. While AI has demonstrated improved
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accuracy, efficiency, and standardization in the realm of
BC, challenges remain in addressing preanalytical vari-
ables, manual annotation requirements, and limitations
in differentiating certain types of breast lesions. Further
research and development are needed to overcome these
limitations and fully harness the potential of Al in BC
pathology.
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