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Abstract

Introduction: The application of artificial intelligence to facial aesthetics has been

limited by the inability to discern facial zones of interest, as defined by complex

facial musculature and underlying structures. Although semantic segmentation mod-

els (SSMs) could potentially overcome this limitation, existing facial SSMs distinguish

only three to nine facial zones of interest.

Methods: We developed a new supervised SSM, trained on 669 high-resolution

clinical-grade facial images; a subset of these images was used in an iterative process

between facial aesthetics experts and manual annotators that defined and labeled 33

facial zones of interest.

Results: Because some zones overlap, some pixels are included in multiple zones, vio-

lating the one-to-one relationship between a given pixel and a specific class (zone)

required for SSMs. The full facial zone model was therefore used to create three sub-

models, each with completely non-overlapping zones, generating three outputs for

each input image that can be treated as standalone models. For each facial zone, the

output demonstrating the best Intersection Over Union (IOU) value was selected as

the winning prediction.

Conclusions: The new SSM demonstrates mean IOU values superior to manual anno-

tation and landmark analyses, and it ismore robust than landmarkmethods in handling

variances in facial shape and structure.
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1 INTRODUCTION

The use of artificial intelligence in medicine has greatly increased in

recent years. In the field of facial aesthetics, artificial intelligence has

Abbreviations: CVAT, Computer Vision Annotation Tool; HRNetv2, High-Resolution

Networkmodification 2; IOU, Intersection over union; JSON, JavaScript Object Notation;

SSMs, semantic segmentationmodels.
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been used for diagnosis, prognosis, and preoperative planning, as well

as in cosmetology.1–3 A number of these approaches have demon-

strated their value by showing greater accuracy than experienced

aesthetic surgeons in many areas, including surgical burn treatment,

congenital or acquired facial deformities, and cosmetic surgery.1

Early machine learning approaches to facial aesthetics were based

on landmark analyses, which interpret individual fixed points on

the face using pattern recognition models to detect and evaluate
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F IGURE 1 Complete facial zonemapwith 33 annotated zones of
interest, the result of multiple iterations betweenmanual annotation
and review/adjustment by facial aesthetics experts. Note the
overlapping zones in the lower half of the face, which required the
separation of the full model into three sub-models with no overlap
between zones.

facial characteristics. This technique has been very effective in facial

recognition,2,3 and in developing arbitrary measures of attractiveness,

as well as in some clinical settings.4,5 A limitation of these models

in facial aesthetics, however, has been their inability to distinguish

discrete facial zones of interest.6 The face is made up of different

structures rather than individual points, with extensive overlap exist-

ing between some regions (Figure 1). In fact, any individual pixel may

lie within multiple different facial regions, for example, overlap of

the upper perioral region with the nasolabial folds and the submalar

regions. Furthermore, regions such as the forehead and cheeks are

not well represented in landmark analyses. In order to apply artificial

intelligence techniques to specific regions of the face (e.g., the infraor-

bital or glabellar areas), it is necessary to first accurately identify these

regions.

Semantic segmentation models (SSMs) have been developed to

overcome the limitations of landmark analysis and identify discrete

regions of the face.7 However, to date, these models have been only

able to differentiate three to nine facial zones.7–12 SSMs have seen

little clinical utility to date, but have demonstrated potential applica-

tions in measuring skin surface temperature for identifying individuals

with COVID-19 and in ophthalmology for assessment of eyelid and

periorbital soft tissue position.10,11

There are over 30 distinct muscles in the face, all of which help to

define unique regions of the face.13 An SSM, therefore, needs to pre-

cisely define and accurately differentiate the numerous regions of the

face currently targeted by aesthetic procedures if it is to be of value

for accurate clinical outcomes assessment when paired with digital

diagnostics.13 Here we describe a supervised machine learning model

designed to identify33distinct regionsof the face, as definedbyapanel

of facial aesthetic surgeons. Accurate facial segmentation will in turn

allow for development of other artificial intelligence models with clin-

ical utility for directing specific facial aesthetic procedures targeted at

individual regions or groups of regions.

2 METHODS

2.1 Facial zone detection

The facial SSM described here was designed to take standardized

clinical-grade facial images as inputs and to output a prediction on

33 facial zones defined by clinicians. The process is composed of sev-

eral sections: data, domain expertise, annotation, preprocessing,model

training, and evaluation.

2.1.1 Data

The model was trained using high-resolution clinical-grade images

taken from53 studies, with data selection being agnostic as to any spe-

cific treatment or study phase. In other words, the only criteria when

selecting studies are those that include photographic capture as part

of their study design. All images were captured using the VISIA-CR

imaging system, manufactured by Canfield Scientific (Parsippany-Troy

Hills, NJ, USA), an industry standard for generating high-quality, repro-

ducible facial imaging for clinical research. In addition, a number of

images captured via mobile device as part of a clinical study were used

to provide additional data and introduce lower-quality images to the

model. The purpose of including these lower-quality imageswas to fur-

ther reinforce the robustness of the model by exposing it to unideal

inputs during training so that it is capable in some capacity to handle

a variety of image qualities.

2.1.2 Domain expertise and annotation

In order to maximize the validity of the model, we collaborated with

three clinical experts in the field of facial aesthetics. To ensure model

accuracy and consistency, a total of 33 distinct zones were identified,
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F IGURE 2 Manual annotation of a high-resolution facial image
based on the standardized facial map. Line colors are arbitrary; they
are added to distinguish individual markups.

whichweremanually annotated by the experts on a total of 10 clinical-

grade images. These annotations were reviewed and refined until all

the experts confirmed their clinical accuracy. Subsequently, nonclinical

personnel were trained on identification of the respective facial zones,

referencing the clinically accurate annotations confirmed by the clini-

cians (Figure 1). These raters manually annotated images for input to

the training set for the development of the supervised SSM. Annota-

tors drew each area on a given image, provided it was visible within the

image. The open-source Computer Vision Annotation Tool (CVAT; Intel

Corporation, Santa Clara, CA, USA) was used to complete the manual

annotation. A total of 33 labels, corresponding to the 33 facial segmen-

tation zones, were employed. An example of a complete annotation is

shown in Figure 2.

For measuring the consistency of image annotators, we adopted

the Intersection Over Union (IOU) metric to calculate inter-annotator

correlations. This metric also served to set quantitative expectations

toward what the model can achieve, as well as to make a comparison

to a landmark analysis. Once annotations were complete, a final data

quality checkwas conducted to ensure the accuracy of annotations and

labels.

2.1.3 Preprocessing

Imageswere stored separately fromtheir respective annotationmasks.

A mask indicated which pixels in an image belong to which object or

class. As such, part of our preprocessing included data organization in

a similar fashion to the scene-parsing ADE20K dataset (Figure 3). In

addition, ODGT files were created, whereby each line is a JavaScript

Object Notation (JSON). Each JSON details the dataset, splitting them

into training and validation sets along with their respective annota-

tions.With the requirement that all pixelsmust be labeled for semantic

segmentation, we conformed to this standard by turning the back-

ground to its own class. This step brought focus to the areas that

needed attention. Our preprocessing pipeline ensured our data were

ready for model ingestion.

2.1.4 Model training

Given that the images usedwereprimarily clinical grade, themodelwas

built to manage high-resolution images, in order to preserve detail and

granularity. To achieve this, IntegratedHigh-ResolutionNetworkmodi-

fication 2 (HRNetv2), whichmaintains high-resolution representations

through the entirety of the pipeline (Figure 4),14,15 was included in the

model architecture.

2.1.5 Inference

To avoid overlapping pixels, three separate strategically mapped facial

zone sets were created, each of which acted as a standalone model

for predicting its assigned zones (Figure 5). For the inference process,

an image was fed into each respective model. This means that there

was a total of three outputs of each input image. Based on prior IOU

analysis, the best zones for each model were chosen to be the winning

prediction. For example, given that model 1 and model 2 both have the

forehead area in their zone sets, themodel that generated the best IOU

for final forehead predictionwas chosen. This logic ensued for all zones

until a full image prediction with 33 zones annotated was achieved.

3 RESULTS

The model was trained on a total of 669 high-resolution clinical-grade

images taken from 53 studies and 59 images captured via mobile

phone. Figure 6 describes the available demographic distribution of

the image dataset. The dataset was well distributed, but most patients

were 40−60 years of age and female, and White race was most com-

mon. The training hyperparameters that yielded the best IOU results

are detailed in Table 1.

Each image was rated by three annotators. Inter-annotator mean

IOU scores across three separate images ranged from 0.3534 to

0.4018. A comparison of inter-rater, landmark model, and SSM yielded

mean IOU scores of 0.3584, 0.3952, and 0.5538, respectively. The
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F IGURE 3 Schematic illustration of the preprocess pipeline, showing (left to right) the annotated high-resolution image, the same image
properly oriented, and the separation of image and annotationmask data.

F IGURE 4 An example of a HRNetv2. HRNetv2maintains high-resolution images by connecting high-to-low convolution streams in parallel.
Stage 1 consists of high-resolution convolutions. High-to-low resolution streams are gradually added individually and connect themultiresolution
streams in parallel. Stages 2−4 are formed by repeatingmodularized 2-resolution (3-resolution, 4-resolution) blocks. Reproducedwith permission
fromWang et al.15 HRNetv2, High-Resolution Networkmodification 2.

mean IOU for the SSM represents a 55% improvement in accuracy

compared with human annotators, and a 40% improvement relative to

the landmarkmodel, indicating a superior performance.

The model performance was quite variable across the 33 different

zones, with mean IOU scores from the SSM ranging from 0.2119 for

LTA (zone 1) to 0.8357 for the forehead (FFA; zone 13). IOU values for

all facial segmentation zones are shown in Table 2.

4 DISCUSSION

In order to create an artificial intelligence tool that is meaningful and

can be properly utilized, we must understand the regions of inter-

est, which means that these regions must have clinical significance.

Because there are numerous zones in a relatively small canvas, pre-

cisely defining each zone is of utmost importance.We identified a total

of 33 distinct zones that effectively definedmeaningful facial regions.

The performance of any machine learning model is underpinned by

the quality of the imputation data. Because our goal was to develop a

robust, clinically applicable model, it was imperative that the training

dataset be as balanced and diverse as possible. Given that our dataset

included a range of images from subjects of different age, gender, and

race, our model should perform as expected on nearly all individuals.

Two major characteristics that further define quality data are accu-

racy and consistency. By collaborating with experts in facial aesthetic

medicine, we were able to develop clinically relevant facial zone anno-

tations for inputting to themodel. The quality of these datawas further

improved by using an iterative process whereby the experts reviewed

a subset of images following annotation by image raters, adjusting

accordingly until they accepted annotations as clinically accurate.

Consistency is also critical for training of the model, requiring accu-

rate annotations during the training phase. This metric is especially

important considering that these compartmentalized facial zones are

novel and have no clear boundaries. In this context, the IOU metric

showed good inter-annotator correlation, demonstrating good consis-

tency from annotator to annotator. Another key factor determining

model accuracy is noise taking the form of artifacts that may obstruct

the face and can misguide the model and hinder its performance. This
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F IGURE 5 The full inference process, beginning with high-resolution input (A), continuing through annotation based on the three sub-models
with non-overlapping zones (B), (C), (D), and re-aggregation into a final image prediction with all 33 zones annotated (E).
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F IGURE 6 Data breakdown describing demographic distributions separated by age, gender, and race for 53 studies used inmodel generation.
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TABLE 1 Hyperparameter settings used for model training.

Hyperparameter Value

Batch size per GPU 2

Epochs 30

Iteration of each epoch 30

Optimizer SGD

Learning rate for encoder 0.02

Learning rate for decoder 0.02

Power in poly to drop learning rate 0.9

Momentum for SGD 0.9

Weights regularizer 0.0001

Weighting of deep supervision loss 0.4

Abrreviations: GPU, graphics processing unit; SGD, stochastic gradient

descent.

notion is critical when we consider a supervised learning model where

themodel directly learns from target data. Data preprocessing utilized

in our model helps to eliminate these artifacts and directly helps to

improve the model’s ability to learn. Furthermore, HRNet models are

exceptionally apt for visual recognition, including semantic segmen-

tation, and have demonstrated high performances across a range of

applications.16–19 Taken together, it is evident that the inputs for our

model provide a solid foundation for an accurate and useful tool.

An inherent issue of semantic segmentation is overlapping pixels

because pixels aremeant to have a one-to-one relationshipwith a class,

that is, a single pixel can belong to only one class. Whereas it is not

uncommon to have 33 separate classes, the face is a relatively small

region and sectioning it anatomically can violate this rule. Indeed,many

areas overlap with one another, and a pixel may belong to more than

three classes. SSMs disallow this behavior because we want to map

each pixel to a single class. We were able to overcome this limitation

by creating separate facial zone sets, strategically mapped to avoid

overlap.

Both the landmark model and SSM had higher IOUs than the inter-

rater IOU, suggesting that automation of facial zone annotation is valid

and favorable, at least in the context of annotationbynonclinical raters,

as may occur in a clinical trial setting. Both models also outperformed

human annotations compared with one another. Additionally, because

themodel is discrete, it guarantees consistency andwill always predict

the same outcome on a given input, thus minimizing the latent issue of

humanerror andvariability. Between the twomachine learningmodels,

the SSM exceeds the performance of a landmark detection approach.

With quantitative results to confirm our initial hypothesis, the SSM is

more robust tomanage facial differences, especially in terms of varying

facial structures, while the landmark detection model is rigid in nature

due to having to essentially “connect the dots.”

Although our model provides promising results, there are certain

standards that are assumed. That is, the input must be of clinical-

grade quality.Whereas somemobile-capture images are present in the

training set, the model is trained primarily on high-resolution images;

therefore, it will perform more poorly on lower-quality images it has

TABLE 2 Mean IntersectionOver Union (IOU) values for 33 facial
zones.

Zone Abbreviation IOU Score

1 LTA 0.2119

2 LPA 0.5792

3 LJA 0.5858

4 LOC 0.5078

5 LNF 0.4314

6 LSA 0.4918

7 LZA 0.5728

8 LAA 0.6229

9 LLI 0.5728

10 LMI 0.6815

11 LUL 0.4768

12 LBA 0.2498

13 FFA 0.8357

14 CGA 0.6536

15 NBA 0.3531

16 FPA 0.6534

17 FUL 0.6596

18 FLW 0.7629

19 LMS 0.5583

20 FCS 0.7111

21 ROC 0.4661

22 RNF 0.2519

23 RSA 0.4917

24 RZA 0.6014

25 RAA 0.6543

26 RLI 0.6081

27 RMI 0.6303

28 RUL 0.5025

29 RBA 0.3718

30 RTA 0.5332

31 RPA 0.5808

32 RJA 0.5827

33 UPA 0.8280

not adequately learned from before. The input should also be cropped

to the face in the image and oriented correctly with a yaw, pitch, and

roll equal to zero. Another assumption is that the background is labeled

as its own class. Due to the nature of semantic segmentation, this is

still a class that needs to be predicted. Whereas background predic-

tion is> 97% accurate, this leaves erroneous predictions of some facial

zones to be labeled incorrectly as the background. Overall, the IOU

scores measured were poor relative to usual standards for both the

human annotators and machine learning models, reflecting the com-

plexity of the human face. However, the improvement seen with the

SSM is encouraging. Themodel provided robust results for larger,more
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prominent regions of the face, including the forehead, with a mean

IOU score of 0.8357. However, scores for some smaller, more-complex

regions were poor, with IOU scores for some segmental zones< 0.3.

Whereas themodel described here has demonstrated a novel appli-

cation in the field of facial aesthetics, there are several paths for

improvement and additional utility. Themodel is trained only for front-

facing images. However, there are several treatment areas on the face

that are assessed at different angles. Thus, front-facing images would

not be suitable in these cases. Future studies should expand this func-

tionality to other angles, including 45-degree angle captures. Another

improvement could be the possible additions of new zones. Thoughwe

have exercised due diligence in creating the 33 facial zones, there are

still uncaptured areas of the face that may prove to be important in the

future. New discoveries within facial aesthetics are inevitable andmay

carry their own unique treatment areas.

With the surge of telehealth, a major opportunity lies in integrat-

ing edge devices into our model. Whereas our model is robust on

clinical-grade images, we would like to extend this performance to

mobile-capture images as well. There are several differences between

VISIA-CR and mobile-capture images, namely resolution and a lack of

standardization. Because of hardware differences between VISIA-CR

and edge devices, there is a ceiling to the degree that imaging tech-

niques and software in general can achieve. Sensors on current edge

devices pale in comparison to those in VISIA-CR devices, exemplifying

the latent issue of hardware limitations, leading to a stark difference

in quality. Another key difference that will need to be accounted for is

the introduction of human error throughmobile self-capture.Whereas

the VISIA-CR has forehead rests, chin rests, and precisely controlled

lighting, mobile users carry the burden of ensuring their environment

is controlled and consistent with regard to lighting, distance from their

camera, framing, and steady movement. Training a model to manage

a variation that comes with mobile-capture images is an arduous but

potentially fruitful next step.

5 CONCLUSION

The development of an ensemble SSM framework for facial zones

of interest, as described in this paper, paves the way for clinical-

grade machine analysis of individual faces, and ultimately for the

routine use of artificial intelligence–assisted diagnostic, prognostic,

and treatment-related applications across multiple clinical settings.

The iterative interaction between key opinion leaders in facial aesthet-

ics and experienced annotators, in the creation and refinement of the

facial zone map, also provides a model for developers facing similar

image-analysis challenges for other medical and nonmedical applica-

tions. In a broader sense, the ability to create valid SSMs despite the

existence of overlapping zones/classes of interest by generating multi-

ple non-overlapping zone sets, and to select optimal zone boundaries

based on comparison of IOU values across sets, opens a wide range

of image-analysis scenarios characterized by overlapping or diffuse

zone boundaries to the semantic segmentation approach. Results from

the SSM described here demonstrate that automatic labeling of facial

zones through semantic segmentation is viable and proven to be a

direction we may confidently strive toward. The model can be used

as a utility to extract any facial zone of interest and expedite further

computer vision work in facial aesthetics.
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