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The retrainable, comparative gene predictor N-SCAN integrates multigenome modeling and 5� untranslated region
(5� UTR) modeling. In this article, we evaluate N-SCAN’s transcription-start site (TSS) and first exon predictions both
computationally and experimentally. The computational results indicate that N-SCAN is more accurate than any of
the other tools we tested at predicting the TSS and the complete first exon. It is the only one of these tools that can
predict complete gene structures together with 5� UTRs. Experimental evaluation shows that N-SCAN can be used to
validate novel UTR introns in human gene predictions that do not overlap any RefSeq gene and even to correct
RefSeq mRNAs by adding validated UTR exons that are missing from RefSeq.

The accuracy with which the protein coding regions of genes can
be predicted is increasing steadily, but state-of-the-art gene pre-
diction systems make no attempt to accurately predict 5� un-
translated regions (UTRs) (Brent 2002; Brent and Guigó 2004).
Several programs predict only the transcription start site (TSS),
including PromoterInspector (Scherf et al. 2000), CpG-promoter
(Isohikhes and Zhang 2000), Eponine (Down and Hubbard
2002), and Dragon Gene Start Finder (DGSF) (Bajic and Seah
2003). FirstEF goes one step further, predicting both boundaries
of the first exon (Davuluri et al. 2001; Brent 2002), which is
either completely or partially noncoding. DOUBLESCAN (Meyer
and Durbin 2002) predicts 5� UTRs, including noncoding exons,
as a part of its overall gene prediction, but no evaluation of the
accuracy of its 5� UTR predictions has been published. In this
article we describe how N-SCAN (Gross and Brent 2005), the lat-
est in the series of TWINSCAN programs, predicts 5� UTRs as part
of an integrated gene prediction process.

Accurately predicting UTRs is important because transcrip-
tional regulatory signals are often located adjacent to the TSS,
and post-transcriptional regulatory sites can often be found in
the 5� UTR. The 5� UTR can also serve a variety of more special-
ized functions. For example, huntingtin, the gene whose ex-
panded (CAG) repeats are responsible for Huntington’s disease,
contains a second open reading frame (ORF) upstream of the one
for the huntingtin protein. The second ORF encodes a peptide
that inhibits expression of the huntingtin mRNA (Lee et al.
2002). There is also growing evidence that many translational
regulatory signals reside in 5� UTRs, including signals that govern
cap-independent translation initiation (Miskimins et al. 2001)
and mRNA stability (Chen et al. 1998).

Accurately modeling 5� UTRs can also be expected to im-
prove prediction accuracy in the protein coding region. For ex-
ample, ∼39% of known human genes contain spliced 5� UTRs
(Davuluri et al. 2001). Except for DOUBLESCAN, current gene
prediction programs do not predict spliced UTRs, so they are
forced to choose between incorporating the UTR splice sites into
false coding exons and ignoring them entirely.

Finally, accurate prediction of 5� UTRs would be useful for
designing RT-PCR experiments to verify predicted ORFs. Without
accurate 5� UTR predictions, designing a primer in the 5� UTR is
difficult, because the distance from the start codon to the TSS or
first upstream splice site can vary from zero to hundreds of
nucleotides.

The gene-prediction system used in this article is N-SCAN.
N-SCAN is a version of TWINSCAN that uses multigenome align-
ments to inform gene prediction, rather than using alignments
between the target genome and one informant genome. The
multigenome alignments are exploited via a tree-structured
HMM that integrates a phylogenetic tree model with the hidden
Markov model used for gene finding (Gross and Brent 2005). This
method is related to other tree HMM methods (Holmes and
Bruno 2001; McAuliffe et al. 2004; Siepel and Haussler 2004a,b),
but it differs from them in a number of important details, includ-
ing the designation of a single target genome in which predic-
tions are to be made. As a result of these differences, NSCAN
includes earlier TWINSCAN models (see Korf et al. 2001) as spe-
cial cases. In this article, we report results on the human genome
that were created by using MULTIZ (Blanchette et al. 2004) align-
ments to the genome sequences of mouse, rat, and chicken, as
well as results on the Drosophila melanogaster genome that were
created using MULTIZ alignments to Drosophila yakuba, Dro-
sophila pseudoobscura, and Anopheles gambiae (a mosquito). The
results include a comparison between our TSS predictions to
those of Eponine, DGSF, and FirstEF, which do not make use of
genome comparisons or ORF models. We also compare our first
exon predictions to those of FirstEF. In addition, two categories
of human, spliced 5� UTRs predicted by N-SCAN are evaluated by
RT-PCR and sequencing: those for which the entire gene is miss-
ing from the current RefSeq mRNA collection, and those for
which the current annotation contains an unspliced 5� UTR, con-
tradicting our prediction.

Results

Model structure

N-SCAN is derived from TWINSCAN 2.0, in which the contigu-
ous region from the predicted promoter to the predicted start
codon is loosely labeled as 5� UTR. The probability model for this
region uses a geometric length distribution and the same
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hexamer distribution as intronic and intergenic regions (Korf et
al. 2001). In contrast to TWINSCAN 2.0, N-SCAN uses four gen-
eralized states to model the 5� UTR exonic regions and one geo-
metric state for UTR introns (Fig. 1). N-SCAN’s generalized states
are not required to have geometric length distributions. One of
these states models unspliced UTRs from the TSS to the start
codon. The other three model initial noncoding exons (from the
TSS to the splice donor), internal noncoding exons (from accep-
tor to donor), and the noncoding segment of the exon contain-
ing the start codon (Table 1). N-SCAN models the DNA sequences
of these regions with fourth-order Markov chains. Separate
Markov chain parameters are used for the states that fall adjacent
to the TSS (E5�SNGL, E5�FIRST) and the states that are separated from
the TSS by one or more introns (E5�INTERNL, E5�LAST), because the
TSS region has distinctive pentamer frequencies. Each of the four
UTR states also has its own evolutionary substitution parameters,
and 5� UTR splice models (which include three bases of the exon)
have a substitution model that is distinct from that of the coding
splice sites.

Computational evaluation

For TSS evaluation we count as a true positive any prediction that
falls within a window from �500 bp to +200 bp around an an-
notated TSS but does not fall in the coding region. TSS annota-
tions were obtained from the Database of Human Transcription
Start Sites (DBTSS), a collection of human cDNA sequences from
oligo-capped libraries (see Methods). TSS predictions from
N-SCAN are compared to strand-specific TSS predictions from
Eponine, DGSF, and FirstEF on the human genome. As can be
seen from Figure 2A, N-SCAN’s sensitivity is at least 15% greater
than that of any other prediction method shown. The specificity
comparison is even more dramatic—N-SCAN’s specificity is
double that of DGSF, triple that Eponine, and quadruple that of
FirstEF. Within the 700-bp window from �500 to +200, 88% of
N-SCAN’s TSS predictions fall in the 400 bp upstream of the true
TSS (Fig. 3). However, the distribution of distances of N-SCAN
predictions from the true TSS peaks ∼100–200 bp upstream of the
true TSS, revealing a slight bias in the model. While N-SCAN has
a greater concentration of predictions near the TSS than any
other system, EPONINE’s predictions are less biased, peaking
0–100 bp upstream of the true TSS (Down and Hubbard 2002),

while FirstEF’s broader distribution peaks 0–100 bp downstream
of the true TSS (data not shown).

First exon predictions are considered matches if their TSSs
are true positives and their splice donors are exactly correct
(single exon genes are not considered first exons). First exons
predicted by FirstEF are evaluated by using two approaches. The
first approach compares predictions against annotations across
the entire genome, while the second follows Davuluri’s recom-
mendation (Davuluri et al. 2001) that the optimal way to employ
FirstEF is in combination with a good gene predictor. Specifically,
Davuluri et al. (2001) suggest using FirstEF predictions only if
they fall within a 15-kb window upstream of a predicted start
codon. This approach reduces sensitivity slightly because some
good predictions fall outside the 15-kb windows, but it increases
specificity greatly because many false positives lie outside the
15-kb windows (the UCSC FirstEF track records 100,059 FirstEF
predictions). To obtain an upper limit on how well this approach
can perform, we use known genes to simulate a gene predictor
with 100% start codon sensitivity. We evaluate first exon predic-
tions with the whole-genome and 15-kb window approaches and
compare with N-SCAN results in Figure 2B. N-SCAN significantly
outperforms FirstEF in both sensitivity and specificity—
N-SCAN’s specificity is about twice that of the best specificity
result from FirstEF. One of N-SCAN’s advantages is the small
number of false positives it predicts; N-SCAN makes 22,242 first
exon predictions on the genome (as well as 3508 gene predic-
tions with no splices). If N-SCAN predictions are employed as the
gene predictor for FirstEF instead of known genes, the results in
Figure 2B are not significantly changed. We find that the main
factor determining first exon accuracy is the accuracy of the
splice donor prediction; if the donor is predicted correctly, then
the first exon is usually correct.

Table 2 shows the match and overlap sensitivity and speci-
ficity for noncoding first exons (E5�FIRST, from the TSS to the
splice donor) and for the final spliced 5� UTR segment (E5�LAST,
from the splice acceptor to the start codon). These are particu-
larly useful for estimating the success rate for RT-PCR primer
placement. The match specificity gives a rough lower bound on
successful, first-exon primer placement for spliced 5� UTRs. If the
predicted feature matches the annotation, then a primer placed
in the predicted feature is very likely to fall in the true feature.
The overlap specificity gives a rough upper bound on successful
primer placement. If the predicted feature does not overlap the
true feature, then a primer placed in the predicted feature is very
unlikely to fall in the true feature. Finally, it is interesting to note
that sensitivity and specificity values for E5�LAST are significantly
greater than the corresponding values for E5�FIRST. For these fea-
tures, we observe that the N-SCAN prediction accuracy tends to
decrease as distance from the coding region increases.

Figure 1. A comparison of state-diagram components that change
from TWINSCAN 2.0 to N-SCAN. Blue states are common to TWINSCAN
2.0 and N-SCAN. Green states in TWINSCAN 2.0 are replaced by red
states in N-SCAN. (A) Promoter and 5�UTR states in TWINSCAN 2.0. (B)
5� UTR and intron states in N-SCAN.

Table 1. Generalized state types by region and
bounding features

Type Region 5� Boundary 3� Boundary

ESNGL CDS Start codon Stop codon
EINIT CDS Start codon Donor
EINT CDS Acceptor Donor
ETERM CDS Acceptor Stop codon
E5�SNGL 5� UTR TSS Start codon
E5�FIRST 5� UTR TSS Donor
E5�INTERNL 5� UTR Acceptor Donor
E5�LAST 5� UTR Acceptor Start codon
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Splice existence is a measure of how accurately N-SCAN pre-
dicts whether a 5� UTR is spliced. Table 2 displays splice existence
results for predictions with correct start codons. N-SCAN identi-
fies unspliced 5� UTRs as being unspliced more accurately than
it identifies spliced 5� UTRs as being spliced. More generally,
N-SCAN is most accurate when predicting features near the cod-
ing region (Table 3). Combining results for spliced and unspliced
UTRs produces a success rate of 86% (sensitivity must equal speci-
ficity in this case). In locating the TSS region from a known start
codon, knowledge of whether a 5�UTR is spliced or unspliced can
make a significant positional difference. In the unspliced case,
the median distance between start codon and TSS is 80 bp, while
for spliced 5� UTRs the median distance is 4600 bp. Therefore, the
ability to accurately predict splice existence alone can be a great
advantage when searching for the TSS.

To test the applicability of this method outside the verte-
brates, we retrained N-SCAN for D. melanogaster by using MULTIZ
alignments with D. yakuba, D. pseudoobscura, and A. gambiae. By
comparing with the RefSeq annotation set and assuming a total
of 13,500 genes (Yandell et al. 2005), we found the TSS sensitivity
was 64% and scaled specificity was 65%—comparable to, but
slightly lower than, the numbers for human.

Experimental validation of predicted 5� UTR introns

We tested introns in predicted 5� UTRs by performing RT-PCR
with one primer designed in the first exon and one in the coding
region, sequencing the product, and aligning the experimental
sequences back to the genome. We tested three groups of genes.

Group DBTSS_Control consists of randomly chosen entries from
the DBTSS with spliced 5� UTRs (Suzuki et al. 2002). To construct
group No_Overlap, we attempted to design primers for all 870
spliced predictions that do not overlap any RefSeq gene and then
selected 74 targets at random from those for which satisfactory
primers could be designed. Group Correct_ATG consists of 43 out
of 53 cases of spliced predictions that satisfy the following con-
ditions: (1) the predicted start codon matches a RefSeq start
codon, (2) the matching RefSeq does not have a spliced 5�UTR,
(3) there are no human mRNA entries in GenBank that indicate
a spliced 5� UTR, and (4) there is no corresponding spliced DBTSS
entry (for 10 out of 53 cases, satisfactory primers were not found).
Table 4 displays both raw and scaled success rates for all three
groups. The computational and experimental results are com-
pared in the Discussion.

Discussion
Accurately predicting 5� UTRs is much harder than is predicting
coding regions, since 5� UTRs do not display codon bias and
generally do not contain long ORFs. The results presented above
represent a significant advance in predicting complete 5� UTRs.
This advance was achieved by using an integrated probabilistic
model of 5� UTRs and coding regions. The overall model contains
submodels for both the DNA sequence and the pattern of cross-
species conservation in splice sites, start and stop codons, and the
interiors of exons. Distinct submodels were used within coding
exons, noncoding regions near the TSS, and noncoding regions
that are separated from the TSS by one or more introns. These
models reflect differences such as the greater frequency of CpG
dinucleotides near the TSSs of many genes and the fact that UTRs
are, on average, more conserved than are nonexonic regions but
less conserved than are coding regions. These differences, to-
gether with the start codon submodel and the absence of in-
frame stop codons in coding regions, enable the system to dis-
tinguish between coding and noncoding regions of the mRNA.

Because the probability model is integrated, accurate 5� UTR
prediction also resulted in improved coding region accuracy.
Such improvements were also reported for DOUBLESCAN, the
only previously published integrated model for predicting 5�

UTRs and coding regions (Meyer and Durbin 2002). In TWIN-
SCAN 2.0, which uses only two genomes, the accuracy of start
codon prediction is moderately enhanced by the addition of the
5� UTR model. In N-SCAN, which uses multigenome alignments

Figure 2. Sensitivity (Sn) and specificity (Sp) for 5� UTR predictions in
the human genome by comparison to aligned sequences from DBTSS. All
Sp values are scaled assuming 25,000 genes in human genome and
assuming the annotation set is a random sample of the full set of human
genes. (A) TSS predictions for Eponine (tan), DGSF (light yellow), FirstEF
(light blue), and N-SCAN (red). (B) First exon predictions for FirstEF (light
blue) and N-SCAN (red) and from FirstEF evaluated in 15-kb windows
upstream of annotated start codons (light purple).

Figure 3. Distribution of the distance between N-SCAN TSS predic-
tions from TSS annotations.

Brown et al.

744 Genome Research
www.genome.org



to detect patterns characteristic of various features within a gene,
the 5� UTR model is critical for the accuracy of coding region
predictions. Because 5� UTR exons are often located adjacent or
relatively close to coding sequence, have a relatively high level of
conservation, and have high GC content, N-SCAN often mistakes
them for coding exons when the 5� UTR model is removed. In the
future it may be possible to use a similar approach for 3� UTR
modeling in order to increase the accuracy with which the ter-
minal exon of the ORF can be predicted (Hajarnavis et al. 2004).

Locating the TSS region is a first step toward identifying
transcriptional regulatory signals. N-SCAN’s high TSS specificity
and sensitivity make it the best available tool for this application.
For full ORF gene verification using RT-PCR followed by direct
sequencing, it is desirable to place one primer in an exonic region
upstream of the start codon. If the primer anneals too close to the
start codon, then the region of high-quality sequencing trace
may begin after the start codon. Furthermore, verifying the read-
ing frame requires that the high-quality sequence contain an
in-frame stop codon upstream of the start codon. However, the
further upstream of the start the primer is designed, the greater
the risk that it does not anneal to the mature 5� UTR but rather
to a UTR intron or even a genomic sequence upstream of the TSS.
That risk can be mitigated by designing primers in the exonic 5�

UTR predicted by N-SCAN. For this application, improved accu-
racy in 5� UTR prediction translates into more successful experi-
ments.

Analysis of the distance between the TSS predicted by
N-SCAN and the true TSS revealed that more predictions fall up-
stream of the true TSS than downstream. This is probably because
we did not include a specific model for the portion of the CpG
island that is upstream of the TSS—the only CpG-rich models
occur in the UTR. Thus, the system will tend to place the entire
CpG island in the UTR because the UTR model provides the best
match for their composition. Adding a state and submodel for
the intergenic portion of the CpG island would probably reduce
the observed upstream bias in TSS prediction.

By experimentally validating predicted novel UTR introns,
we have demonstrated the ability of this system not only to re-
produce known spliced 5� UTRs but to find new ones. Verifying
true 5� UTRs is generally harder than verifying coding exons,
since the 5� ends of mRNAs tend to be degraded first and reverse
transcription tends to fail before reaching the 5� end. Given the
relatively advanced state of the human genome annotation, the

targets we chose are expected to be particularly difficult. One
group of targets consisted of predicted 5� UTR introns for RefSeq
genes where neither the RefSeq itself nor the corresponding
DBTSS entry, if any, nor the GenBank mRNAs, indicated such an
intron. In effect, we attempted to use a de novo gene prediction
program to correct RefSeq. Thus, the scaled success rate of 20% is
surprisingly high. Compared with the computational accuracy
estimates for spliced first exons (25% exact 43% overlap), the
experimental success rate was lower. This is likely due to the fact
that these predictions were specifically selected to contradict
prior evidence from RefSeq and GenBank mRNAs. The fact that
our TSS predictions tend to be a little upstream of the true TSS
also hurts the experimental success rate when the primers are
upstream of the true TSS. The second group of targets consisted of
predicted 5� UTR introns for genes that do not overlap aligned
RefSeq mRNAs. These predicted genes may not exist at all, and if
they do, they are likely to be expressed at a much lower level
and/or under much more specific conditions than the first group.
This is probably responsible for the lower success rate of these
predictions. The success rate can be expected to be much higher
when testing unannotated 5�-UTR intron predictions in a ge-
nome where a higher percentage of true 5�-UTR introns remain
unannotated.

We also retrained N-SCAN for D. melanogaster by using mul-
tigenome alignments from other insects. This completely auto-
mated process yielded TSS accuracies just slightly lower than
those achieved on human. We found this remarkable in view of
the fact that there is no equivalent of DBTSS for flies and that
they appear to lack CpG islands altogether (Hendrich and
Tweedie 2003; Aerts et al. 2004), although there are apparently
other compositional signals in the vicinity of the TSS (Aerts et al.
2004). The true accuracy of the fly predictions may be even
higher, since our estimates had to be made against RefSeq mR-
NAs, which are less reliable indicators of the true TSS than the
sequences in DBTSS.

In an integrated system such as the one presented here,
improvements in the coding region model and the UTR models
are synergistic. Furthermore, many UTR features, such as splice
site signals, are very similar to those in the coding regions. Thus,
the accuracy of 5� UTR prediction is likely to improve in the
coming years, along with that of coding region prediction. As a
consequence, we expect integrated systems to become the stan-
dard for TSS prediction, UTR prediction, and gene prediction.

Methods

Data sets
Build 34 of the human genome was downloaded from http://
genome.ucsc.edu. The downloaded files are masked by UCSC us-
ing RepeatMasker with default settings for human. We unmasked

Table 2. Sensitivity and specificity for the first and last segments
of spliced 5� UTRs (E5�FIRST and E5�LAST) as well as unspliced 5� UTRs
(E5�SNGL), evaluated by comparison to aligned sequences
from DBTSS.

Feature 5� UTR Type

Match Overlap

Sn (%) Sp (%) Sn (%) Sp (%)

E5�FIRST Spliced 25 25 43 43
E5�LAST Spliced 42 43 54 54
E5�SNGL Unspliced 66 68 67 70

The match (both boundaries are true positives) and overlap (the pre-
dicted feature overlaps the annotation by at least one base) values are
displayed. Matches are a special case of overlap and hence they contrib-
ute to the overlap total. All specificity values are scaled assuming that
there are 25,000 genes in the human genome and that the annotation
set is a random sample of them. Rounded to the nearest percentage,
sensitivity and specificity values are equal for match and overlap for both
features.

Table 3. Given a correctly predicted start codon, the 5� UTR
splice existence sensitivity (Sn) and specificity (Sp) on the human
genome, by comparison to DBTSS

Sn (%) Sp (%)

N-SCAN Spliced 5� UTR 80 79
N-SCAN Unspliced 5� UTR 89 90
N-SCAN Total 86 86
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low complexity and simple repeats. The chromosomes were di-
vided into 1-Mb fragments for processing.

The RefSeq alignments for Build 34 were downloaded from
http://genome.ucsc.edu. RefSeq entries without ATG start
codons, without TAA, TGA, or TAG stop codons, without GT
splice donors, and without AG splice acceptors were removed. If
two RefSeq entries overlapped, one was randomly discarded,
leaving no overlapping annotations. After processing, 13,311
genes remain in the annotation set.

Release 3.0 of the DBTSS was downloaded (http://dbtss.
hgc.jp/index.html). The DBTSS was constructed by sequencing
into cDNA libraries constructed by the oligo-capping method
(Maruyama and Sugano 1994). These were mapped to RefSeq
genes. We aligned each DBTSS sequence to a genomic re-
gion around its corresponding RefSeq annotation by using
EST_GENOME (http://www.rfcgr.mrc.ac.uk/Registered/Help/
est_genome/). We then identified the 5�UTR exon–intron struc-
ture and extended the RefSeq annotation. If the RefSeq 5�UTR
structure differed from the DBTSS 5�UTR structure, the DBTSS
structure was used. There are 6118 genes in the resulting anno-
tation set.

The GenBank human mRNA data set aligned to Build 34 of
the genome was downloaded from http://genome.ucsc.edu

Predictions

FirstEF
FirstEF predictions were downloaded from the UCSC track for
Build 34 (http://genome.ucsc.edu). Where FirstEF makes two pre-
dictions in the same cluster, both were used. The UCSC FirstEF
track contained 100,059 first exon predictions.

DGSF
DGSF was downloaded (http://sdmc.lit.org.sg/promoter/
dragonGSF1_0/genestart.htm) and TSS predictions generated
with default parameters on Build 34 of the human genome. DGSF
generated 27,618 TSS predictions.

Eponine
Eponine was downloaded (http://www.sanger.ac.uk/Users/td2/
eponine), and predictions were generated with default param-
eters on Build 34 of the human genome. Eponine generated
58,871 TSS predictions.

Fourfold cross-validation
The RefSeq genes were randomly divided into four sets. DBTSS
genes were divided into four sets by assigning them to the same
set as their corresponding RefSeq entry. For each set, parameters
were trained on the remaining three-fourths of the data and
tested on the chosen set. DBTSS genes were used for 5� UTR fea-

ture training. RefSeq genes were used for all other training. All
N-SCAN results are fourfold cross-validated.

Evaluation measures
If both boundaries of a UTR segment are evaluated as true posi-
tives, then the predicted segment is a correct match. Acceptor,
donor, and start-codon boundaries must match exactly for a true
positive. A true positive predicted TSS boundary falls within
�500 bp and +200 bp of the annotated TSS. Sensitivity is defined
as a measure of how well the predictions cover the annotations.
The sum of all annotations that are matched by a prediction is
divided by the number of annotations to give sensitivity. Speci-
ficity is defined as a measure of how well the annotations cover
the predictions. The sum of all predictions that are matched by
an annotation is divided by the number of predictions to give
specificity. There are cases when more than one prediction can
be considered as correct (such as TSS predictions in a window) for
a particular annotation.

Experimental procedure
We designed PCR primers with Primer3 (Rozen and Skaletsky
2000; http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_
www.cgi) with default parameters except for PRIMER_MIN_
SIZE = 17, PRIMER_MIN_GC = 30, PRIMER_MAX_GC = 70,
PRIMER_OPT_TM = 70, PRIMER_MIN_TM = 65, PRIMER_
MAX_TM = 75, and PRIMER_GC_CLAMP = 2. One primer was
placed in the first exon and one in the coding region with a
buffer (minimum distance) between the primer and the nearest
splice site. The primer design consisted of, at most, three rounds,
increasing the amplicon length with each round: a 300–500-bp
amplicon and a buffer of 10 bp in round 1, a 500–800-bp ampli-
con and a buffer of 30 bp in round 2, and an 800– 1000-bp
amplicon and a buffer of 30 bp in round 3. If a satisfactory primer
pair was found, the subsequent rounds were skipped. Primer se-
quences can be found at http://genes.cse.wustl.edu/brown-2005/.

For all UTR experiments, Poly-A RNA from 20 human tissues
obtained from BD Biosciences (http://www.bdbiosciences.com)
was pooled. First-strand cDNA was generated by using Super-
Script III reverse transcriptase by Oligo-dT priming (Invitrogen).
RT was followed by PCR amplification using Phusion High Fidel-
ity Polymerase. PCR products were purified with a QuickStep 2,
96-well PCR Purification Kit from Edge BioSystems (http://
www.edgebio.com), and sequenced by using both forward
and reverse primers for each predicted gene. Sequencing
traces are available on the auxiliary data Web site: http://
genes.cse.wustl.edu/brown-2005/ and were submitted to http://
www.ncbi.nimh.nih.gov/Traces/.
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