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ABSTRACT
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly 
complex organisms, allowing for the development of sophisticated forms of life. However, this 
complexity has created new categories of dysfunction, including those related to the movement 
of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is 
a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocy
toplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, 
where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with 
neurodegenerative disease. In this review, we summarize the current understanding of nuclear 
pore biology in physiological and pathological contexts and discuss potential therapeutic 
approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
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Introduction

Eukaryotic life depends on the controlled distribu
tion of cytoplasmic and nuclear materials. When this 
partitioning is disrupted, organisms experience 
wide-ranging damage caused by genomic instability, 
an activated inflammatory response, and apoptosis 
[1–4]. A substantial body of evidence indicates that 
nuclear pore injury and nucleocytoplasmic traffick
ing (NCT) defects are a shared feature of neurode
generative diseases. Indeed, nuclear pore complexes 
(NPCs) and NCT are disrupted in Alzheimer’s dis
ease (AD) [5–14], Parkinson’s disease (PD) [15–20], 
Huntington’s disease (HD) [21–23], and amyo
trophic lateral sclerosis and frontotemporal demen
tia (ALS/FTD) [24–50]. Interestingly, NCT defects 
and NPC deterioration also occur in traumatic brain 
injury [51], as well as during normal aging [52–54], 
suggesting that the compromised segregation of 
nuclear and cytoplasmic materials is a general fea
ture of neuronal damage. Moreover, mutations to 
the proteins that make up the nuclear pore, collec
tively known as nucleoporins (Nups), are associated 
with an array of diseases, affecting multiple organ 
systems. Thus, maintenance of the NPC and NCT is 
critical for preserving cell health, a fact that is made 
particularly apparent in cell populations with long- 

lived nuclei, such as neurons. In this review, we cover 
recent advances in our understanding of the struc
ture and function of the NPC, the unique problems 
faced by neurons in preserving NPC and NCT integ
rity, the role of Nups and NCT in disease, and 
potential opportunities for therapeutic intervention 
in diseases where the NPC and NCT are impaired.

Nuclear Pore Structure and Function

To facilitate the exchange of material between the 
cyto- and nucleoplasm, the nuclear envelope (NE) is 
dotted with NPCs, which are multi-protein channels 
made up of ~ 1,000 individual Nups [55]. At ~ 110 
MDa, the NPC is a massive structure with 
a diameter of ~120 nm, and the number of NPCs 
per nucleus ranges from hundreds to well over 
10,000 [56,57]. Neuronal nuclei, like many cells, typi
cally have ~ 2000–5000 NPCs, although other cells of 
the central nervous system, such as oligodendroglia, 
may have different numbers of NPCs [41,58]. The 
NPC can be subdivided into six domains: the cyto
plasmic filaments; the coat nucleoporin complex (also 
known as the Y-complex or Nup107-Nup160 com
plex); the inner ring; the central channel; the trans
membrane or pore membrane proteins (POMs); and 
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the nuclear basket [55,59,60] (Figure 1(a)). The core 
scaffold of the NPC consists of the outer coat, inner 
ring, and central channel and is symmetrical, with 
eight-fold rotational pseudo-symmetry around the 
central channel of the pore, and two-fold symmetry 
across the NE [55,59–62] (Figure 1(b)). On the cyto
plasmic face of the NPC core are the cytoplasmic 
filaments, and the Nups on the nuclear face of the 
NPC comprise the nuclear basket [55,59]. These sets 
of Nups are also known as asymmetric Nups because 
they are predominantly found on only one side of the 
NPC [55,59,61].

The Nups that make up the NPC are diverse 
and include proteins that serve a structural role 
(e.g., the coat nucleoporin complex) as well as 
natively unstructured Nups (e.g., phenylalanine- 
glycine (FG)-Nups of the central channel [63– 
67]) which directly interact with transported 
molecules. Together, the NPC acts as a barrier 
that can selectively gate the movement of cargo 
based on size and biochemical properties. 
Molecules that are below ~ 40 kDa can passively 
move through the NPC, whereas larger mole
cules require assistance by binding to dedicated 
nuclear transport receptors (NTRs) [55]. Efforts 
to understand the discerning nature of the NPC 
have found that the FG-Nups within the central 
channel of the pore are critical for enabling this 
selectivity due to their distinctive emergent 

properties [63–70]. Similar to what is observed 
in cells [71,72], purified FG-Nups can undergo 
liquid–liquid phase separation to form dense 
liquid-like condensates and solid-like hydrogels 
in vitro, both of which can be modified by 
NTRs [63,68,69,73]. Thus, the proteins within 
the central channel of the NPC form 
a biophysical and biochemical barrier that 
demonstrates selective permeability to transport 
proteins [72,74,75].

In addition to forming a barrier between the 
nucleus and cytoplasm, some Nups have direct 
involvement in the transport of specific cargo. 
Cytoplasmic Nup358 (also known as RanBP2) is 
required for the import of DNA methyltransfer
ase 1 associated protein 1 (DMAP-1) [76], and 
nuclear Nup153 promotes the import of the 
DNA damage response protein, 53BP1 [77,78]. 
Additionally, cytoplasmic Nup42 (also known as 
NLP-1) cooperates with Exportin-1 (CRM1) to 
facilitate nuclear export [79]. Several Nups also 
play roles outside of the NPC and NCT. For 
instance, Nups in the coat nucleoporin complex, 
the inner ring, and the nuclear basket interact 
with chromatin and regulate gene expression 
[80–84]. Nups also play roles in cell migration 
[85–88], cell signaling [88–90], the immune 
response [91,92], and autophagy [93,94].

Figure 1. The nuclear pore complex is a large macromolecular structure. (a) The nuclear pore complex (NPC) is comprised of six 
subdomains: the cytoplasmic filaments, the coat nucleoporin complex, the inner ring, the central channel, the transmembrane 
nucleoporins, and the nuclear basket. Many phenylalanine-glycine (FG)-Nups (indicated by an asterisk) are found in the central 
channel. However, FG-Nups are also found at the asymmetric cytoplasmic and nuclear faces of the NPC. (b) The NPC sits within the 
double membrane of the nucleus, and the NPC core demonstrates two-fold symmetry across the nuclear envelope, with the 
asymmetric cytoplasmic filaments and nuclear basket Nups projecting into their corresponding cellular compartments.
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Neuronal Nuclei

NPCs are essential structures, and thus they must be 
actively maintained. In mitotic cells, NPCs are disas
sembled during cell division and reassembled in the 
new daughter cells [95–97]. As part of the process of 
building new nuclei, Nups are subject to quality con
trol mechanisms to preserve NPC integrity across 
generations [1,98–100]. Neurons, however, do not 
divide, and therefore the integrity of neuronal NPCs 
is not monitored via the same strategies as those used 
by dividing cells [101–103]. Instead, Nup integrity is 
preserved by a variety of alternative means, including 
the activity of protein chaperones [104–106], nuclear 
import receptors [35,48,107], and members of the 
endosomal sorting complexes required for transport 
(ESCRT)-III family [44,46,100,103,108,109]. These 
quality control processes guard against protein mis
folding, oxidative stress, DNA damage, and other 
cellular stressors [110].

Because the quality of NPCs in non-dividing 
cells is constantly under surveillance, Nups have 
different lifetimes within neuronal nuclei. For 
example, scaffolding Nups are very long-lived, 
persisting in NPCs for periods spanning months 
to years in the brains of an in vivo rat model 
[111]. In this model, even the relatively mobile 
FG-Nup, Nup98, had a lifespan of several 
months [111]. In cell culture, however, turnover 
rates may be more rapid, with Nups being 
replaced on a timescale of hours to days 
[52,102]. Still, for both in vivo and in vitro mod
els, different Nups demonstrate variable lifetimes 
with Nups that form the scaffold of the NPC 
generally having less rapid turnover [52,112]. 
Thus, Nup renewal in non-dividing cells is not 
a wholesale event, but instead occurs in an ad 
hoc fashion [102]. As such, neurons face 
a particular challenge with respect to NPC integ
rity, as these long-lived proteins must be mon
itored and maintained over decades to prevent 
NPC injury and dysfunction.

Nuclear Pore Injury in Neurodegenerative 
Disease

Given the specific burden placed on neurons to 
maintain NPC health, and the central role of the 
NPC and NCT in integral biological processes, it is 

not surprising that NPC and NCT defects can be 
a feature of neurodegenerative diseases. In this 
section, we will cover NPC and NCT dysfunction 
in Alzheimer’s disease and other tauopathies, 
Parkinson’s disease, Huntington’s disease, and 
ALS/FTD.

Alzheimer’s Disease and Other Tauopathies

Tauopathies are a broad class of neurodegenera
tive disorders that often result in behavioral 
changes, memory defects, and dementia 
[113]. AD is the most notorious tauopathy, but 
this group of diseases also includes FTD, chronic 
traumatic encephalopathy (CTE), corticobasal 
degeneration (CBD), and others [113]. At the cel
lular level, tauopathies are characterized by the 
accumulation of tau protein aggregates in the 
brain [113]. In healthy neurons, tau binds to 
microtubules and stabilizes the cytoskeleton 
[11,113,114], and the affinity of tau for microtu
bules is regulated by its phosphorylation [113]. In 
several tauopathies, specific sites on tau become 
hyperphosphorylated, impairing the interaction 
between tau and microtubules, leading to micro
tubule destabilization and tau mislocalization 
[9,11,14,113,114].

In AD, tau hyperphosphorylation is correlated 
with the severity of neurodegeneration [9,113]. 
When tau is hyperphosphorylated, it interacts 
with the central channel Nups, Nup62, and 
Nup98, leading to their co-aggregation with tau 
in the cytoplasm and subsequent defects in NCT 
[9,11,14]. Nup98 cytoplasmic mislocalization 
occurs in other tauopathies as well, including 
FTD, CBD, and progressive supranuclear palsy 
(PSP) [12]. In model systems, Nup98 exacerbates 
tau aggregation, suggesting that initial co- 
aggregation of Nups and tau could initiate 
a cascade of NCT dysfunction [9]. 
Phosphorylated tau can also be imported into the 
nucleus by NTRs, which results in the mislocaliza
tion of other proteins and nuclear injury [115]. 
Interestingly, the degree to which the nuclear pro
tein TFEB (an autophagy-related transcription fac
tor) is mislocalized to the cytoplasm increases with 
the extent of tau hyperphosphorylation in AD 
brains [116]. As TFEB is important for lysosomal 
biogenesis, this finding indicates a progressive loss 
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of both efficient NCT and general proteostasis in 
relation to tau hyperphosphorylation [116].

Pathological tau mutations can further impact 
Nup levels and localization. In human embryonic 
kidney cells (HEK) cells, expression of the disease- 
associated TauP301L mutant leads to increased 
cytoplasmic levels of multiple Nups, including 
cytoplasmic filament Nups, Nup88 and Nup214; 
coat Nups, Nup85, Nup107, Nup133, and Nup160; 
inner ring Nups, Nup155, Nup188, and Nup205; 
central channel Nup, Nup98; transmembrane Nup, 
Nup210; and nuclear basket Nups, Nup50 and 
Nup153 [117]. These changes in Nup localization 
are accompanied by NE invagination, reduced 
lamin levels, and altered chromatin condensation, 
indicative of severe nuclear injury [117]. As 
a consequence, expression of TauP301L results in 
defective nuclear transport and an altered epige
nomic landscape, leading to cell stress [117]. In 
other studies, the expression of disease-associated 
mutant tau in neurons derived from human 
induced pluripotent stem cells (iPSCs) also com
promises NCT, leading to the mislocalization of 
NCT reporters [114].

Intriguingly, the phosphorylation and misloca
lization of disease-associated tau mutants also cor
respond with abnormal microtubule growth 
patterns [114]. Whereas the growing ends of 
microtubules in wild-type cells project into the 
cell body, the projections of microtubules in cells 
expressing mutant tau grow into the nucleus, 
deforming the NE and leading to harmful mechan
ical stress [114]. Specifically, in iPSC-derived neu
rons from FTD-Tau patients, NPCs are found 
within laminar invaginations and cells show aber
rant NCT [114]. Thus, pathological tau can affect 
NCT directly by interacting with components of 
the NPC and NE, and indirectly, by abandoning its 
role in cytoskeletal organization.

Some tauopathies exhibit stereotypical com
pound pathology, which can worsen NCT deficits 
[113]. For example, AD is also characterized by the 
accumulation of aggregates containing amyloid-β 
(Aβ), both inside and outside of the cell [118]. 
Nuclear Aβ has been described in cell culture 
and in mouse tissue, where it can directly interact 
with the genome to affect gene expression [119]. 
Localization of Aβ to the nucleus can be induced 
by oxidative stress [120] and antibiotic treatment 

[121], but the mechanism by which it enters the 
nucleus is not known. However, oligomers of Aβ 
are less than 40 kDa in size [122], and thus these 
species may passively diffuse through the NPC 
[119]. Another tauopathy that frequently involves 
other proteins is FTD, which is discussed in more 
detail below.

Parkinson’s Disease

PD is a progressive neurodegenerative disease that 
presents with movement abnormalities (e.g., tre
mor, slow movement, rigidity) and, in some cases, 
fatigue, psychosis, and dementia [123]. These 
symptoms develop due to a loss of dopaminergic 
neurons within the substantia nigra, and the sur
viving cells in patient tissue harbor cytoplasmic 
aggregates of the protein α-synuclein [123]. These 
aggregates are also known as Lewy bodies (LBs) 
and contain a diverse collection of proteins includ
ing protein chaperones; proteasomal subunits; tau; 
the nuclear import receptor, Importin 7; and 
nuclear RNA-binding proteins (RBPs) such as 
TDP-43 and hnRNPA2/B1 [17,124]. Thus, the 
accumulation of material in LBs may lead to (or 
result from) defects in NCT.

Although most PD cases are sporadic, ~10–15% 
are inherited, and mutations to proteins such as 
Parkin and LRRK2 lead to nuclear injury 
[15,16,18–20,123]. Parkin is a ubiquitin-protein 
ligase, and one of its targets is the cytoplasmic 
Nup, Nup358 [15]. In cell culture, when wild- 
type Parkin is overexpressed, Nup358 levels are 
significantly decreased, and this decrease is 
affected in a proteasome-dependent manner [15]. 
On the other hand, when a dominant-negative 
Parkin mutant is overexpressed, levels of Nup358 
are only modestly decreased, indicating that active 
Parkin functionality may regulate Nup358 abun
dance [15]. As Parkin mutations likely lead to 
a loss-of-function [123], these data suggest that 
Nup358 quantity and quality may be impacted 
in PD.

By contrast, PD-associated LRRK2 mutations 
typically enhance enzymatic activity [18]. LRRK2 
is a kinase that normally localizes to membranes, 
including the nuclear membrane [16,19]. 
However, in affected tissue from patients with 
PD, LRRK2 colocalizes with LBs [16], and 

4 C. M. FARE AND J. D. ROTHSTEIN



hyperactive disease-associated mutants of LRRK2 
interact less with the NE protein Lamin A/C [19]. 
Expression of these hyperactive LRRK2 mutants 
leads to nuclear membrane deformations in vitro 
and in vivo, phenocopying experimental knock
down of LRRK2 in cell culture [18,19]. These 
results suggest that overactive LRRK2 dissociates 
from the NE, damaging the nucleus through neg
ligence. Indeed, LRRK2-null mice show signs of 
nuclear damage such as accelerated genomic 
instability, neurodegeneration, and motor defects 
[20]. Additionally, cultured dopaminoceptive stria
tal spiny projection neurons from both LRRK2 
mutant and null mice have abnormal nuclear mor
phology [20]. Together, these findings suggest that 
PD-associated LRRK2 mutants have impaired 
interactions with the NE, leading to nuclear injury 
and cell death.

Huntington’s Disease

HD is an inherited form of neurodegeneration 
related to the expansion of a CAG trinucleotide 
repeat in the HTT gene [125]. Translation of these 
CAG repeats produces huntingtin protein (Htt) 
containing a poly-glutamine (polyQ) tract that 
can be dozens of residues long [21–23,125]. 
PolyQ-expanded Htt forms pathological inclusions 
within neuronal nuclei, affecting cells in the stria
tum and cortex [21–23,125]. Cell death in these 
regions leads to disturbed movement, cognitive 
decline, and death [125].

Early studies found that polyQ Htt aggregates 
sequester the central channel Nup, Nup62 [126], 
and that mutant Htt disrupts the NE [127]. Later 
experiments showed that, in addition to Nup62, 
mutant Htt also interacts with the cytoplasmic 
filament Nups, Nup88 and Gle1 [21–23]. 
Furthermore, in cells expressing polyQ-expanded 
Htt, the NE protein, Lamin B1, and key compo
nents of the Ran gradient that facilitate directional 
nucleocytoplasmic transport (NCT), Ran-GTP and 
RanGAP1, are all mislocalized [21–23]. 
Collectively, these changes lead to defective NCT, 
increased DNA damage, and cell death [21,22].

Interestingly, Htt was recently identified to have 
a proline-tyrosine nuclear localization signal (PY- 
NLS) that is recognized by the nuclear import 
receptors, Karyopherin β1/β2 (Kapβ1/2) [128]. 

Additional work has found that Htt also interacts 
with several other NTRs [129,130]. NTRs can act 
as protein chaperones to modify the physical state 
of their cargo [35,43,131–136], but they can also 
become co-aggregated with client proteins 
[34,48,137,138]. As such, whether nuclear import 
receptors are implicated in HD etiology would be 
an informative question to pursue.

To date, investigations into how NCT is affected 
in HD have centered on the Htt protein. However, 
evidence indicates that the RNA from which Htt is 
translated forms toxic intranuclear inclusions 
[139–143]. In studies that focused on the G4C2 
hexanucleotide repeat expansion (HRE) in the 
C9ORF72 gene (discussed in more detail below), 
the G4C2 HRE RNA forms aggregates which colo
calize with RanGAP1 [33]. Thus, repeat RNAs can 
impair NCT as well. However, whether expanded 
Htt mRNAs sequester components of the NPC or 
NCT machinery remains an unexplored area of 
research.

Amyotrophic Lateral Sclerosis and 
Frontotemporal Dementia

ALS and FTD are two related diseases which 
exist on a clinical and genetic spectrum [144– 
146]. ALS describes a fatal motor neuron disease 
in which progressive loss of motor neurons in 
the brain and spinal cord leads to muscle weak
ness, respiratory failure, and death [145]. In 
contrast, FTD is not fatal on its own, and its 
presentation is markedly heterogeneous, making 
the disease difficult to diagnose [147]. 
Prominent clinical presentations of FTD include 
changes to behavior and personality, emotional 
dysregulation, repetitive behaviors, and aphasia 
[147]. However, early reports indicated that 
a subset of ALS and FTD patients display over
lapping symptoms, causing people to hypothe
size that these two diseases were linked [147]. 
Approximately 50% of ALS patients have very 
mild cogitative deficits, whereas ~ 10% of 
patients can have significant signs of both FTD 
and ALS [148], largely due to the mutation in 
C9orf72. Both ALS and FTD are largely sporadic 
in etiology, with mutations in the C9orf72 gene 
as the most common gene causing both ALS 
and FTD.
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The initial molecular evidence that ALS and 
FTD share underlying pathological mechanisms 
came with the identification of ubiquitinated 
inclusions of the RNA-binding protein (RBP) 
TDP-43 in postmortem brain tissue from both 
ALS and FTD patients [144,149–153]. Since this 
observation, the aggregation of many other RBPs 
has been tied to ALS and FTD, including FUS, 
hnRNPA1, and hnRNPA2B1 [144,154–162]. 
However, the major link between ALS and FTD 
is the G4C2 HRE in the first intron of the 
C9ORF72 gene, which produces toxic RNA mole
cules, deleterious dipeptide repeat protein (DPR) 
species via repeat associated non-AUG (RAN) 
translation, and may also lead to haploinsuffi
ciency, or loss or gain of function of the C9orf72 
protein [33,41–43,138,163–170]. It is estimated 
that 20–50% of people with familial ALS and 
FTD (fALS/FTD) and 5–10% of people with spora
dic ALS/FTD (sALS/FTD) have the C9ORF72 HRE 
(C9-ALS/FTD), making it the most prevalent 
genetic contributor to these diseases 
[144,164,171–173].

Many of the proteins implicated in ALS/FTD 
have roles in regulating RNA [157,174], and 
although the function of the C9orf72 protein is 
not fully understood, the RNA and protein species 
produced from its G4C2 HRE do interact with 
RBPs and other RNA molecules to disrupt RNA 
metabolism [175–181]. SOD1, another ALS- 
related protein that is not strictly classified as an 
RBP, also interacts with known RBPs [182–185]. 
Furthermore, SOD1 may bind to some RNA mole
cules [186], and some studies have found that 
SOD1 mutations can alter levels of certain RNA 
species, although this is likely an indirect effect 
[187]. Overall, these findings have led to the 
understanding that ALS/FTD can result from loss- 
of-function and gain-of-toxicity mechanisms 
related to the mislocalization and aggregation of 
specific proteins involved in RNA biology [188– 
191]. As RBPs are depleted from the nucleus, their 
normal functions in mRNA metabolism are lost, 
leading to mis-splicing events and changes in 
mRNA levels [35,41,44,178,192–198]. Meanwhile, 
aggregated proteins in the cytoplasm can be inher
ently toxic, as reducing levels of aggregated pro
teins such as FUS can be protective [199,200]. 
Furthermore, protein aggregates cause toxic 

secondary effects by sequestering other proteins 
and mRNA species, leading to extensive dysfunc
tion [32,34,35,37,38,42,43,47,48,137,201–204]. 
Notably, although ALS is characterized by protein 
aggregation in general, the proteome of the inclu
sions is not uniform, suggesting potential disease 
heterogeneity [205–207].

Among the proteins that are co-sequestered in 
cytoplasmic aggregates formed in ALS/FTD are 
Nups and components of the NCT machinery. 
For example, cytoplasmic Nups, coat Nups, inner 
ring Nups, central channel Nups, and basket Nups 
were all found to co-aggregate with pathological 
TDP-43 C-terminal fragments (CTFs) [34]. 
Moreover, multiple studies looking at full-length 
TDP-43 and the DPRs produced via repeat- 
associated non-AUG (RAN)-translation from the 
G4C2 HRE indicate that TDP-43 and DPRs co- 
aggregate, and that these aggregates also contain 
central channel Nups, Nup54, Nup62, and Nup98; 
as well as transmembrane Nup, POM121; and 
nuclear basket Nup, Nup153 [47,138]. 
Interestingly, with the exception of POM121, 
each of the Nups that were shown to co- 
aggregate with TDP-43 and DPRs contain FG- 
domains [55], underscoring the disease relevance 
of these domains [42,47,208,209]. Even in the 
absence of TDP-43, DPRs can interact with Nups 
to impair NCT, associating with Nups found 
throughout the NPC [42,209–211]. However, one 
must be cautious in extrapolating conclusions 
about human pathophysiology based on in vitro 
experiments involving DPRs. For example, 
although some studies relate DPR expression to 
pathological phenotypes, in authentic human 
C9orf72 iPSCs, DPRs play no role in disrupting 
the NPC or NCT [41]. Rather, the C9orf72 repeat 
RNA itself is the cause of NPC damage and defec
tive NCT [41]. Moreover, there have not yet been 
any studies showing DPR-induced defects to the 
NPC or to NCT in human neuronal cells. Still, 
reducing C9orf72 levels can also perturb NCT 
and instigate NPC defects [212], supporting 
a hypothesis that haploinsufficiency of the 
C9orf72 protein might contribute to C9-ALS 
/FTD pathology.

In iPSC-derived spinal motor neurons from 
ALS patients expressing FUS coding variants, 
Nup62 and POM121 show an atypically 
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clustered localization, and this phenotype can be 
corrected by reverting FUS to its wild-type 
sequence [45]. In cell culture, mutant SOD1 is 
depleted from the nucleus relative to the wild- 
type protein [213], and in mice expressing 
mutant human SOD1, nuclear architecture and 
transport are disrupted [214,215]. Namely, outer 
coat Nup, Nup107; inner ring Nup, Nup205; 
transmembrane Nup, Nup210; and basket Nup, 
Nup50 each shows accumulation over time in 
both the nucleus and the cytoplasm of murine 
motor neurons expressing human SOD1G93A 

[215]. These results were validated in sALS 
patient tissue, where RanGAP1, Nup210, and 
Nup50 demonstrate increased cytoplasmic loca
lization [215].

NTRs are also trapped within cytoplasmic 
aggregates in ALS/FTD, impairing their critical 
role in facilitating NCT. For example, TDP-43 
CTFs co-aggregate with the nuclear export factor 
Nxf1 and the protein exporter XPO5, whereas 
increased expression of the nuclear import recep
tor Karyopherin β1 (Kapβ1) reduces TDP-43 CTF 
aggregate levels [34]. Expression of Kapβ1 can also 
reduce TDP-43 pathology in Drosophila models, 
improving locomotive phenotypes and prolonging 
lifespan [48]. However, aggregates of arginine- 
containing DPRs (R-DPRs) contain Kapα1, 
Kapβ1, XPO1, and XPO2 [42]. Furthermore, in 
brain tissue from mice expressing GFP-tagged 
poly(GR)200, poly(GR) inclusions colocalized with 
both Importin α5 (Impα5) and Karyopherin α2 
(Kapα2) [138]. Thus, the relative degree of NTR 
activity and aggregate burden may play 
a consequential role in disease progression. This 
balance is especially important in cases with TDP- 
43 and DPR co-pathology, as DPRs can promote 
the aggregation of TDP-43 [43,138,216]. However, 
biochemical studies with recombinant protein 
found that Kapβ2, which does not interact with 
TDP-43 but does interact with R-DPRs, prevents 
R-DPRs from enhancing TDP-43 aggregation [43]. 
Kapβ2 also acts as a chaperone for its physiological 
cargo, including the ALS/FTD-related RBPs, FUS, 
hnRNPA1, and hnRNPA2/B1, but the efficacy of 
this activity depends on the strength of the inter
action between Kapβ2 and the PY-NLS of its client 
[29,35,133,135,136,200,217,218]. Indeed, PY-NLS 
mutations lead to persistent NCT defects and 

cause highly aggressive forms of ALS 
[26,219–222].

Although cytoplasmic TDP-43 aggregates cer
tainly may contribute to NPC and/or NCT disrup
tion in ALS, emerging data suggest that loss of 
nuclear TDP-43 is another central defect, reflect
ing upstream disruption of the NPC and resultant 
errors in NCT. In studies of hiPSC-derived spinal 
neurons from large numbers of sporadic and 
C9orf72 ALS/FTD individuals, loss of POM121 
as well as overall disruption of both the NPC and 
NCT precedes the loss of nuclear TDP-43 and the 
resultant appearance of aberrant RNA species that 
reflect this loss of function [223]. Furthermore, 
analysis of human brain tissue revealed that cyto
plasmic TDP-43 aggregates in human brain are 
rare, whereas nuclear loss of TDP-43 is more 
common in affected brain regions [223]. These 
in vitro and in vivo data indicate that disruption 
of the NPC is a common upstream defect in these 
disorders.

Genetic variation within Nups is associated 
with ALS/FTD as well [224,225]. For instance, 
the cytoplasmic Nup, Gle1, was found to have 
disease-specific mutations in a small cohort of 
ALS patients [225]. Further in vitro and in vivo 
analyses indicated that these Gle1 mutants exert 
a loss-of-function phenotype [225]. More 
recently, researchers undertook transcriptome- 
wide association study on a dataset including 
thousands of ALS patient and control samples 
[224,226]. In addition to genes known to be 
implicated in ALS, such as C9ORF72, the group 
also identified NUP50 as a disease-associated 
transcript [224]. The group performed several 
subsequent analyses on independent sets of data 
from ALS/FTD patients and confirmed that 
Nup50 variants were significantly correlated 
with disease [224]. They found both coding and 
non-coding risk variants in Nup50, and showed 
that Nup50 levels are lower in ALS patient sam
ples and in iPSC-derived neurons from ALS 
patients relative to controls, leading the research
ers to hypothesize that decreased levels of Nup50 
may be deleterious [224]. Indeed, motor defects, 
shortened neuromuscular junctions (NMJs), and 
impaired axonal branching of motor neuron all 
result from knockdown of Nup50 in living organ
isms [224].
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Importantly, depletion of Nups from the NPC 
also occurs in cases where no known pathological 
genetic variation has been established, and Nups 
can be depleted at the NPC through reduced 
expression [227], and through Nup mislocalization 
or degradation [41,44]. Recent work comparing 
in vitro data collected using iPSC-derived motor 
neurons and patient outcomes revealed that 
NUP188 expression levels were decreased in 
patients with more aggressive forms of ALS 
[227]. In an earlier comprehensive study, multiple 
iPSC lines from patients with sALS without any 
disease-associated mutations, outer coat Nup, 
Nup133; transmembrane Nup, POM121; and 
nuclear basket Nups, Nup50, Nup153, and TPR 
were all found to have reduced nuclear abundance 
[44] along with decreased NCT fidelity. 
Compellingly, the reduction of these Nups from 
the NPC occurs without pronounced cytoplasmic 
accumulation of TDP-43, despite evidence for 
TDP-43 loss-of-function at the mRNA-level [44]. 
These results strongly suggest, as detailed above, 
that NPC injury precedes TDP-43 pathology, and 
in both C9-ALS/FTD and sALS, loss of POM121 
from the nucleus is a critical upstream event in the 
cascade of disease-associated dysfunction [41,44]. 
Interestingly, previous work in this model showed 
that the loss of Nups from the nucleus was not 
related to changes in Nup mRNA levels [41].

Follow-up studies revealed that one route by 
which NPC disruption can occur is via nuclear 
accumulation of the ESCRT-III protein, CHMP7 
[44]. CHMP7 is understood to serve a role in 
maintaining NPC homeostasis, suggesting that 
the cell is sensing and responding to NPC injury 
[44,108]. In sporadic and familial ALS iPS mod
els, CHMP7 was found to initiate the NPC dis
ruption, and CHMP7 nuclear accumulation and 
NPC defects were also observed in patient brain 
tissue, validating these in vitro observations 
[41,44]. However, it is not yet known what 
NPC injury, if any, is initiating CHMP7 nuclear 
accumulation, and whether CHMP7 nuclear 
accumulation directly or indirectly leads to 
Nup reduction remains to be elucidated. Thus, 
understanding what leads to pathological Nup 
depletion is an active area of research. 
Therefore, it will be important to determine 
whether the expression of genes that encode 

for components of the NPC or proteins involved 
in NCT is affected in disease states. 
Nevertheless, the fundamental role of NPC 
injury appears to be a core upstream defect in 
sporadic and C9orf72 ALS.

Cytoskeletal abnormalities can also impair the 
NPC and NCT in ALS. Mutations to Profilin 1 
(PFN1), which regulates actin growth; tubulin 
alpha protein, TUBA4A; and the kinesin family 
member, KIF5A, have been found in both fALS 
and sALS [228–230]. Mutated cytoskeletal pro
teins alter microtubule dynamics [231] and 
cause damage to NPCs and the nuclear mem
brane [39], leading to compromised NCT 
[39,231]. Similarly, ALS-associated mutations to 
proteins within the nuclear membrane, such as 
vesicle-associated membrane protein-associated 
protein B (VAPB), also can be detrimental to 
the NPC [232,233]. VAPB is generally thought 
to reside in the ER, but was recently shown to 
also localize to the inner nuclear membrane 
where it interacts with components of the pro
tein complexes that link the nucleoskeleton and 
cytoskeleton (LINC complexes) as well as the 
NPC via ELYS (also known as AHCTF1) in the 
coat Nucleoporin complex, and basket Nups, 
Nup153 and Tpr [233]. These findings comple
ment earlier work demonstrating that ALS- 
related VAPB mutants impair ER-Golgi traffick
ing, resulting in cytoplasmic retention of cyto
plasmic filament Nup214 and transmembrane 
Nup210 [232].

Nucleoporin Variation and Disease

Nup coding variation is associated with numerous 
diseases and a broad array of phenotypes (Table 1, 
Figure 2). In this section, we describe Nup mutations 
in each domain of the NPC and the consequences of 
these mutations on NPC function and biology.

Cytoplasmic Filaments

In addition to ALS, mutations to the cytoplasmic 
Nup Gle1 cause fetal motoneuron disease, poten
tially by decreasing Gle1 nuclear localization 
[238–240]. Among other cytoplasmic Nups, 
Nup88 mutations cause lethal fetal akinesia 
deformation sequence (FADS), a disease 
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characterized by reduced fetal movement, poten
tially as a result of defective NMJ formation 
[241]. FADS Nup88 mutations have been shown 
to reduce the extent to which Nup88 can interact 
with other Nups in the NPC, which may be 
destabilizing [241]. Meanwhile, mutations to 
cytoplasmic Nup214 or Nup358 cause encephalo
pathy, including acute infection-induced ence
phalopathy-9 (IIAE9) [242–246], and acute 
necrotizing encephalopathy (ANE1) [247]. 
Similarly, mutations to AAAS (also known as 
Aladin) lead to Triple-A syndrome, which is 
also typified by microcephaly, as well as neurolo
gical impairment, muscle weakness, and neuro
pathy [234–237]. The symptoms of Triple-A 
syndrome can also overlap with those of ALS, 
with some patients showing amyotrophy in the 
face, neck, and distal limbs [259–261]. For each 
of these encephalitic diseases, mutations in the 
associated Nup affect protein interaction net
works within and outside of the NPC, Nup loca
lization, and NCT [236,242,243,247].

Coat Nucleoporin Complex

The described mutations to the Nups of the coat 
nucleoporin complex (i.e., Nup37, Nup85, 
Nup107, Nup133, and Nup160) exclusively lead 
to steroid-resistant nephrotic syndrome (SRNS), 
with Nup107-SRNS patients also presenting with 
microcephaly [249–251]. SRNS can also result 
from mutations to the inner ring Nups, Nup93, 
and Nup205 [248,252]. In line with the highly 
interdependent structure of the NPC, mutations 
to individual coat Nups cause general coat Nup 
dysfunction [248]. For example, mutations to 
Nup37 and Nup133 both lead to a reduction in 
Nup107 levels in cells, whereas mutations in 
Nup107 are associated with reduced levels of 
Nup37, Nup133, and Nup160 [248]. Coat nucleo
porin mutations also affect protein–protein inter
actions, such as Nup85-Nup160 interactions and 
Nup107-Nup133 interactions. As the central struc
tural foundation for the NPC [55], disruptions to 
the levels or integrity of the coat nucleoporin 
complex are understandably harmful for the 
NPC. However, it is unclear why coat nucleoporin 
complex Nup mutations appear to target the renal 
system so acutely.

Inner Ring Nups

Unlike outer coat Nups, mutations to the Nups of 
the inner ring are associated with a relatively 
diverse set of diseases. As opposed to the afore
mentioned mutations to Nup93 and Nup205, 
Nup155 mutations, for example, result in atrial 
fibrillation (AF), a cardiac disease that can lead 
to stroke and heart failure [253]. In cell culture, 
AF Nup155 mutations affect Nup155 localization 
and lead to reduced NE permeability, with the 
protein chaperone Hsp70 in particular showing 
decreased mRNA export and nuclear import 
[253]. In a mouse model where one copy of 
NUP155 is knocked out, mice display AF symp
toms, suggesting that Nup155 mutations result in 
a loss-of-function phenotype [253]. Mutations in 
Nup188 can result in heart abnormalities as well, 
but also cause or are associated with neurologic 
and muscular defects [254,255,262]. In patient cell 
lines, pathogenic Nup188 mutations lead to 
reduced Nup188 levels and defects in nuclear 
import [255].

Central Channel

In the central channel, Nup54 mutations have 
been linked to infantile striatonigral degenera
tion, a disease that results in dystonia, ataxia, 
spasms, and difficulty swallowing [256]. 
Interestingly, disease-related Nup54 mutations 
are clustered in the C-terminus of the protein, 
which interacts with Nup62 [256]. Separate work 
had previously identified Nup62 mutations 
which lead to bilateral striatal necrosis, 
a neurodegenerative disorder that affects the 
caudate nucleus and putamen of the basal gang
lia [257]. The phenotypes of patients with 
Nup54 and Nup62 mutations are remarkably 
similar [256], suggesting that proper interaction 
between central channel Nups is critical for neu
rological and motor functioning.

Transmembrane Nups

As yet, there are no pathological mutations to 
transmembrane Nups listed on the UniProt data
base [263]. However, mislocalization and changes 
in expression levels of transmembrane Nups can 
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have pathological effects, as discussed with 
POM121 and Nup210 in ALS [41,215]. 
Transmembrane Nups have also been implicated 
in cardiomyopathy [264], infertility [265], 

endometriosis [266], a number of cancers [267– 
271]. In these diseases, Nup overexpression is 
often observed, and there is evidence for wide
spread disruption to biological processes [272].

Figure 2. Mutations to the nucleoporins of the nuclear pore complex are associated with a diverse set of diseases. (a) From left to 
right, the symmetrical core of the nuclear pore complex (NPC) shown from its cytoplasmic and nuclear faces, as well as from within 
the plane of the nuclear envelope. Nucleoporins (Nups) that have not been identified to be mutated in disease are shown in white. 
Mutated Nups are shown in different colors, labeled on an NPC monomer in (b). Among cytoplasmic Nups, Gle1 is shown in lime, 
Nup88 is mint green, Nup214 is light green, and Nup358 is seafoam green. For outer coat Nups, Nup37 is light pink, Nup85 is dark 
purple, Nup107 is fuchsia, Nup133 is salmon, and Nup160 is pink. Of the inner ring Nups, Nup93 is navy, Nup155 is sky blue, Nup188 
is teal, and Nup205 is dark periwinkle. The central channel Nup, Nup62, is shown in lilac. Additional Nups with disease associated 
mutants that are not included in these structures are: cytoplasmic Nup, AAAS; basket Nups, Nup50 and TPR. Structures shown are 
PDB: 7TBL [59].
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Nuclear Basket

Within the nuclear basket, aside from the recently 
identified ALS-linked Nup50 variants, TPR muta
tions can lead to microcephaly, ataxia, and intel
lectual disabilities [258]. In patient cells, these TPR 
mutations lead to decreased protein levels, redu
cing the amount of nuclear mRNA and increasing 
the number of NPCs per nucleus [258].

Nuclear Envelope

Although the NE is not a component of the NPC 
itself, NPCs are embedded in the NE surrounding 
the nucleoplasm [55]. As such, defects to the NE 
also have pathological consequences, as with the 
ALS-associated VAPB mutant described above 
[232]. One significant class of NE-associated dis
orders is laminopathies, which are related to muta
tions in the proteins that comprise the filamentous 
network of lamins on the nuclear face of the inner 
nuclear membrane [273]. There are many lamino
pathies, including muscular dystrophy, neuropa
thies like Charcot-Marie-Tooth disease, diseases 
of premature aging (e.g., Hutchinson-Gilford pro
geria syndrome [HGPS]), and demyelination of 
the central nervous system [273]. Disease- 
associated lamin mutations can disrupt interac
tions between Nups and the NE [274–276], impair 
NCT [274], and lead to aberrant NPC distribu
tion [277].

Another major source of NE-related dysfunc
tion is caused by mutations to the LINC complex. 
LINC complexes connect the nuclear lamina to the 
cytoskeleton via inner and outer nuclear mem
brane proteins containing, respectively, SUN and 
KASH domains [278]. The LINC complex is cri
tical for NPC distribution, with SUN1 playing an 
especially key role [279,280]. Indeed, mutations to 
SUN1 are associated with muscular dystrophy 
[281,282], and may modify the pathogenicity of 
laminopathies [283].

Intriguingly, in laminopathy models, ESCRT-III 
proteins are recruited to the NE by ALIX and 
CHMP7, underscoring the role of ESCRT-III in 
preserving NE and NPC integrity [284,285]. 
Moreover, recent work has shown that SUN1 con
tributes to CHMP7 nuclear accumulation in mod
els of ALS, and reducing SUN1 expression 

prevents CHMP7 accumulation and subsequent 
pathological NPC injury [44]. Thus, the relation
ship between the proteins associated with the NE 
and NPC biology is an area that warrants further 
investigation.

Mutation vs. Variation

Disease-causing mutations have been identified in 
roughly half of human Nups, but there may be 
additional mutations that have not yet been 
described. Studies in which specific Nups are 
experimentally reduced suggest that mutations 
which lead to Nup loss-of-function would be det
rimental. Indeed, NPC number, distribution, and 
function are impaired if levels of ELYS or Nup98 
protein are reduced [286,287]. Additionally, 
knocking out Nup210 in mice reduces muscle 
regeneration after injury, and results in an increase 
in centrally nucleated muscle fibers [288]. 
Centrally nucleated fibers are a characteristic trait 
of muscle dystrophy, indicating that Nup210 is 
involved in muscular repair [288]. Other mouse 
studies show that deletion of Nup358 in motor 
neurons results in ALS pathology, including gross 
motor deficits and cellular evidence of disrupted 
NCT [289]. Thus, mutations that deplete Nup 
levels would likely be injurious.

Aside from bona fide mutations, it may also 
be the case that Nup coding variation is benign 
in some situations, and pathological in others. 
For example, the central channel of the NPC 
becomes constricted upon energy depletion 
[290], which can happen during neurodegen
erative diseases in which mitochondrial activity 
is perturbed [291]. Aberrant NPC constriction 
may amplify modest Nup abnormalities, leading 
to NPC and NCT dysfunction. Additionally, 
stresses such as protein misfolding can result 
in NE budding [292], potentially impacting 
NPC structure by creating mechanical stress. It 
is well-established that mechanical stress can 
induce NE remodeling, and recurrent remodel
ing may reveal Nup defects [108,293–295]. 
Moreover, prolonged nuclear stress could inap
propriately trigger NPC repair mechanisms, 
which may have deleterious consequences 
[44,46,108,109].
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Therapeutic Approaches

The overwhelming evidence that NPC and NCT 
dysfunction plays a central role in neurodegenera
tive and other diseases makes therapeutically tar
geting the NPC a provocative approach. However, 
given the essential relationship between NPC func
tionality and cell survival, one must be cautious 
when targeting this complex. Many disease- 
causing Nup variants exhibit loss-of-function phe
notypes due to decreased protein levels and 
impaired interaction with other proteins within 
the NPC (Table 1). Additionally, even in the 
absence of mutation, depletion of Nups from the 
NPC is pathological [41,44–47]. Thus, one poten
tial avenue for addressing identified pathological 
Nup mutants would be to use adeno-associated 
viral (AAV)-mediated delivery of the wild-type 
Nup sequence [296–299]. Recent innovations in 
AAV-based therapeutics have made the prospect 
of using this technique a tractable option for dis
eases affecting the nervous system [299–302]. 
However, researchers delivering Nup sequences 
via AAV would need to monitor for any side 
effects related to overexpression of the affected 
Nup, as high levels of individual Nups can be 
damaging [87,88,92,303,304] and cell-specific tar
geting might be necessary. Additionally, many 
individual Nups are large, spanning over 1,000 
amino acids [55], which may make packaging 
these sequences into AAVs a non-trivial endeavor 
[305,306]. Conversely, if a Nup mutant shows 
a gain-of-function phenotype, as with the carcino
genic overexpression of Nups [307], antisense oli
gonucleotide (ASO) or small interfering RNA 
(siRNA) methods can be used to reduce the 
expression of toxic Nups [308].

Previous studies have shown that one approach 
to address loss of Nups from the NPC may be to 
artificially express specific Nups [10,41]. However, 
as the stoichiometry of Nups is critical for NPC 
functionality [53,59,309], gene therapy approaches 
targeting Nups may not always be effective. As an 
alternative, efforts to resolve the aggregates into 
which Nups are sequestered could liberate Nups, 
restoring their functionality [310–313]. 
Disaggregation can be achieved directly by redu
cing levels of aggregation-prone molecules, such as 

TDP-43 [314,315], FUS [200], and SOD1 
[316,317]. Aggregation can also be mitigated indir
ectly by enhancing the activity of endogenous cha
perones, such as NTRs [35,43,48,310,318–320].

Another therapeutic option may focus on 
enhancing the stability of Nups themselves. Nups 
are stabilized by the post-translational modifica
tion, O-linked β-N-acetylglucosamine (O-GlcNAc) 
[321–324]. Indeed, when Nups are de- 
O-GlcNAcylated, Nup protein levels throughout 
the NPC decrease [321,323]. Furthermore, when 
Nups are not properly O-GlcNAcylated, the selec
tivity barrier of the NPC is impaired, leading to 
leaky nuclear import [323]. In mouse models of 
HD, Nup O-GlcNAc levels are significantly lower 
in cortical cells, and treating primary cortical neu
rons expressing pathogenic polyQ Htt with an 
O-GlcNAcase (OGA) inhibitor to reduce 
O-GlcNAc removal improves cell viability and 
reverses NCT defects [22]. Thus, whether the 
NPC is aberrantly O-GlcNAcylated in other dis
eases will be an informative line of inquiry, and 
therapeutics that alter O-GlcNAcylation of the 
NPC could hold promise. Researchers have also 
recently achieved high-resolution structures for 
the NPC [55,59–61,74], and these structures can 
be used to model coding variation or to perform 
small-molecule docking simulations to generate 
therapeutic compounds to address structural vul
nerabilities [325,326].

Given the emerging data on a role for ESCRT- 
III proteins contributing to NPC/NCT defects in 
disease, regulation of ESCRT-III proteins might be 
a possible therapeutic approach. However, the 
directionality of such interventions will depend 
on many factors. For example, in several settings, 
decreasing levels of the ESCRT-III proteins that 
monitor Nup integrity, as well as the related 
ATPase, Vps4, has been shown to be highly pro
tective. Normally, Vps4 and ESCRT-III proteins 
transiently survey the NPC for quality control 
purposes [1,108,109]. In both fALS and sALS, 
however, Vps4 and the ESCRT-III protein, 
CHMP7, become enriched at the nucleus 
[44,327]. Moreover, in the case of CHMP7, its 
nuclear accumulation precedes the subsequent 
loss of Nups from the NPC [44], and decreasing 
levels of either Vps4 or CHMP7 mitigates 
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pathological phenotypes [44,46]. Studies employ
ing siRNA, ASOs, or Trim21-driven protein 
degradation to reduce CHMP7 levels were all 
shown to repair NCT defects and prevent down
stream cellular stress and cytotoxicity in studies 
performed using large numbers of patient neuro
nal cell lines [44,223]. These results suggest that 
the ESCRT-III pathway is hyperactively modifying 
the NPC in disease, leading to Nup mislocalization 
or degradation, and that dampening this activity 
could be beneficial. Why the activation of this 
pathway occurs in C9orf72 and sporadic ALS is 
unclear, and identifying the instigating factor or 
factors that prompt ESCRT-III recruitment to the 
NPC will be the target of future investigations. 
Understanding what elevates the ESCRT-III path
way to this vigilant state will be critical for lever
aging its members as therapeutic agents.

Mutations to another ESCRT-III protein, 
CHMP2B, have also been linked to ALS/FTD 
[328–334]. In cell culture, animal models, and 
patient tissue, expression of CHMP2B mutants 
results in the accumulation of p62 inclusions, 
enlarged endosomes, stalled endolysosomes, and 
lysosomal dysfunction [331,335–338]. Moreover, 
mice expressing disease-associated CHMP2B 
mutants show reduced survival, whereas 
CHMP2B-null mice do not have any survival 
defects, suggesting a gain-of-function phenotype 
[336]. Indeed, although CHMP2B does not localize 
to the nucleus in sALS patient-derived cells [327], 
knockdown of CHMP2B restores Nup levels and 
prevents cell death in a Drosophila model of C9- 
ALS/FTD [46].

By contrast, overexpression of ESCRT-III pro
teins may be protective in other disease contexts, 
such as tauopathies. For example, to find protein 
modifiers of tau self-assembly, researchers 
employed a cell-based screen and found that 
increasing CHMP7, LEMD2, and LEMD3 levels 
reduced tau aggregation [339]. LEMD2 and 
LEMD3 are two NE proteins that interact with 
CHMP7 [108,340], suggesting that enhanced 
ESCRT-III surveillance activity can also be bene
ficial [339].

The ESCRT-III pathway may also be 
a therapeutic target in PD. Recently, by screening 
a peptide library to find candidate molecules that 
prevent α-synuclein oligomerization, researchers 

discovered a novel interaction between α- 
synuclein and CHMP2B [341]. They showed that 
α-synuclein binds CHMP2B, leading to endolyso
somal dysfunction [341]. By abrogating this inter
action, the researchers were able to reduce α- 
synuclein levels, restore autophagic degradation, 
and preserve cell viability [341]. In fact, there are 
several links between autolysosomal dysfunction 
and NCT pathology. In studies of a polyQ ataxia, 
dentatorubral-pallidoluysian atrophy (DRPLA), 
autophagic stalling is associated with nuclear accu
mulation of p62, cytoplasmic accumulation of 
LaminB1, and NE ruffling [342]. As autophagy is 
involved in maintaining proteostasis [343], inade
quate autophagic flux may exacerbate NCT dys
function by enabling the accumulation of harmful 
materials.

The pathology of neurodegenerative disease 
compromises many biological processes, and thus 
it may be productive to investigate ancillary path
ways, such as autophagy, to address issues in NPC 
homeostasis. To this end, several groups have stu
died the cytoplasmic mislocalization of the autop
hagic transcription factor, TFEB [94,116,344,345]. 
TFEB regulates the expression of lysosomal pro
teins, and studies in brain tissue from AD and ALS 
patients showed that this protein was mislocalized 
in disease [116], indicating convergence between 
defects in NCT and autophagy. Further experi
ments performed in non-human C9-ALS/FTD 
models demonstrated that expression of the G4C2 
HRE leads to TFEB mislocalization, thus impairing 
lysosomal function [344].

In the same year these findings were published, 
a separate group also working with C9-ALS/FTD 
models found that expression of the autophagy- 
related molecular chaperone, sigma non-opioid 
intracellular receptor 1 (Sigmar1) stabilizes cyto
plasmic filament Nups, Nup358 and Nup214; cen
tral channel Nup, Nup62; and basket Nup, Nup50, 
upon (G4C2)31 RNA expression, corresponding 
with reduced toxicity [346]. Additional studies 
revealed that Sigmar1 localizes to the nuclear 
pore, where it associates with the transmembrane 
Nup, POM121, and the nuclear import receptor 
responsible for importing TFEB, Kapβ1 [94,346]. 
Transfecting motor neuron-like NSC-34 cells with 
(G4C2)31 RNA alone led to dissociation of Sigmar1 
from POM121 and Kapβ1, reducing POM121 
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stability [94]. However, the overexpression of 
Sigmar1 prevented the G4C2-related depletion of 
POM121 protein levels, suggesting Sigmar1 cha
perones POM121 [94]. Additionally, Sigmar1 
overexpression restores Kapβ1-mediated nuclear 
import of TFEB, promoting autophagy [94]. 
Moreover, two Sigmar1 agonists, pridopidine and 
fluvoxamine, each promote POM121 expression 
and restore TFEB nuclear localization, and prido
pidine protects against cell death [94,345]. 
Encouragingly, pridopidine has also been identi
fied to have therapeutic potential in AD [347], PD 
[348], and HD [349]. Whether Sigmar1 agonists 
function via the NPC and NCT across neurode
generative diseases is an evocative hypothesis and 
calls for further mechanistic studies.

Given the centrality of the NPC to biology, 
there are a number of factors that must be con
sidered when designing and applying any thera
peutic strategy. First, one must identify the cell 
type(s) affected in disease. For example, a patient 
with basal ganglion pathology (e.g., bilateral stria
tal necrosis, HD) may require a different treatment 
than someone suffering from diseases involving 
motor neurons (e.g., ALS) or disorders of the 
heart or kidney. Second, therapeutic approaches 
must target the appropriate biological mechanism. 
Indeed, although there is convergence of patholo
gical phenotype among disorders related to the 
NPC, the underlying biological maleficence can 
be highly disparate. In ALS, for example, addres
sing the NPC injury caused by a PFN1 mutation 
(i.e., nuclear injury caused by cytoskeletal destabi
lization [39]) may require an alternative approach 
than the NPC injury that occurs in C9-ALS and 
sporadic ALS (e.g., sequestration of Nups and 
NCT factors [42,47,138,175,176,210], ESCRT-III 
hyperactivity [44,327]).

Conclusions and Open Questions

Proper delineation of nuclear and cytoplasmic 
environments within the cell is critical for eukar
yotic life, and its disruption is deadly. Here, we 
provide a summary of what is known about the 
architecture of the NPC and its roles in cell func
tioning, and outline the unique challenges faced by 
neurons in maintaining NPC and NCT integrity. 
We also describe what happens when neurons 

succumb to these challenges. Namely, we detail 
the existing evidence for NPC and NCT defects 
in neurodegenerative diseases and enumerate sev
eral Nup mutations associated with disease. 
Finally, we provide a discussion of potential mod
alities for therapeutically targeting the NPC. Still, 
several open questions remain with respect to the 
NPC and NCT in disease. First is the primordial 
question of which occurs first: NPC injury or 
defective NCT? That is, do insults to the NPC 
instigate NCT deficits, or does the mislocalization 
of aggregation-prone proteins lead to the seques
tration of vulnerable Nups, destabilizing the NPC? 
Alternatively, are both events happening simulta
neously in response to a shared stressor? To 
address the defects observed in disease, it will be 
essential to understand the order of events, and 
whether this pathological sequence varies based on 
genetic or environmental factors.

To that end, another unresolved question is: what 
is the best way to model and study the human NPC? 
Because Nup turnover and quality control mechan
isms differ between dividing and non-dividing cells, 
one must carefully consider the hypothesis being 
tested when selecting a cellular system. Additionally, 
the number and composition of NPCs can vary 
across cell type [309], adding another layer of com
plexity to understanding these structures. 
Furthermore, although the global structure of the 
NPC is conserved across eukaryotes, there are signif
icant differences in both sequence and number of 
subunits across species [55]. Even between mammals 
there can be substantial sequence variation. For 
example, between the human and mouse sequences 
of the Nup214 protein, there is only 76.5% identity 
[263,350]. POM121 and Nup50 protein sequences 
also diverge substantially between humans and 
mice, with 67.3% and 77.9% shared identity, respec
tively [263,350]. Compared to an average shared 
identity of ~ 85% between mouse and human protein 
sequences [351], Nups can be quite variable. And, 
these variations may exert a multiplicative influence, 
as each Nup is present in multiple copies, with some 
Nups appearing up to 32 times in a single NPC 
[55,309]. These differences may make rodent models 
poor representations of the of the human disease cell 
biology. Therefore, newer human cell-based models 
such as patient derived iPSC lines or 2D and 3D 
organoid approaches [352–354] may be more suitable 
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for understanding the dysfunction of NPC and NCT 
in human neurological diseases.

In summary, NPC fitness and reliable NCT are 
essential for life. Numerous diseases develop when 
these processes are compromised, including many 
currently incurable neurodegenerative disorders. 
Targeting the NPC is therefore a promising 
approach for understanding and addressing the 
causes and consequences of disease.
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