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Abstract

Structural resolution of protein interactions enables mechanistic
and functional studies as well as interpretation of disease variants.
However, structural data is still missing for most protein interac-
tions because we lack computational and experimental tools at
scale. This is particularly true for interactions mediated by short
linear motifs occurring in disordered regions of proteins. We find
that AlphaFold-Multimer predicts with high sensitivity but limited
specificity structures of domain-motif interactions when using
small protein fragments as input. Sensitivity decreased sub-
stantially when using long protein fragments or full length proteins.
We delineated a protein fragmentation strategy particularly suited
for the prediction of domain-motif interfaces and applied it to
interactions between human proteins associated with neurodeve-
lopmental disorders. This enabled the prediction of highly confident
and likely disease-related novel interfaces, which we further
experimentally corroborated for FBXO23-STX1B, STX1B-VAMP2,
ESRRG-PSMC5, PEX3-PEX19, PEX3-PEX16, and SNRPB-GIGYF1
providing novel molecular insights for diverse biological pro-
cesses. Our work highlights exciting perspectives, but also reveals
clear limitations and the need for future developments to maximize
the power of Alphafold-Multimer for interface predictions.
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Introduction

Protein-protein interactions (PPIs) are essential for the proper
functioning of essentially all cellular processes. The last decade has

seen tremendous progress in the systematic mapping of human
protein interactions enabling gene function prediction and the
study of genotype-to-phenotype relationships (Luck et al, 2020;
Drew et al, 2017; Huttlin et al, 2021). However, to understand the
molecular function of individual PPIs, co-existence or mutual
exclusivity of partner proteins in protein complexes, and the effect
of mutations on protein function, structural information on how
these proteins interact with each other is required. Unfortunately, a
structure at atomic resolution is only available for ~4% of known
human PPIs (Luck et al, 2020). Modular proteins interact with each
other using a variety of different functional elements such as stably
folded domains, intrinsically disordered polypeptide regions, short
linear motifs (hereafter referred to as motifs), or coiled-coil helices
forming domain-domain, domain-motif, disorder-disorder, or
coiled-coil interfaces for example. Resources such as 3did (Mosca
et al, 2014) or the ELM database (ELM DB) (Kumar et al, 2022)
collect observed contacts between domain types and between
domains and motifs, respectively. Such interface type collections
can be used to predict occurrences of known interface types in
protein interactions (Weatheritt et al, 2012; Mosca et al, 2013).
However, it is reasonable to expect that many more protein
interface types remain to be discovered. This is likely particularly
true for motif-mediated PPIs, which are anticipated to number in
the hundreds of thousands or millions (Tompa et al, 2014). Motifs
are short stretches of amino acids in disordered regions of proteins
that usually adopt a more rigid structure upon binding to folded
domains in interaction partners (Davey et al, 2012). Motif-
mediated interactions are of moderate binding affinity and thus,
are particularly suited to mediate dynamic cell regulatory and
signaling events (Van Roey et al, 2012). However, due to the
transient nature of their interactions and the disorderliness of
motif-containing proteins, this mode of binding is also expected to
be highly understudied. Systematically generated human protein
interactome maps (Luck et al, 2020; Huttlin et al, 2021) are likely a
treasure trove for the discovery of novel interface types, yet no good
experimental or computational methods exist to systematically map
or predict protein interaction interfaces at scale.
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The release of the neural network-based software AlphaFold (AF)
was not only a breakthrough for the prediction of monomeric structures
of proteins (Jumper et al, 2021) but multiple studies published shortly
thereafter also suggested the ability of AF to predict structures of
pairwise protein interactions and complexes. Sensitivities of around 70%
were reported using benchmark datasets of structurally resolved protein
interactions originally developed to evaluate docking methods (Akdel
et al, 2022; Bryant et al, 2022; Johansson-Åkhe et al, 2021;
preprint:Evans et al, 2021). Other studies focused on structures of
domain-motif interfaces to specifically evaluate AF’s ability to predict
structures for this mode of binding, reporting similar success rates
(Akdel et al, 2022; Johansson-Åkhe et al, 2021; Tsaban et al, 2022). Only
a few studies have also evaluated AF’s specificity for the prediction of
interface structures using controls such as random protein pairs or
mutation of motifs to poly-alanine stretches (Akdel et al, 2022;
Johansson-Åkhe et al, 2021; Tsaban et al, 2022). Different benchmark-
ing studies used different versions of AF and reported on different
metrics for their ability to distinguish good from bad structural models
(Bryant et al, 2022; O’Reilly et al, 2023; Tsaban et al, 2022;
preprint:Evans et al, 2021; Teufel et al, 2023). We generally lack a
comprehensive assessment of the latest AF releases and metrics across
different types of PPI interfaces for their sensitivity, specificity, and
potential biases for the prediction of complex structures.

In a landmark study, researchers applied AF onto 65,000 human
PPIs derived from a yeast two-hybrid-based interactome map
(hereafter referred to as HuRI) and highly confident co-complex
associations to structurally annotate the human interactome with AF-
derived models. High confidence models were obtained for about
3000 PPIs (Burke et al, 2023). The authors noted a smaller fraction of
highly confident structural models obtained for PPIs from the HuRI
dataset compared to the co-complex dataset and reported that
proteins in HuRI contain more intrinsic disorder and are less
conserved compared to proteins from co-complex datasets. AF model
confidence scores also increased for PPIs with proteins that are less
disordered and more conserved, indicating that AF predictions work
less well for PPIs mediated by interfaces involving disordered regions
such as domain-motif interfaces, which likely dominate the human
interactome (Tompa et al, 2014). However, AF benchmarking studies
reported similarly high success rates for domain-motif interfaces
compared to general docking benchmark datasets (Tsaban et al, 2022;
Akdel et al, 2022). These discrepancies in sensitivities could be a
result of two possible factors. First, they might point to differences in
AF performance if small interacting fragments are used for interface
prediction, as done in the benchmark studies, versus full length
sequences used for structure prediction in (Burke et al, 2023). Second,
these discrepancies could also point to difficulties of AF to predict
structures of interface types involving disordered regions that have
not been solved before, of which there are likely many in HuRI. It
remains to be addressed to what extent these two possible factors
contribute to the challenges encountered specifically for domain-
motif interface modeling.

Determination of accuracies of novel predicted interface
structures by AF ultimately requires experimentation. AF interface
predictions for individual PPIs have occasionally been experimen-
tally corroborated (Mishra et al, 2023; Bronkhorst et al, 2023). A
more systematic experimental confirmation of AF interface models
has been conducted using crosslinking mass spectrometry (XL-MS)
(Burke et al, 2023; O’Reilly et al, 2023). While in-cell XL-MS is a
very elegant approach to obtain experimental information on PPI

interfaces in unperturbed settings, it is still a method that is only
accessible to few experts in the field. Other experimental
approaches are needed, which can, ideally at high throughput,
confirm predicted interfaces for PPIs. In this study, we thoroughly
benchmarked the two most recent versions of AlphaFold-Multimer
(hereafter referred to as AF) for their ability to predict domain-
domain and domain-motif interfaces (DDIs and DMIs). We found
that prediction accuracies drop when using longer protein
fragments or full length proteins for interface predictions and
developed a strategy particularly suited for the prediction of novel
domain-motif interfaces in human PPIs. We applied this strategy to
62 PPIs from HuRI that connect disease-associated proteins and
experimentally assessed the obtained interface predictions for seven
PPIs using a plate-based bioluminescence resonance energy
transfer (BRET) assay (Trepte et al, 2018) combined with site-
directed mutagenesis. We identify novel interface types and report
on important limitations and sources of errors in AF-derived
structural models, which pave the way for future improvements in
the field.

Results

Evaluating AlphaFold’s accuracy for predicting domain-
motif interfaces

To thoroughly assess the ability of AF to predict structures of
binary protein complexes that are formed by a DMI, we extracted
information on annotated DMI structures from the ELM DB
(Kumar et al, 2022). We selected one representative structure per
motif class (136 structures in total), manually defined the minimal
domain and motif boundaries, and submitted the corresponding
protein sequence fragments for interface prediction to AF (Fig. 1A;
Dataset EV1). The domain sequences from this benchmark dataset
mostly shared 20–30% sequence identity (Appendix Fig. S1A). To
evaluate the accuracy of the predicted structural models, we
superimposed the actual structure and predicted model on their
domains and based on this superimposition, we computed the all
atom RMSD between the motif of the predicted model and the
actual structure (Fig. 1A). We found that 35% of the structural
models were so accurately predicted that even the side chains of the
motif were correctly positioned while for another 32% the
backbone but not the side chains of the motif were accurately
predicted. For 26% of the structures the motif was modeled into the
correct pocket, but in a wrong conformation, while, for the
remainder of the structures, AF failed to identify the right pocket
(Fig. 1A; Dataset EV1). A similar performance was obtained when
using the DockQ metric (Appendix Fig. S1B,C; Dataset EV1). This
performance is unaltered when using or switching off AF’s template
function (Fig. S1D,E). The use of DMI structures annotated by the
ELM DB enables us to explore potential differences in AF’s
performance regarding motif properties. We find no significant
differences in average model accuracy between different categories
of motif classes (two-sided Mann–Whitney test on all pairwise
combinations, n: DEG = 10, DOC = 21, LIG = 94, TRG = 9, MOD =
2, α = 0.05, test statistics of all pairwise combinations between 15
and 852, Appendix Fig. S1F), although the variance in model
accuracy appears to differ between the motif classes. Similarly, we
found no significant difference in prediction accuracy when
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stratifying by the secondary structure elements adopted by the
motifs (two-sided Mann–Whitney test on all pairwise combina-
tions, n: helix = 42, strand = 7, loop = 87, α = 0.05, test statistics of
all pairwise combinations between 184 and 2029, Appendix Fig.
S1G), nor by how hydrophobic, symmetric, or degenerate the motif

sequence is (Pearson r < abs(0.08), α = 0.05 Appendix Fig. S1H–J).
AF models display significantly more differences to structures
solved by other methods, i.e., NMR, than X-ray crystallography
(two-sided Mann–Whitney test, n: X-ray = 115, Others = 21,
p < 0.01, test statistics = 811, Appendix Fig. S1K) possibly because
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Figure 1. Benchmarking and application of AF for DMI interface prediction using minimal interacting fragments.

(A) Schematic illustrating the assembly of the DMI positive reference dataset and evaluation of AF prediction accuracies by superimposition of the solved and modeled
structures. Blue and cyan indicate the domain and motif in the native structure, respectively. Orange and yellow indicate the domain and motif in the modeled structure,
respectively. Proportion of structures of DMIs predicted by AF to different levels of accuracy is shown on the right. (B) Area under the Receiver Operating Characteristics
Curve (AUROC) for different metrics using the DMI benchmark dataset as positive reference and the following different random reference sets: Left, 1 mutation introduced
in conserved motif position; middle, 2 mutations introduced in conserved motif positions; right, random reshuffling of domain-motif pairs. Gray horizontal line indicates the
AUROC of a random predictor. (C) Superimposition of AF structural model for motif class MOD_SUMO_rev_2 (orange) with homologous solved structure (PDB:1KPS)
from motif class MOD_SUMO_for_1 (blue). The motif sequence used for prediction is indicated at the bottom, colored by pLDDT (dark blue=highest pLDDT). (D)
Superimposition of AF structural model for motif class CLV_C14_Caspase3-7 (orange) with homologous structure (PDB:5IAN) solved with a peptide-like inhibitor (blue).
The motif sequence used for prediction is indicated at the bottom, colored by pLDDT (dark blue=highest pLDDT). (E) AF prediction of a LIG_HCF-1_HBM_1 motif in
CREBZF (orange) binding to the beta-propeller Kelch domain of HCFC1 (gray). Mutated domain residues for experimental testing are colored in green. (F) Close up on the
interface shown between CREBZF and HCFC1 from (E). Coloring is the same as in (E). Key conserved motif residues are drawn as sticks. Mutated residues in the domain
and motif for experimental testing are labeled. (G) BRET titration curves are shown for wildtype interactions and mutant constructs for CREBZF-HCFC1 pairs for two
biological replicates, each with three technical replicates. Protein acceptor over protein donor expression levels are plotted on the x-axis determined from fluorescence and
luminescence measurements, respectively.
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NMR structures better represent structural dynamics that AF
cannot capture, since it was trained to predict the crystallized forms
of proteins.

The all-atom motif RMSD significantly anti-correlates with
various AF-derived metrics (Pearson r =−0.55, p-value < 0.05
Appendix Fig. S1L,M; Dataset EV1) suggesting that these metrics
are indicative of good versus bad structural models and can be used
for de novo interface predictions. To evaluate AF’s ability to
identify high confident structural models of DMIs, we generated
three different random DMI datasets. First, we randomly paired
domain and motif sequences from the positive reference dataset
taking into account that no motif sequence was paired with a
domain sequence from the domain type that the motif is known to
interact with. Second and third, we mutated one and two key motif
residues, respectively, to residues of opposite chemico-physical
properties. Based on the conservation of these key motif residues,
we assume that the mutations would be disruptive to binding, at
least when experimentally tested using minimal interacting protein
fragments. Receiver operating characteristic (ROC) and precision-
recall (PR) curves using the positive and random datasets (Fig. 1B;
Appendix Fig. S2A,B; Dataset EV2) show that the domain interface
residue pLDDT (for all metric definitions, see Methods) or the
number of atoms or residues predicted to be in contact with each
other, discriminated poorly between all reference datasets (AUC
around 0.64). Furthermore, we observed that all tested metrics
failed to discriminate interacting from non-interacting interfaces
when mutating one motif residue (max AUC 0.66). However, the
AF-derived metrics model confidence (preprint:Evans et al, 2021),
average interface residue pLDDT, average motif interface residue
pLDDT, pDockQ (Bryant et al, 2022), and iPAE (Teufel et al, 2023)
discriminated well between both reference datasets when rando-
mizing domain-motif pairs or introducing two motif mutations
(max AUC 0.86, ROC statistics and ideal cutoffs can be found in
Dataset EV2). We also evaluated whether the top 5 reported models
by AF tend to be more similar to each other when corresponding to
a correct structural model (Pozzati et al, 2022) and found that this
feature has moderate predictive power (Appendix Fig. S2C).

Application of AlphaFold for providing structural models
for motif classes without available structural data

After evaluating the accuracy of AF to predict DMIs using minimal
interacting regions, we aimed to use this setup for the prediction of
structural models for motif classes in the ELM DB for which no
structure of a complex has been solved yet. We identified 125 such
motif classes based on ELM DB annotations. Of those, we selected
all domain-motif instances where both the motif and the domain
were derived from human or mouse proteins and submitted the
corresponding domain and motif sequences for structure predic-
tion to AF (Dataset EV3). Using a motif chain pLDDT cutoff of >
70, we obtained confident structural models for 21 motif classes.
We manually inspected the structural models and noticed that even
though these ELM classes have no annotations with structures,
solved structures for an exact ELM instance or a very likely new
instance for the ELM class are available for 11 out of the 21 cases.
For most others, a close homolog structure had been solved, i.e., for
LIG_MYND_3 and LIG_MYND_1, a structure solved by NMR for
a LIG_MYND_2 interaction is available (Appendix Fig. S2D,E). For
MOD_SUMO_rev_2, a structure of a reversed motif is available

(and annotated as such in the MOD_SUMO_for_1 class). Here it is
interesting to see how very dissimilar binding modes (flexible for
MOD_SUMO_for_1, helical for MOD_SUMO_rev_2), are still able
to place the important binding residues in the same pockets
(Fig. 1C). For CLV_C14_Caspase3-7, the structure of the caspase
bound to peptide-like inhibitors has been solved (e.g. PDB:1F1J,
PDB:5IAN, PDB:6KMZ), and structures of more distant caspases
bound to a cleaved peptide substrate are also available. For
proteases, one great advantage of AF is the ability to model both the
catalytically active enzyme and an uncleaved substrate, which is
practically impossible to solve experimentally (Fig. 1D).

Finally, for LIG_HCF-1_HBM_1 we were not able to identify a
homologous structure in the PDB, hence, our AF-derived structural
models for this motif class are likely novel. Motifs of this class are
bound by the N-terminal beta-propeller Kelch domain of HCFC1
consisting of six Kelch repeats. Kelch domains have been shown to
bind to motifs at a number of different sites, and thus, without
prior knowledge, it is difficult to determine where the HCFC1-
binding motif (HBM) would bind. HCFC1 is a transcription factor
that associates with other transcription factors (Lu et al, 1997),
splice factors (Ajuh et al, 2002), and cell cycle regulators (Freiman
and Herr, 1997; Machida et al, 2009). We generated AF models of
high confidence for the HCFC1 Kelch domain interacting with
multiple motif instances that are annotated in the ELM DB. All
complexes show the tyrosine of the motif docked into a deep pocket
at the bottom/top of the Kelch domain (Fig. 1E,F; Appendix Fig.
S2F–H), with slight variations in how the tyrosine is exactly
positioned in the pocket (Fig. S2F–H). Based on clone availability
we selected the structural model between HCFC1 and CREBZF for
experimental validation. For this purpose, we used a BRET protein
interaction assay that is based on transient overexpression of two
proteins in HEK293 cells (Trepte et al, 2018). Both proteins are
expressed as fusion constructs either to the Nanoluc luciferase (the
donor) or mCitrine (the acceptor). Interaction of both proteins
results in a BRET from the oxidized substrate of the donor to the
acceptor molecule, if both are close enough to each other for the
BRET to occur (see Methods for details). We observed significant
binding and BRET saturation when assaying wildtype CREBZF and
HCFC1 proteins (Fig. 1G; Appendix Fig. S2I,J). Mutation of the
[DE]H.Y motif tyrosine to alanine (Y306A) or mutation of two
residues in the Kelch domain pocket (L257F, L138F), which are
modeled to be in contact with the motif tyrosine or histidine
residue (Fig. 1F), strongly reduced BRET signals indicating
weakening or loss of binding (Fig. 1G; Appendix Fig. S2I,J). A
pathogenic mutation (S225N, source ClinVar (Henrie et al, 2018))
close to the pocket slightly reduced expression levels of HCFC1 but
did not result in loss of binding (Fig. 1F,G; Appendix Fig. S2I,J).
Our experiments suggest that a potential pathogenic mechanism of
this mutation is not mediated via perturbed binding of partners to
the Kelch repeat domain pocket of HCFC1 that we identified in this
study. Unfortunately, no assertion criteria for the annotation of this
mutation to be pathogenic is provided by ClinVar meaning that the
mutation is either not pathogenic after all or its pathogenicity is
mediated via another perturbed function not tested in this study.
Collectively, these experimental results support the structural
models of the HCFC1 Kelch domain pocket - motif interaction
and overall provide highly confident structural models for multiple
motif classes of the ELM DB without available structural
information (Dataset EV4).
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Evaluation of AlphaFold’s ability to predict interfaces in
full length proteins

Most PPIs known to date have been identified using full length
protein sequences in systematic interactome mapping efforts. For
the vast majority of these PPIs, no fragment or interface
information is available. Thus, the question emerges how AF
would perform on DMI predictions when longer protein sequences
or full length proteins are submitted. To answer this question we
selected 31 DMI structures from the positive reference dataset used
above and generated random domain-motif pairs of those as
negative control. The selected structures were sampled from
different prediction accuracy categories (Fig. 1A; Dataset EV5).

We then gradually extended the motif and domain sequences by
first adding flanking disordered regions, then neighboring folded
domains before using the full length sequences (Fig. 2A).
Comparison of the motif RMSD computed for extended versus
minimal domain-motif pairs from the positive reference dataset
revealed that the addition of flanking disordered regions on the
motif or domain side sometimes slightly improved prediction
accuracies while the addition of neighboring structured domains or
the use of full length sequences led to a significant worsening of
model accuracies (Fig. 2B; Dataset EV5). Interestingly, despite the
fact that, for smaller extensions, model accuracies remained the
same or slightly improved as determined by motif RMSD, AF-
derived metrics such as the model confidence or average motif

Figure 2. Effect of protein fragment extensions on the accuracy of AF predictions.

(A) Workflow established to assess changes in AF performance upon protein fragment extension. Blue and cyan indicate the domain and motif in the native structure,
respectively. Orange and yellow indicate the domain and motif in the modeled structure, respectively. (B) Heatmap showing the fold change in motif RMSD before and
after extension where positive values indicate improved predictions from extension and negative values indicate worse prediction outcomes upon extension. (C) Heatmap
of the average model confidence for combinations of different motif and domain sequence extensions. (D) Optimal cutoffs derived for different metrics from ROC analysis
benchmarking AF different motif and domain extensions from the reference dataset used in A and random pairings of domain and motif sequences. pLDDT-related metrics
were divided by 100 for visualization purposes. (E, F) Superimposition of the structural model of the minimal (left, orange) or extended (right, yellow) motif sequence with
the solved structure (motif in blue) for two different motif classes as indicated on the top of each panel. The motif sequence from the solved structure is indicated at the
bottom. Motif residues are underlined, motif residues not resolved in the structure have a gray background. Sticks indicate the motif residues, domain surfaces are shown
in gray based on experimental structures. (G) Superimposition of the structural model of the minimal (orange) and extended (yellow) motif sequence with the solved
structure (motif in blue) for a motif instance from the motif class LIG_BIR_III. Motif sequence indicated as in (E). (H) Area under the Receiver Operating Characteristics
Curve (AUROC) for different metrics using the DDI benchmark dataset as positive reference and randomly shuffled domain-domain pairs as random reference. Gray
horizontal line indicates the AUROC of a random predictor.
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interface residue pLDDT gradually dropped with increasing
fragment length (Fig. 2C; Appendix Fig. S3A-C). ROC plots of
predictions for a benchmark consisting of the positive and random
domain-motif pairs revealed that, upon extension, the optimal
cutoff of model confidence and iPAE considerably changed as well
(Fig. 2D; Appendix Figs. S3D,E, S4A; Dataset EV6). This means
that different model confidence or iPAE cutoffs are to be used
depending on the length of the submitted protein sequences, which
is rather impractical and thus disfavors both metrics for DMI
predictions. The average motif interface residue pLDDT metric
appeared to be more robust with respect to fragment length. Based
on these results we chose this as the main metric and a cutoff of 70
to discriminate good from bad AF-generated DMI models
regardless of fragment length.

Extending motif sequences for interface prediction with
AlphaFold reveals important motif sequence context

Various studies have highlighted that flanking sequences of motifs
can influence binding affinities and specificities (Luck et al, 2012;
Bugge et al, 2020). Motif annotations in the ELM DB usually refer
to the core sequence of the motif, often because information on
putative roles of flanking sequences is missing. In the previous
section, we observed that some motif extensions notably improved
AF prediction accuracies. In the hope that these cases would point
to motifs with important sequence context, we manually inspected
eight predictions for which the motif RMSD decreased by more
than 1 Å when extending the minimal motif sequence once to the
left and right by the length of the motif (extension step 1 in Fig. 2A;
Appendix Fig. S4B).

By doing so interesting patterns emerged: The most prevalent
contribution to increased prediction accuracies is the stabilization of
the secondary structure of the motif contributed by both sidechain and
backbone atoms in the flanking regions, as shown for the interaction
involving the motif LIG_CAP-Gly_2 (Fig. 2E; Appendix Fig. S4C). For
the LIG_NBox_RRM_1 motif, AF placed a part of the domain into the
binding pocket rather than the motif, although the motif had the
correct helical conformation. Elongation of the motif extended this
helix, thereby increasing the interaction surface and eventually
pushing out the domain’s tail from the pocket (Fig. 2F). This fits
with other reports where AF has been shown to predict preferential
binding of competing motifs (Chang and Perez, 2023). For the
LIG_HOMEOBOX class prediction, the motif is positioned in the
wrong pocket unless flanking regions are included (Appendix Fig.
S4C). For DOC_MAPK_JIP1_4, motif extension results in an
extended motif conformation and consequently in a structural model
with lower overall RMSD (Appendix Fig. S4C). For the LIG_GYF
class, most models converge into an inverse orientation of the
backbone except for one of the extended motifs, which lies in the
binding pocket in the correct orientation (Appendix Fig. S4C). In
summary, these analyses point to motif classes whose sequence
boundaries could be refined.

Interestingly, for a motif instance from the LIG_BIR_III_2 class,
slight motif extensions actually led to a substantial decrease in
prediction accuracy. In this case, the motif is located at a neo-N-
terminus that is only revealed after cleavage of the protein by a
caspase (Fig. 2G). When the motif is extended in the context of the
full length protein, the residues now upstream of the previous neo-
N-terminus likely impede binding of the motif into the pocket due

to steric clashes. AF predicts the extended motif to bind in reversed
orientation and it is mostly pushed out of the pocket. This
highlights the importance of not only incorporating sequence
context but also knowledge about the biological context, wherever
possible, into AF modeling and model interpretation.

Evaluating AlphaFold’s performance for the prediction of
domain-domain interfaces

Folded domains can not only interact with motifs but also with
other folded domains forming so-called domain-domain interfaces
(DDIs). To enable simultaneous prediction of DDIs and DMIs in a
given protein interaction, we set out to evaluate AlphaFold’s
performance on DDI predictions using a reference dataset of 48
DDI structures that we manually curated out of random selections
of domain-domain contact pairs extracted from 3did (Mosca et al,
2014). As a negative dataset, we randomized the pairing of these
domains. Using ROC and PR statistics we found that AlphaFold
performed slightly worse on this DDI benchmark dataset compared
to its performance on DMIs (max AUC 0.73 vs. 0.86) (Fig. 2H;
Appendix Fig. S4D–F; Dataset EV7) but still showed significant
discriminative power. Interestingly, the best performing metric for
DDI predictions was the average interface pLDDT score with an
optimal cutoff of 75, which ranked fourth for DMI predictions.

Comparison of AlphaFold v2.2 with v2.3

During the course of our work, AF multimer version 2.3 was
released. To determine whether the new release improved DMI and
DDI prediction accuracies, we repeated all benchmarking with AF
v2.3 and found that motif RMSDs and other AF-derived metrics on
average improved compared to AF v2.2 when using minimal
interacting fragments (Appendix Fig. S5A–D; Dataset EV1, two-
sided Wilcoxon signed-rank test on motif all atom RMSD: n = 136,
W = 2413, p < 0.0001). AF v2.3 still showed a decrease in prediction
accuracy when using extended protein fragments but this decrease
was less pronounced compared to the corresponding decrease for
v2.2 (Appendix Fig. S5E,F; Dataset EV5). Despite these improve-
ments on the sensitivity side of AF, when benchmarked against
random datasets, overall prediction accuracies only slightly
improved compared to v2.2 (Appendix Fig. S5G,H; Appendix Fig.
S6A–C; Dataset EV2, EV6, EV7, EV8).

Application of AlphaFold for the discovery of novel
interfaces in protein interactions without any a priori
interface information

Since the use of larger or full length protein sequences leads to a
poor sensitivity for DMI predictions by AF, we devised the
following strategy for the use of AF for interface predictions for
known protein interactions: Using AF models of the full length
monomeric structures of both interacting proteins, we decided on
boundaries between structured domains and disordered regions
based on manual inspection (see Methods). We then fragmented
the disordered regions by designing overlapping fragments varying
in length from ten residues up to the length of the respective
disordered region (Fig. 3A). We then paired disordered with
ordered, and ordered with ordered fragments for interface
prediction by AF (Fig. 3A). To assess to which extent this
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fragmentation approach would lead to an increase in sensitivity but
also in false model predictions, we selected 20 out of the 31 DMI
structures that were previously used to investigate the effect of
fragment extension on prediction accuracies. We attempted model
prediction with the full length sequences of these 20 DMI pairs and
obtained a model for two of which only one met the motif interface
pLDDT cutoff and corresponded to an accurate prediction
(TRG_AP2beta_CARGO_1 in Fig. 3B; Dataset EV9, see methods
for details). We then switched to using fragment extension step 5
for motifs and/or 2 for domains (Fig. 2A) and obtained accurate

models for an additional 5 of the 20 DMI pairs. Applying the full
fragmentation approach onto all 20 DMI pairs resulted in accurate
model prediction for an additional 6 DMI pairs (Fig. 3B)
representing an increase in sensitivity for full length vs fragments
from 5 to 60%. We then shuffled the 20 DMI pairs to generate 20
random DMI pairs for which we performed the fragmentation
approach. As expected from an earlier estimated 20% false positive
rate (FPR) (Appendix Fig. S4A), 19 of the 20 random protein pairs
had at least one fragment pair that produced a model above the
motif interface pLDDT cutoff (Appendix Fig. S6D; Dataset EV9)
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Figure 3. AF prediction and experiments on PPIs connecting NDD proteins.

(A) Schematic of the fragmentation approach applied on a pair of interacting proteins, A and B. Proteins are fragmented into folded and disordered regions based on
manual inspection. Disordered regions are further fragmented. All disordered and folded fragments of one protein are paired with the folded regions of the other protein
and vice versa for AF prediction. (B) Accuracy measured in motif RMSD compared to native structures for models obtained from fragmenting proteins from 20 DMIs from
the positive reference dataset and comparison to model accuracy obtained when using (near) full length proteins for structure prediction (red crosses). Only models that
meet the cutoff for identifying high confident models are shown. Six DMIs did not result in any such model. The gray horizontal line indicates the RMSD cutoff used to
identify accurate models (see methods for details). (C) AF prediction outcome on 67 HuRI PPIs connecting NDD proteins. (D) PPI networks illustrating AF prediction
outcomes and experimental retesting of PPIs in BRET assay. (E) Number of PPIs connecting NDD proteins with structural models at indicated pDockQ cutoffs from (Burke
et al, 2023) grouped based on AF prediction outcomes using the fragmentation approach as shown in (C). (F) cBRET, total luminescence, and fluorescence for 28 PPIs
connecting NDD proteins that were tested in the BRET assay. Luminescence and fluorescence measurements indicate expression levels of NL and mCit fusion proteins,
respectively. Black horizontal lines indicate expression level and PPI detection cutoffs. The gray vertical line separates the detected (left) from undetected PPIs. Protein
pairs in bold indicate those selected for interface validation via site-directed mutagenesis. Error bars indicate STD of three technical replicates. Source data are available
online for this figure.

Chop Yan Lee et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology Volume 20 | Issue 2 | February 2024 | 75 –97 81



indicating that predictions done using this fragmentation approach
can substantially increase sensitivity while also producing a
considerable number of false models using the established scoring
metrics. This needs to be taken into account when modeling new
interactions with this fragmentation strategy, as covered in the
following section.

We selected PPIs from HuRI that connect proteins associated
with neurodevelopmental disorders (NDDs) and subjected these to
our AF fragmentation pipeline to predict putative DMIs and DDIs.
For 51 out of 62 PPIs we obtained at least one structural model of
significant confidence (Fig. 3C,D). In retrospect, manual inspection
of the predictions obtained for these PPIs revealed that, for 9 PPIs,
a solved structure of the interface was already available. Reassur-
ingly, six out of these were accurately predicted by AF. For the
remainder of the PPIs, 12, 16, and 14 resulted in a likely correct,
questionable, or likely wrong prediction, respectively, based on
manual inspection of the models (Fig. 3C,D; Dataset EV10). Likely
wrong predictions were scored as such based on docking of the
protein partner into nucleic acid or metal ion binding or
catalytically active sites. We also considered structural models as
likely wrong, if different protein fragments of the partner were
predicted with similarly high scores to bind to the same pocket on
the domain. More detailed information can be found in Methods
and Appendix Text S1. Of note, for 8 of the 12 PPIs with a likely
correct prediction, AF predictions performed using the full length
proteins (Burke et al, 2023) did not result in a high confidence
prediction (Fig. 3E). 28 of the 62 PPIs were in our hands amenable
to experimental testing using the BRET assay introduced earlier
(see Methods for details). Significant BRET signals were observed
for 11 of these 28 PPIs (Fig. 3F). Of those, 7 PPIs were selected for
validating the predicted interfaces (Fig. 3D,F). The remaining four
PPIs were not further considered because for three of them a
structure already exists (CSNK2B-CSNK2A1, PNKP-XRCC4,
UBA5-GABRAPL2) and for the fourth interaction (KCTD7-
CUL3) we classified the predicted interface as likely wrong. Next,
we will first describe failures in validating predicted interfaces
followed by the successes.

For the interaction between PNKP and TRIM37, we obtained
high confident structural models involving two different interfaces.
AF predicted the PNKP FHA domain to bind to several disordered
stretches in TRIM37 (Fig. 4A) that are overall negatively charged.
These short regions were predicted to bind to a pocket on the FHA
domain that is known to bind phosphorylated threonines
(Durocher et al, 2000), which led us to conclude that these
predictions were likely wrong. AF also predicted the MATH
domain of TRIM37 to bind to two separate disordered putative
motifs located between the FHA domain and phosphatase domain
in PNKP (Fig. 4A–C). However, none of the mutants aimed at
disrupting the predicted interfaces (Fig. 4B) involving the MATH
domain showed a decrease in BRET signal compared to wildtype
(Fig. 4D; Appendix Fig. S7A) indicating that TRIM37 and PNKP do
not interact with each other via this interface.

AF predicted with high confidence binding of PSMC5 to the
hormone receptor domain of ESRRG via two distinct motifs
(Fig. 4E–G) with similarity to LxxLL motifs known to bind this type
of domain (LIG_NRBOX in ELM DB). We reproducibly found that
none of the motif mutations in PSMC5 decreased binding to
ESRRG compared to wildtype while both domain pocket mutations
led to a remarkable reduction in BRET signal (Fig. 4H; Appendix

Fig. S7B,C) indicating that PSMC5 might bind to ESRRG via this
pocket but not with the predicted motifs.

AF predicted a coiled-coil interface between STX1B and VAMP2
of moderate confidence (Fig. 5A,B). STX1B is a close homolog to
STX1A, which binds in a 4-helix bundle to VAMP2 together with
SNAP25 in a 1:1:2 stoichiometry, respectively, as observed by
crystallography (PDB:1N7S (Ernst and Brunger, 2003)). This
structure together with our predictions suggest that STX1B might
bind VAMP2 in a similar way. Indeed, removal of the single helical
SNARE domain in STX1B led to complete loss of binding to
VAMP2 (Fig. 5C; Appendix Fig. S8A,B). Interestingly, FBXO28 was
predicted by AF to bind to STX1B via a similar coiled-coil interface
involving an extended helix in FBXO28 and the SNARE domain in
STX1B (Fig. 5A,D). Here, deletion of the SNARE domain in STX1B
or of the extended helix in FBXO28 reproducibly reduced, but did
not abolish the interaction between STX1B and FBXO28 (Fig. 5E;
Appendix Fig. S8C,D). We identified three pathogenic or likely
pathogenic mutations in the SNARE domain of STX1B in ClinVar
of which V216E and G226R are associated with generalized
epilepsy with febrile seizures plus, type 9. Testing all three
mutations in the BRET assay we observed a drastic decrease in
binding for STX1B V216E to FBXO28 (Fig. 5F; Appendix Fig.
S8C,D). However, the measured effects of the mutations on the
FBXO28-STX1B interaction do not correlate with their location at
the predicted interface. V216E, for example, is not predicted to be
in contact with residues of FBXO28 (Fig. 5D). This indicates that
the actual predicted orientation of the two extended helices with
respect to each other is likely incorrect.

The fact that the deletion of the extended helix in FBXO28 or
the SNARE domain in STX1B reduced but did not abrogate binding
of both proteins to each other (Fig. 5E) suggests that a secondary
interface might exist. Indeed, AF predicted additional interfaces
between FBXO28 and STX1B involving folded and disordered
regions in both proteins (interfaces i and ii in Fig. 5A). Mutations
designed to disrupt these interfaces partially confirmed the
involvement of some of these regions in binding as assayed with
BRET (Appendix Fig. S8E–H). In addition, the pathogenic
mutation R348L in FBXO28 predicted to be at interface ii seemed
to increase binding to STX1B (Appendix Fig. S8I–L). In summary,
our experimental data indicate that multiple regions of FBXO28
and STX1B may be involved in the binding but the exact structural
details of this interaction remain to be elucidated. In the following
two sections, we will describe in more detail successful interface
validations for interactions involving PEX3, PEX19, and PEX16 as
well as SNRPB and GIGYF1.

PEX3, PEX19, and PEX16

The interaction interface between PEX19 and PEX3 has been
structurally resolved before and consists of an interaction between
an N-terminal motif in PEX19 that binds to the cytosolic alpha-
helical domain of PEX3 (PDB:3MK4, (Schmidt et al, 2010)). Using
corresponding protein fragments, AF predicted a structural model
that is highly similar to the solved structure (Fig. 5G; Appendix Fig.
S9A,B). We introduced mutations in the PEX19 motif and PEX3
pocket (Appendix Fig. S9A) and found that F29K in the motif
weakened but clearly maintained BRET binding signals indicating
the existence of a secondary binding site between both proteins
(Fig. 5H; Appendix Fig. S9C,D). Indeed, AF predictions with other
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disordered fragments of PEX19 paired with the PEX3 domain
resulted in highly confident models for interfaces involving a
binding pocket on PEX3 that is distal to the pocket where the
N-terminal PEX19 motif is known to bind. When using a protein
fragment that spans the full disordered N-terminal region of PEX19
(1–170), AF predicts the known PEX3-binding motif and helix 4

and 5 to dock into the primary and secondary pocket, respectively
(Fig. 5G,I), supporting simultaneous interaction via both interfaces.

While the interaction between PEX3 and PEX16 has been
described before, little is known about how both proteins interact
with each other. The monomeric AF model of PEX16 shows a
helical fold, which could in its entirety be transmembrane (TM).
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Between the putative TM helix 4 and 5 there is a large loop
(132–214), which was predicted by AF with very high confidence to
bind to a third pocket on the PEX3 domain, opposite to both
binding sites mentioned earlier for PEX19 (Fig. 5G,I,J). Of note,
different fragments of this loop as well as the entire PEX16 were
repeatedly predicted to bind in similar modes to PEX3, further
increasing the confidence in this prediction. Encouraged by these
results, we submitted all three full length PEX sequences for
complex prediction to AF and obtained a model that supports
simultaneous binding of PEX16 and PEX19 to PEX3 (Appendix
Fig. S9E). We individually mutated two residues in the PEX16 loop,
deleted the loop in its entirety (del162-192), and mutated two
residues on PEX3 (highlighted in Fig. 5J). Unfortunately, higher
expression levels of PEX16 seem to trigger degradation of PEX3
(Appendix Fig. S9F), which we did not observe for the same
constructs when co-expressed with PEX19 (Appendix Fig. S9G). As
a consequence, we could not obtain titration curves and BRET50
estimates but obtained reliable BRET signals for lower PEX3-
PEX16 DNA transfection ratios showing that the deletion as well as
both PEX3 mutants significantly decreased binding to PEX16
(Fig. 5K; Appendix Fig. S9H). Of note, these PEX3 mutants (R54S
and E272R) did not alter binding to PEX19, showing that the
overall structural integrity of PEX3 was not perturbed by these
mutations (Fig. 5H; Appendix Fig. S9D).

PEX3 and PEX19 are peroxin proteins that regulate peroxisome
homeostasis. PEX16 is believed to serve as an integral membrane-
bound receptor for PEX3 (Matsuzaki and Fujiki, 2008) while PEX3
is thought to serve as a docking site for PEX19 (Fujiki et al, 2006).
PEX19 in turn is a cytosolic carrier for peroxisomal membrane
proteins to the peroxisome (Fujiki et al, 2006). Combining results
from previously published functional studies with the structural
and experimental results obtained in this study, a model for a
trimeric complex between PEX3, PEX19, and PEX16 emerges
(Fig. 5L) where PEX16 fully inserts into the peroxisome membrane
via a fold that consists of seven helices (residues 19-286) with its
N-terminal end being cytosolic and its C-terminal end protruding
into the peroxisome. The extended loop between TM helix 4 and 5
reaches into the cytosol and docks onto PEX3, which is further
anchored into the peroxisomal membrane via its N-terminal TM
helix (residues 13–45). PEX19 docks onto PEX3, opposite to where
PEX16 is bound, via two interaction surfaces—one corresponding

to the known PEX3-binding motif in PEX19 and a second one
corresponding to a novel motif (residues 99–146) docking at a
hitherto unknown second binding site on PEX3 for PEX19. This
model explains how PEX3 is anchored to the peroxisomal
membrane via PEX16 and how PEX3 can bind very tightly
PEX19, which can then deliver PMPs to the peroxisome. Mutations
in any of the three PEX proteins are associated with severe
developmental phenotypes referred to as peroxisome biogenesis
disorders (Fujiki et al, 2022). The vast majority of the around 150
mutations annotated for the three proteins are uncharacterized
(Henrie et al, 2018), dozens of which fall into the predicted
interfaces. The structural models obtained from this work can
inform future studies aimed at characterizing the effects of these
mutations.

SNRPB and GIGYF1

AF predicted two different types of interfaces with high confidence
for the interaction between SNRPB and GIGYF1. The first interface
involves the LSM domain of SNRPB which was predicted to bind to
various fragments in the long disordered regions of GIGYF1
(Fig. 6A). These regions do not display any common sequence
pattern. The structure of SNRPB has been resolved as part of the
Sm ring complex that binds small nuclear RNA (PDB:4WZJ,
(Leung et al, 2011)) showing that the surface on the LSM domain
predicted to bind to disordered fragments of GIGYF1, is actually
engaged in binding LSM domains of other Sm proteins within the
complex (Fig. 6B). We thus conclude that these predictions are
likely wrong. The second type of interface predicted by AF involves
the GYF domain in GIGYF1 and multiple short disordered
fragments in the C-terminal region of SNRPB, which repeatedly
carry the sequence PPPGM(R) (Fig. 6A,C). We designed various
deletion constructs of SNRPB that would gradually remove more
and more of the repeated proline-rich motif. We observed, using
the BRET assay, that these deletion constructs gradually decreased
binding to GIGYF1 (Fig. 6D; Appendix Fig. S10A,B). We also
mutated the GYF domain pocket and found that W498E but not
L508F would decrease binding to SNRPB (Fig. 6D,E; Appendix Fig.
S10A–D). To further corroborate these findings we performed a co-
immunoprecipitation experiment, where endogenous GIGYF1
interacted with HA-tagged full length SNRPB (Fig. 6F). This

Figure 5. Verification of interface predictions for STX1B-FBXO28, STX1B-VAMP2, PEX3-PEX19, and PEX3-PEX16.

(A) Schematic of the domain architecture of STX1B, FBXO28, and VAMP2 with indication of top predicted interfaces. Numbers in blue indicate the motif interface pLDDT
(for order-disorder fragment pairs) or average interface pLDDT (for ordered-ordered fragment pairs) for the respective interface. Roman numbering refers to structural
models in (B), (D), Appendix Fig. S8E, and Appendix Fig. S8I. (B) Structural model of interface iv shown in (A). In panel (B) and (D), the chains are color-coded according
to the colors of the domains in (A). (C) BRET titration curves are shown for wildtype interactions and deletion constructs for two biological replicates, each with three
technical replicates. Protein acceptor over protein donor expression levels are plotted on the x-axis determined from fluorescence and luminescence measurements,
respectively. (D) Structural model of interface iii shown in (A) with tested pathogenic mutations labeled and colored in green. (E, F) BRET titration curves are shown for
wildtype interactions and deletion constructs for two biological replicates, each with three technical replicates. Protein acceptor over protein donor expression levels are
plotted on the x-axis determined from fluorescence and luminescence measurements, respectively. (G) Schematic of the domain architecture of PEX3, PEX19, and PEX16
with indication of top predicted interfaces. Numbers in blue indicate the motif interface pLDDT for the respective interface. Roman numbering refers to structural models
in (I), (J), and Appendix Fig. S9A. Region vi covers residues 1–170, which includes the previously reported N-terminal motif as well as three putative motifs suggested by
the AF models. (H) BRET titration curves are shown for wildtype interaction and mutants of PEX3-PEX19 pairs for three technical replicates. Protein acceptor over protein
donor expression levels are plotted on the x-axis determined from fluorescence and luminescence measurements, respectively. The left plot displays mutants aimed at
disrupting binding between PEX3-PEX19 while the right plot displays mutants aimed at disrupting the PEX3-PEX16 PPI why binding between PEX3-PEX19 should not be
altered. (I) Superimposition of structural models of interface vi (PEX3-PEX19) and vii (PEX3-PEX16) on the PEX3 domain. Note that modeling smaller fragments of PEX19
generates alternative interactions with the binding sites. (J) Structural model of interface vii shown in (G). (K) BRET values with subtracted bleedthrough for PEX3-PEX16
wildtype and various mutated constructs. Three technical replicates are shown. (L) Proposed model for how the trimeric complex of PEX3, PEX19, and PEX16 might
assemble at the peroxisomal membrane. Source data are available online for this figure.
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interaction appeared less pronounced upon truncation of the
C-terminal proline-containing region of SNRPB (Fig. 6F). This
further suggests that both proteins interact with each other in cells
and that this interaction is stabilized by the predicted interface.

During the course of these studies, a structure was published
(PDB:7RUQ, Sobti et al, 2023) showing binding of the GYF domain
of GIGYF1 to a motif of sequence PPPGL of the protein TNRC6C
confirming the binding mode predicted by AF where a hydrophobic
residue (M or L) inserts into a hydrophobic pocket and where the
proline residues contact the surrounding domain surface
(Fig. 6C,G). Interestingly, this hydrophobic pocket does not exist
in the previously solved structure of the GYF domain of CDBP2
binding to a proline-rich peptide that is flanked by positively

charged residues establishing important contacts with the domain
(PDB:1L2Z, (Freund et al, 2002)). This structure formed the basis
for the definition of the LIG_GYF motif class in the ELM DB. The
recently resolved structure of the GYF domain of GIGYF1 together
with our structural models and experimental validations argue for
an extension of the existing motif definition or definition of a new
motif subclass.

Discussion

AF has revolutionized the field of structural bioinformatics and has
sparked much excitement about its potential to predict structures of
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Figure 6. Verification of interface predictions for SNRPB-GIGYF1.

(A) Schematic of the domain architecture of SNRPB and GIGYF1 with indication of top predicted interfaces. Numbers in blue indicate the motif interface pLDDT for the
respective interface. Roman numbering refers to structural models in (B) and (C). (B) Structural model of interface ii shown in (A) (left) and in comparison a solved
structure (PDB:4WZJ) of the Sm ring complex (right) bound to RNA (orange). The LSM domain of SNRPB is shown in cyan. The position of the predicted motif (left) or
neighboring LSM domain of SNRPD3 (right) are indicated in gold. Black circles indicate the predicted interface in the model and corresponding interface in the complex on
the LSM domain of SNRPB. (C) Structural model of interface i shown in (A) with tested domain mutations labeled and colored green. The motif sequence is indicated at the
bottom. (D, E) BRET titration curves are shown for wildtype interactions, deletion constructs of SNRPB, and single point mutants in GIGYF1 for two biological replicates,
each with three technical replicates. Protein acceptor over protein donor expression levels are plotted on the x-axis determined from fluorescence and luminescence
measurements, respectively. (F) Cropped immunoblot of input (5%) and HA antibody immunoprecipitation (IP) performed in parental HEK cells (empty, untagged
negative control), Snrpb(full-length, 1-231)-2xHA-mNeonGreen, Snrpb(1-190)-2xHA-mNeonGreen expressed from a single locus in Flp-In™ T-REx™ 293 Cell Lines. The HA
antibody was used for detecting the immunoprecipitated Snrpb-proteins, endogenous GIGYF1 was detected with GIGYF1 antibody, GAPDH serves as a loading and
negative-IP control. The experiment was performed twice with equivalent outcome, one representative experiment is shown. (G) Solved structure (PDB:7RUQ) of the GYF
domain of GIGYF1 bound to a proline-rich motif in TNRC6C. The sequence of the motif in TNRC6C is indicated. Source data are available online for this figure.
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interacting proteins and bringing us closer to a structurally resolved
protein interactome. However, from existing studies it largely
remained unclear whether AF’s performance depends on the type
of interfaces and the length of submitted protein chains for
interface prediction, which metrics perform best in identifying
likely correct structural models of interfaces, how specific AF
predictions are, and to which extent highly confident structural
models can be experimentally corroborated. In this study, we
showed that AF performs similarly well for interfaces between
folded domains and interfaces formed between a folded domain
and a short linear motif. Using minimal interacting regions for
interface prediction we reached sensitivities of up to 80% similar to
previously published work (Tsaban et al, 2022; Johansson-Åkhe
et al, 2021). We thoroughly investigated AF’s FPR using random
domain-motif pairs and found it to be around 20%. However,
asking AF to discriminate binders from non-binders when motif
sequences carried one disruptive mutation, we found that
prediction accuracies were close to random. This points to an
important limitation in AF’s ability to predict binding specificities
and is in line with previous reports on AF’s inability to predict the
effect of mutations (Buel and Walters, 2022). Comparison of
different metrics to discriminate good from bad structural models
using either minimal interacting fragments or extensions revealed
the average interface pLDDT for DDI models and the motif
interface pLDDT for DMI models to be the most robust and best
performing metrics. However, when manually inspecting AF
predictions we found it useful to also consider AF’s model
confidence, suggesting that in the future a combination of different
metrics might be even more powerful to discriminate good from
bad structural models. The alignment depth has been previously
reported to somewhat influence model accuracy (Bryant et al,
2022). While this feature was not investigated here, it might serve
as a pre-filter to identify PPIs of high conservation for which
structural modeling will likely be more successful. Interestingly, the
number of residues or atoms predicted to be in contact with each
other was poorly predictive, in contrast to a previous report (Bryant
et al, 2022), confirming our observations that the tested AF versions
in this study will always put both chains in contact with each other
to create atomic contacts, and from visual inspection alone it is very
challenging to tell good from bad structural models apart. Of note,
observed differences in AF performance across studies likely
originate both from using different benchmark datasets and
different AF versions. Our study is unique in that it assesses
multiple metrics on two different classes of interfaces, DMIs and
DDIs, using two different AF versions. More work is needed to
develop benchmark datasets of coiled-coil and disorder-disorder
interfaces to also evaluate AF’s performance for these modes of
binding. Of note, our benchmark datasets almost exclusively
consisted of structures that AF has seen in the training process.
Interestingly, benchmark studies done with unseen structures
reported similar sensitivities (preprint:Bret et al, 2023) indicating
that AF is not strongly biased towards structures it has seen before.

We extensively explored the influence of protein fragment
length on AF’s performance and found that slight extensions of
minimal motif sequences can improve prediction accuracies.
Inspection of individual cases revealed novel information on
important motif sequence context that was so far missing in
corresponding motif entries at the ELM DB. However, longer
disordered fragments or fragments containing ordered and large

disordered regions generally decrease AF prediction accuracies as
also reported in a recent preprint (preprint:Bret et al, 2023).
Furthermore, optimal cutoffs for various metrics such as the model
confidence decreased when using longer protein fragments, making
them less robust for interface prediction with AF. When evaluating
performance differences for longer and shorter protein fragments
we identified three DMI pairs involving the motif classes
DEG_APCC_KENBOX_2, LIG_Pex14_3, and LIG_GYF, for
which, during fragment extension, a second known motif
occurrence was added to the fragment. This second motif was
selected by AF during interface prediction, displacing the original
motif and leading to a high RMSD score. We removed these
instances from the dataset when evaluating AF’s performance on
fragment extension but they point to biologically correct variability
in AF prediction outcomes due to existing multivalency of many
DMIs in protein interactions. Other work suggested that AF is able
to select the stronger binder among two motif occurrences (Chang
and Perez, 2023), which might at least in some cases guide AF
motif selections. However, in other cases this motif preference
might also hinder discovery of multivalency in PPIs. For example,
the use of smaller protein fragments for the protein pair SNRPB
and GIGYF1 enabled the discovery of a proline-rich repeat motif
in SNRPB.

In comparison to predictions made using full length proteins
(Burke et al, 2023) we found that protein fragmentation increased
the probability of obtaining a high confidence interface prediction,
especially for cases involving proteins with long disordered regions
such as GIGYF1. For smaller and more globular proteins like the
PEX proteins studied above, full length predictions can identify the
right binding sites but these can be further substantiated by
running additional predictions with smaller fragments. The
fragmentation approach increases the number of prediction runs
per protein pair from one to a couple hundred, depending on the
length and modularity of both proteins. The vast majority of these
fragment pairs should not interact. With a FPR of 20%, this means
that more actual non-interacting than truly interacting fragment
pairs will result in a high confidence prediction. A big challenge is
thus to identify likely correct interface predictions among the many
false ones. This is also illustrated by the prediction results that we
obtained for the seven protein pairs that we followed up
experimentally. Clearly, AF’s general limited specificity contributes
to these false predictions. We observed that additional sources of
error can arise from exposed intramolecular binding sites resulting
from fragmentation, incorrectly designed boundaries of folded
regions, and docking of protein fragments into enzymatic pockets
of metabolic enzymes or sites for metal ion, DNA, or RNA binding.
It seems that AF is overall well suited to find binding pockets on
folded domains. However, our work also clearly demonstrates that
AF is able to correctly dock the matching partner structure into
these pockets without the need for a pre-existence of both partner
structures in the bound conformation contrary to other state-of-
the-art docking algorithms. AF’s high sensitivity with respect to
intramolecular binding sites and wrongly fragmented folded
regions will make it particularly hard to fully automate the
fragment design process. Despite these challenges we found that
recurrent interface predictions from overlapping fragments can
help gain confidence in predictions, as also highlighted in a recent
study (Bronkhorst et al, 2023), since we rarely observed this
recurrence for likely wrong predictions.
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Given the reported uncertainties in AF predictions, even for
high confidence cutoffs, experimental validation is essential. The
BRET assay used here has been shown in previous studies to be
sensitive enough to quantify weakening of binding introduced by
point mutations and to detect motif-mediated PPIs (Ebersberger
et al, 2023; Trepte et al, 2018; Mo et al, 2022). Using the BRET
assay, we were able to detect 11 out of 28 PPIs from the HuRI
dataset. This retest rate is actually higher compared to retest rates
of gold standard PPI datasets used in the past to benchmark various
binary PPI assays including this BRET assay, attesting the overall
detectability of PPIs from HuRI (Braun et al, 2009; Trepte et al,
2018; Choi et al, 2019). The NL and mCit fusions used in the BRET
assay allowed us to monitor the expression levels of wildtype and
mutant constructs, which is important to rule out loss of binding
because of a destabilization of the protein. However, we cannot
exclude the possibility that some expressed mutants might still be
partially unfolded or mislocalized and thus, some loss of binding
detected in our study could be unspecific and not the result of a
specific perturbation of the predicted interface. Furthermore,
preservation of binding observed for some other mutants at the
predicted interface might result from the mutations not being
disruptive enough and thus, do not necessarily disprove the
predicted interface.

Despite these limitations, we were able to assess the validity of
seven interface predictions using experimentation. We discovered a
likely novel DMI type that mediates binding between PEX3 and
PEX16, and proposed a model for how PEX3, PEX16, and PEX19
form a trimeric complex at the peroxisomal membrane. We also
validated a variation of the LIG_GYF motif class in SNRPB that
mediates binding to GIGYF1 thereby potentially connecting mRNA
splicing with posttranscriptional control mechanisms. These results
confirm in principle that AF is able to predict novel interface types
and that it can be used to extend existing interface type definitions.
However, our experimental results also highlight clear limitations
of AF predictions. Our data suggests that FBXO28 and STX1B as
well as STX1B and VAMP2 interact via coiled-coil interfaces but
likely at higher stoichiometries and different conformations than
predicted. We confirmed the binding pocket in ESRRG but not the
predicted interfaces in PSMC5 and we could not substantiate
interface predictions for TRIM37 and PNKP. Highly confident
interface predictions were obtained for seven additional PPIs that
await experimental validation. In summary, we provided experi-
mental evidence and structural information for PPIs whose
disruption is likely associated with neurodevelopmental disorders.
This information can be explored in future studies aimed at
delineating potential molecular mechanisms causing disease. Our
study furthermore laid out clear limitations, perspectives, and
future needs in AI-based structure prediction to bring us closer to a
fully structurally annotated human protein interactome.

Methods

Selection of structures for DMI benchmark dataset

To gather a list of ELM classes with structural evidence and
annotate their minimal interacting fragments, we downloaded a
dataset of solved structures of all ELM classes from ELM DB on
08.10.2021 (ELM class version 1.4) for instances that are

annotated as true positives (Kumar et al, 2022). The structures
were subject to a series of manual inspections to check their
validity for further analysis. First, since AlphaFold can only model
the 20 standard amino acids, we excluded any structures with
post-translational modifications in the motif. Second, structures
that do not resolve all of the residues in a motif as curated by ELM
DB were excluded. Third, we restrict our studies to only binary
interactions, so DMIs that require more than two proteins to form
the binding interface were excluded. Likewise, DMIs with only
intramolecular interaction evidence were excluded. We manually
annotated the boundaries of the domains by visual inspection of
the structures. After this filtering, we identified 136 structures
from distinct ELM classes that formed our DMI benchmark
dataset (Dataset EV2).

Sequence identity of the domains in the DMI benchmark dataset
We took all the binding domains in the DMI benchmark dataset
and computed their pairwise sequence identity from a global
alignment without gap penalties. Matching residues were given a
score of 1, otherwise 0. The sum of these scores was divided by the
length of the longer sequence to compute the sequence identity.

Selection of structures for the DDI benchmark dataset

We randomly selected 80 pairs of Pfam domain types that were
described in the 3did resource (Mosca et al, 2014) to be in contact
with each other in solved structures in the Protein Data Bank
(PDB). We manually inspected all PDB entries listed to contain
contacts between instances of a given Pfam domain pair until we
found one that we considered a genuine domain-domain interac-
tion. These decisions were primarily based on the number of atomic
contacts observed and the validity that two folded domains were
interacting with each other. Out of the 80 selected Pfam domain
pairs, we identified 48 DDI types and 48 corresponding approved
DDI structural instances that we selected for the DDI benchmark
dataset. The sequences of the minimal interacting domain regions
were manually annotated by visual inspection of the structures and
used for prediction. A more detailed description of the curation
procedure and information on the pairs will be soon published
elsewhere (Geist et al, in preparation).

Generation of random reference sets with minimal
interacting regions

Mutating motif sequences
Key conserved residues of the motifs in the DMI benchmark dataset
were identified computationally using the regular expression of the
corresponding ELM class in the ELM DB and SLiMSearch
(Krystkowiak and Davey, 2017). The defined positions are any
positions in the regular expression that are not wildcards. To
mutate the key residues to the ones with opposite physico-chemical
properties, we substituted one or two key residues with the ones
that are of the largest Miyata distance (Miyata et al, 1979) (Dataset
EV2).

Randomizing pairings of known domain-motif interfaces
To simulate non-binding domain-motif pairs, we randomized the
pairings of known domain motif interfaces. As some domain types
can bind to motifs from distinct ELM classes, we manually checked
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that the randomized pairings did not coincide with actual domain-
motif interface types (Dataset EV2).

Randomizing pairings of known domain-domain interfaces
The pairings between known domain-domain interfaces were
randomized to form the random reference set for DDIs.

Generation of positive DMI reference set with
fragment extensions

Among the 136 solved structures that we selected previously, we
further filtered for structures that consist of only human proteins.
To test the potential effect of extension on DMIs that were
predicted with different accuracies in their minimal forms, we
selected 12 DMI types from the correct sidechain category, 8 DMI
types from the correct backbone category and 11 DMI types from
the correct pocket category as determined using the motif RMSD
calculation. In total, 31 DMI types were selected for extension.
Three additional DMI types were originally selected but later on
discarded because they contained secondary motif occurrences
complicating data analysis. The extensions were done on the
canonical sequence of the proteins used to solve the structure.
Motif extension 1 extended the motif sequence at both N and C
termini by n residues where n is the length of the known motif.
Motif extension 2 further extended the motif sequence by another n
residues at both termini. Motif extension 3 and 4 each extended the
motif sequence by 2n residues at both termini. Motif extension 5
extended the motif sequence by including neighboring domains
and motif extension 6 used the full-length protein sequence. On the
domain side, domain extension 1 extended the domain sequence to
include the disordered regions N- and C-terminally of the binding
domain until it reached neighboring domain(s) boundaries.
Domain extension 2 included the sequence region of the
neighboring domains and domain extension 3 used the full-
length protein sequence. In cases where the known motif or binding
domain is at the C terminus, we extended the motif or domain
sequence on only the N terminus and vice versa. There were some
cases where the last extension steps, motif extension 6 and domain
extension 3, extended the protein minimally (<20 residues N or C
terminal to the previous extension step). These cases were excluded
from the analysis. The dataset of extended DMIs is in Dataset EV5.
In total, 709 fragment pairs were submitted to AlphaFold. From
these, 632 and 616 were successfully modeled by AF v2.2 and v2.3,
respectively.

Generation of random DMI reference set with
fragment extensions

To generate a random reference set using the extensions, we
randomized the pairings of the 34 DMI types that we selected for
extensions and paired their extensions for prediction. Motif
extension 6 and domain extension 3 were excluded from the
pairing. The dataset of DMIs with random pairings and their
extensions can be found in Dataset EV6. In total, 612 predictions
were generated, among which 566 and 522 predictions were
successfully modeled by AF v2.2 and v2.3, respectively. Since motif
extension 6 and domain extension 3 were excluded from the
random reference set using the extensions, we also excluded them
from the positive reference set extensions during ROC analysis.

This resulted in 563 and 540 predictions from the positive reference
set extensions for AF v2.2 and v2.3, respectively.

Selection of reference datasets for comparison of AF
v2.2 with v2.3

All predictions for the minimal DMIs and the random DMIs
involving minimal fragments were successfully modeled by both
versions of AF. Some extensions from the positive reference set
were not successfully modeled by AF v2.2 and v2.3 due to failure
from HHblits. To compare AF v2.2 with v2.3, we used only
predictions that were successfully modeled by both versions of AF.
This resulted in 616 predictions from the extensions of the positive
reference set.

Evaluation of AF sensitivity and specificity when using
the fragmentation approach

Among the 34 DMIs selected for extension, we further selected 20
DMIs and retrieved the PPIs mediating these DMIs as the PRS and
randomized their pairing to form random domain-motif protein
pairs as the RRS. The 20 PPIs from the PRS and the 20 protein pairs
from the RRS were subjected to the fragmentation approach,
generating 8943 fragment pairs and 11,045 fragment pairs for the
PRS and RRS, respectively. All fragment pairs from the PRS and all
but one fragment pair from the RRS resulted in an AlphaFold
model. Models were deemed highly confident, if the disordered
fragment had a motif interface pLDDT of ≥70 or, in case of
ordered-ordered models, the average interface pLDDT scored ≥70.
To evaluate the sensitivity of the fragmentation approach, we
considered all models that met the above mentioned cutoffs and
which contained the motif and domain sequence. We super-
imposed the models onto the corresponding native structures using
the minimal domain and computed the RMSD between the
minimal motif residues in the native and modeled structure. A
model was deemed accurate if the motif RMSD was ≤5 Å. At this
cutoff the backbone of the native and modeled motif are well
aligned but not necessarily their side chains (see also RMSD
subsection below). We repeated the same procedure for each DMI
protein pair using full length sequences as input into AF for
modeling. In 18 cases AF did not return a model when using full
length sequences. Here, we used the largest protein fragments
instead for which AF returned a model. Information on the protein
pairs, prediction results, and statistics is available in Dataset EV9.

AlphaFold versions and runs

We used local installations of AlphaFold Multimer version 2.2.0
and 2.3.0 (preprint:Evans et al, 2021) for all protein complex
predictions with the following parameters:

--max_template_date=2020-05-14
--db_preset=full_dbs
--use_gpu_relax=False
For every AlphaFold run, five models were predicted with single

seed per model by setting the following parameter:
--num_multimer_predictions_per_model=1
The databases queried during AlphaFold predictions were

specified following the instructions from the github page of
AlphaFold
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(https://github.com/deepmind/alphafold#running-alphafold):
For running AlphaFold Multimer v2.2, the following databases

were queried:
--bfd_database_path=bfd_metaclust_clu_complete_id30_c90_-

final_seq.sorted_opt
--mgnify_database_path=alphafold_v220_databases/

mgy_clusters_2018_12.fa
--obsolete_pdbs_path=alphafold_v220_databases/pdb_mmcif/

obsolete.dat
--pdb_seqres_database_path=alphafold_v220_databases/

pdb_seqres/pdb_seqres.txt
--template_mmcif_dir=alphafold_v220_databases/pdb_mmcif/

mmcif_files
--uniprot_database_path=alphafold_v220_databases/uniprot/

uniprot.fasta
--uniclust30_database_path=alphafold_v220_databases/uni-

clust30/uniclust30_2018_08/uniclust30_2018_08
--uniref90_database_path=alphafold_v220_databases/uniref90/

uniref90.fasta
For running AlphaFold Multimer v2.3, the following databases

were queried:
--bfd_database_path=alphafold_v230_databases/bfd/

bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt
--mgnify_database_path=alphafold_v230_databases/mgnify/

mgy_clusters_2022_05.fa
--obsolete_pdbs_path=alphafold_v230_databases/pdb_mmcif/

obsolete.dat
--pdb_seqres_database_path=alphafold_v230_databases/

pdb_seqres/pdb_seqres.txt
--template_mmcif_dir=alphafold_v230_databases/pdb_mmcif/

mmcif_files
--uniprot_database_path=alphafold_v230_databases/uniprot/

uniprot.fasta
--uniref30_database_path=alphafold_v230_databases/uniref30/

UniRef30_2021_03
--uniref90_database_path=alphafold_v230_databases/uniref90/

uniref90.fasta
To test the effect of template use on prediction accuracy, the

following parameter setting was used to switch off the use of
templates during the prediction:

--max_template_date=1950-01-01
For the fragmentation approach, the multiple sequence align-

ments (MSAs) of a given protein fragment can be reused in
subsequent runs where the same fragment is involved. The MSAs
were first moved to the prediction output folder and the following
parameter was added to enable the reuse of MSAs.

--use_precomputed_msas=True
For efficient computing, we segregated the MSA generation part

by using only the CPUs and the model fitting part using the GPUs.

Calculation of metrics for structural models

Motif RMSD
We used the software PyMOL (TM) Molecular Graphics System,
Version 2.5.0. Copyright (c) Schrodinger, LLC., for the superimposition
of AlphaFold models with corresponding solved structures. First, we
used the align command to align the domain chain in AlphaFold
models with the domain chain in the solved structure. Then, we used
the rms_cur command to calculate the all-atom RMSD between the

motif chain in AlphaFold models and the motif chain in the solved
structure. To ensure that the RMSD calculation was done based on all
atom identifiers and without any outlier rejection refinement, the
arguments of the rms_cur command, matchmaker and cycles, were set
to 0. Prediction accuracy categories were defined based on motif RMSD
cutoffs: RMSD ≤ 2 Å for correct sidechain, between 2 Å and 5 Å for
correct backbone, between 5Å and 15 Å for correct pocket and >15 Å
for wrong pocket.

DockQ
The calculation of DockQ scores of AlphaFold models was done in
reference to their solved structures using the code available on the
github repository of DockQ (https://github.com/bjornwallner/
DockQ, (Basu and Wallner, 2016). DockQ classification was done
using the cutoffs provided by DockQ (DockQ: <0.23 for incorrect,
between 0.23 and 0.49 for acceptable, between 0.49 and 0.80 for
medium and ≥0.80 for high).

pDockQ
The calculation of pDockQ of AlphaFold models was done by
adapting the code available on the github repository from the
Elofsson lab (https://gitlab.com/ElofssonLab/FoldDock/-/blob/
main/src/pdockq.py, (Bryant et al, 2022)). The pDockQ score is
created by fitting a sigmoidal curve to the DockQ scores of a series
of AlphaFold predicted models. The score takes into account the
number of interface contacts as well as their pLDDT scores. Of
note, the calculation of pDockQ score takes Cβs (Cα for glycine)
from different chains within 8 Å from each other as interface
contacts which is different from our interface definition (see the
subsection below Domain chain and motif chain interface pLDDT
and average interface pLDDT).

iPAE
The calculation of iPAE of AlphaFold models was done by adapting
code available on the github repository https://github.com/fteufel/
alphafold-peptide-receptors/tree/main (Teufel et al, 2023). The iPAE is
the median predicted aligned error at the interface. The authors
consider residues in contact if their distance is below 0.35 nm (3.5 Å).
The iPAE score could not be calculated for models generated by
AlphaFold Multimer version 2.3.0 due to JAX dependency of the pickle
files generated by AlphaFold Multimer version 2.3.0.

Model confidence
The model confidence of AlphaFold models was extracted from the
ranking_debug json file. The model confidence is a weighted
combination of pTM and ipTM to account for both intra- and
interchain confidence:

model confidence ¼ 0:8 � ipTM þ 0:2 � pTM

Domain chain and motif chain interface pLDDT and average
interface pLDDT
Since AlphaFold conveniently stores the pLDDT confidence
measure for each residue in the B-factor field of the output PDB
files, the pLDDT of residues at the interface was parsed from the
output PDB files of AlphaFold. Residues at the interface are defined
as those that have at least one heavy atom that is less than 5 Å away
from any heavy atom of the other chain (calculated using the
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PyMOL API). The pLDDT of the residues at the interface from the
domain chain and motif chain was averaged to compute the
domain chain and motif chain interface pLDDT, respectively. The
pLDDT of all the residues from both chains was averaged to
compute the average interface pLDDT.

Residue-residue and atom-atom contacts
Following the interface definition above, the number of unique
residue-residue and atom-atom contacts were also quantified as
measurements to assess AlphaFold models.

Mean DockQ between predicted models
The top five models generated by AF, determined based on their
model confidence, were considered for computing this metric. To
quantify the similarity among the models, we computed DockQ
scores between all possible pairs of models by taking the higher
ranked model as the “template” model and lower ranked model as
the “predicted” model. The mean of these DockQ scores is taken as
the similarity among the models in a given prediction. This
calculation was done for AF models of minimal DMIs and their
randomizations for ROC analysis. The data were stored in Dataset
EV2.

Quantification of motif properties

Motif hydropathy score and symmetry score
By referring to the Kyte-Doolittle hydrophobicity scale, (Kyte &
Doolittle, 1982) the hydropathy scores of the amino acids in a given
motif were summed and averaged to compute the average
hydropathy of the motif. The average motif symmetry score was
computed by taking the sum of the absolute difference of
hydropathy scores between motif position n and n - motif length
+ 1 and division of this sum by half of the motif length:

Peptide symmetry score ¼
Pa

n¼1 Hn �Hx�nþ1ð Þj j
a

where x is the length of the motif and a is the floor division of x by 2.

Motif probability
The motif probability reflects the degeneracy of a given motif class
as quantified by its regular expression that is annotated in the ELM
DB. The motif probability was retrieved from the ELM DB
version 1.4.

Secondary structure elements of motifs
We extracted the secondary structure elements of motifs using the
PyMOL API. In cases where the motif adopts partial secondary
structure, such as loop-helix-loop or loop-strand-loop, they are
treated as helical or strand, respectively.

Selection of motif classes from ELM DB without
annotated structural instances and prediction with AF

By querying the ELM DB for all ELM classes, we retrieved a list of ELM
classes and the number of instances with a structure solved (column
#instances_in_PDB). We filtered for ELM classes with 0 instance-
s_in_PDB and selected 205 instances out of the filtered ELM classes for

AF prediction. The ELM instances were extended at both N and C
termini by n residues where n is the length of the ELM instance,
according to the benchmarking results. The minimal binding domains
of the ELM instances were detected in the interaction partner using
Pfam HMMs (Mistry et al, 2021). As the domain boundaries detected
by Pfam HMMs could be inaccurate, we also extended the domain
sequence at the N and C terminus by 20 residues to ensure that the
whole folded region was covered. The predictions were performed using
AF version 2.3.0. To select a subset of these motif classes, where we can
do experimental testing, we also used the InParanoid resource (Persson
& Sonnhammer, 2023) to map ELM instances where both proteins are
from mouse to their human orthologs. To verify that they indeed do not
have structural homologues in the PDB, we both used the SIFTS
mapping (Dana et al, 2019) between the Pfam domain in ELM and the
PDB and also looked at the ELM classes that were listed as homologs on
the ELM website.

Evaluation of effect of fragment extensions on AF
prediction accuracies

We superimposed the AF models generated with DMI extensions
onto the corresponding solved DMI structures to quantify AF
prediction accuracy using motif RMSD calculations. To this end,
we aligned the two structures on their minimal binding domains
and calculated the all-atom RMSD between the minimal motif in
the extension AF model and the minimal motif in the solved
structure. To determine potential differences in DMI prediction
accuracy when using minimal versus extended protein fragments,
we computed the log2 fold change of the all-atom motif RMSD
before and after extension.

Fold change in prediction accuracy ¼ log2
all atom RMSD motifminimal DMI

all atom RMSD motifextended DMI

� �

Fragment design and fragment pairing for
fragmentation approach

We first inspected the monomeric structural models from the
AlphaFold database (Varadi et al, 2022; Jumper et al, 2021) of both
interacting proteins to determine the boundaries of their ordered
and coiled-coil regions, which were also treated as “ordered”. All
regions that were not annotated as ordered were annotated as
disordered. In some cases, an extended loop with low pLDDT can
be found within an ordered region. As they can also potentially
carry a motif or mediate interactions in another way, these regions
were also annotated as disordered in addition to their annotation as
being part of a larger ordered region. The disordered regions of the
proteins were fragmented into fragment sizes of 10, 20 and 30
residues. To allow AF to sample continuous sequences, we also
generated another set of fragments of same sizes that overlap with
the previous fragments by sliding the sequence by half the size of
the fragment. The unfragmented disordered regions, as well as their
fragments, from one protein were then paired with the ordered
regions from its interacting partner and vice versa for prediction.
The ordered regions from both proteins were also paired for
prediction. We decided to manually define boundaries between
ordered and disordered regions because testing available code
developed for this purpose, like clustering using the PAE matrix,
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turned out to be too inaccurate. We observed that erroneous
removal of residues close to the domain borders that are still
contributing to the folding of a structured domain, can heavily
mislead AF predictions.

Selection of NDD proteins

A list of NDD genes was assembled using whole exome and whole
genome sequencing studies of cohorts of NDD patients from
Gene4Denovo (Zhao et al, 2020) and Deciphering Developmental
Disorders (DDD) study (Firth et al, 2011), respectively. From
Gene4Denovo, we selected genes linked to autism-spectrum
disorders (ASD), intellectual disability (ID), epilepsy (EE),
undiagnosed developmental disorders (UDD) and NDDs in
general. Genes with non-coding mutations as well as genes with a
false discovery rate (FDR) >= 0.05 were excluded. Similarly, in the
DDD study, genes associated with developmental disorders with a
neurological component, as well as genes found to be mutated in at
least three children with NDDs (labeled as confirmed genes) were
retained. The final list included 984 NDD-risk genes. We filtered
the HuRI network (Luck et al, 2020) for interactions mediated
exclusively by proteins from this NDD gene list resulting in 67 PPIs
excluding self-interactions. Since our fragmentation approach
generates many fragments, we did not consider PPIs involving
proteins that are more than 1500 amino acids in length, resulting in
a final list of 62 PPIs that were subjected to AF modeling.

Manual inspection of interface predictions for NDD-NDD
PPIs and selection for experimental validation

Paired fragments from NDD-NDD PPIs were predicted using AF
version 2.2 and the prediction results are stored in Dataset EV10.
Based on our benchmarking results, we started by manually
inspecting all NDD-NDD PPIs that obtained at least one structural
model with either a motif chain interface pLDDT of ≥70 for the
disordered fragment or with an average interface pLDDT ≥ 70 for
structural models with predicted ordered-ordered interfaces
(DDIs). However, during the course of these manual inspections,
we found that using in addition a model confidence of ≥0.7 for
ordered-ordered fragment pairs helped discriminating good from
bad structural models. We inspected the ranked_0 models for all
fragment pairs that met the above cutoffs but also inspected models
scoring somewhat below these cutoffs. For every NDD-NDD PPI
we used Interactome3D (Mosca et al, 2013) and PDB database
searches (https://www.rcsb.org/ (Berman et al, 2000)) to identify
whether a structure already existed for this PPI. In our evaluation of
the structural models we also considered if a certain interface was
recurrently predicted for different overlapping fragments because
this usually hints at increased confidences for the correctness of the
interface prediction. We furthermore explored the number and
kind of residue-residue contacts predicted by AF by visual
inspection of the structural models using PyMol. We searched for
functional annotations and existing structures for the monomers
using the PDB, ProViz (Jehl et al, 2016), SMART (Letunic et al,
2021), and the scientific literature to identify enzymatic pockets or
binding interfaces for DNA, RNA, or metal ions. Observations and
justifications for the final evaluation of the predictions for every
NDD-NDD PPI are provided in Appendix Supplementary Text S1.

Based on clone availability, we selected 49 of the 62 PPIs for
experimental validation of the predicted interfaces using the BRET
assay. For 30 of the 49 selected PPIs for experimental testing we
obtained sequence-confirmed clones with luciferase and mCitrine
fusions. For 28 of these PPIs both partners were expressed in our
experimental system as determined by total luminescence and
fluorescence measurements (Fig. 3D,F).

Softwares used

We used the software PyMOL (TM) Molecular Graphics System,
Version 2.5.0. Copyright (c) Schrodinger, LLC., for the visualization
and superimposition of AlphaFold models.

All codes were written in Python3 and analyses were done using
Jupyter notebooks. We used the Python libraries, Biopython (Cock
et al, 2009) for sequence similarity computation, pandas (McKin-
ney, 2010) for data analysis, and Matplotlib (Hunter, 2007) and
seaborn (Waskom, 2021) for data visualization. ROC and PR
statistics were calculated using the Python package sci-kit learn
(Pedregosa et al, 2012).

Cell line culture and maintenance

HEK293 cells were purchased from DSMZ (catalog number ACC305).
These cells were grown and maintained in DMEM (Thermo Fisher),
supplemented with 10% FBS (PAN-Biotech), 2mM glutamine (Thermo
Fisher) and 1% penicillin–streptomycin (Thermo Fisher). Cells were
incubated at 37 °C with 5% CO2. Subcultivation was performed with
1ml of 0.05% trypsin every 2–3 days for up to 40 passages. For each
passage 1–2 × 106 cells were seeded in T25 flasks (Sarstedt). Then, new
cells were thawed from stocks containing 2 × 106 cells in 1ml of growth
medium, supplemented with 10% DMSO (Sigma). Every 3 months cells
were checked for mycoplasma contamination using a PCR test (Dataset
EV11). The cell line was purchased from DSMZ four years ago,
expanded, aliquoted, and frozen. A new aliquot is thawed after every 40
passages. No further authentication of the cell line has been done.

Plasmid construction

Standard controls
The donor and acceptor vectors pcDNA3.1-cmyc-NL-GW
(Addgene plasmid ID #113446), pcDNA3.1-GW-NL-cmyc
(Addgene plasmid ID #113447), pcDNA3.1 GW-His3C-mCit,
pcDNA3.1 mCit-His3C-GW as well as controls pcDNA3.1-NL-
cmyc (Addgene plasmid ID #113442), pcDNA3.1-PA-mCit
(Addgene plasmid ID #113443) were kindly provided by the
Wanker Group (Max-Delbrück-Centrum für Molekulare Medizin,
Germany) (Dataset EV12). By default we cloned all ORFs of
interest into N-terminal NL and mCit fusion destination vectors
and occasionally also transferred ORFs into C-terminal fusion
vectors if N-terminal fusions did not result in sufficient BRET
signals but the interaction was of high interest to this study and
predicted interfaces were closer to the C-terminus. Trepte et al have
shown that testing protein pairs in different configurations
increases detection rates while maintaining low false detection
rates and that BRET signals are higher if fusions are close to the
actual interaction interface (Trepte et al, 2018; preprint:Trepte et al,
2021; preprint:Trepte et al, 2023).
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GATEWAY cloning procedure
Full-length wild-type human open reading frames (ORFs) being
cloned in GATEWAY entry vectors from the ORFeome collaboration
are stored as bacterial glycerol stocks. (ORFeome Collaboration, 2016)

1. The ORFs were inoculated in 96-well plates (Corning), with each
well containing 200 uL of LB medium and 100 µg/ml ampicillin.
The plate was incubated at 37 °C and left to shake overnight at
190 rpm.

2. In a 96-well PCR plate (Brand) 10 ng of each selected ORF was
used per 50 µl PCR reaction (denaturation at 98 °C for 10 s,
annealing at 55 °C for 30 s and extension at 72 °C for 3 min, 30
cycles of amplification) using phusion high-fidelity polymerase
(NEB) and primers annealing to the backbone of the plasmid
(forward: 5′TTGTAAAACGACGGCCAGTC and reverse: 5′
GCCAGGAAACAGCTATGACC).

3. The PCR products (6 µl per well) were confirmed through 96-well
E-gel with SYBR (Thermo Fisher, Catalog no G720801) using
25 µl of loading buffer (Thermo Fisher) and 20 µl of E-Gel 96
High range DNA marker (Thermo Fisher).

4. In a 96-well PCR plate 1 µl of each amplified PCR product
together with 200 ng of above-mentioned destination vectors were
directly used per 10 µl LR reaction using 4x LR clonase
(Invitrogen), thereby generating expression vectors.

5. The full 10 µl of LR reaction was transformed into chemically
competent DH5a cells (30 µl) in a 96-well PCR plate, then
recovered in 80 µl of pre-warmed SOC medium at 37 ˚C for 1 h
without shaking.

6. 70 µl of transformed bacteria was plated on 48-well square agar
plates and incubated at 37 °C overnight.

7. Afterwards, colonies were selected and inoculated into a 96 deep-
well plate containing 2 ml of LB medium and 100 µg/ml
ampicillin. The plate was then incubated at 37 ˚C with continuous
shaking at 700 rpm in the incumixer for 24 h.

8. The amplified vectors were extracted from the inoculated culture
using Plasmid Plus 96-well Miniprep kit (Qiagen). The
concentration of each vector was measured with a Nanophot-
ometer and diluted to 100 ng/µl. Next, 600 ng of insert was used
for full-length sequencing using the backbone primers (tag-
specific NanoLuc forward: 5′GAACGGCAACAAAATTATC-
GAC, mCitrine forward: 5′AGCAGAATACGCCCATCG and
reverse: 5′GGCAACTAGAAGGCACAGTC) and ORF-specific
primers (Dataset EV11) to fully cover the ORFs where it was
needed (Dataset EV12). All sequence-confirmed ORF sequences
used in this study are available in Dataset EV13.

Site-directed mutagenesis
The primers were manually designed using the following criteria:

1. For point mutation the primers should overlap the site of
mutation. The overlap should be 15–20 nucleotides (nt).

2. For the deletion the primers should be designed to exclude the
deletion site, but still overlap and the overlap should be as
mentioned in step 1.

3. Primer length should be in the range of 32–36 nt.
4. GC content should be between 40–60%.
5. Difference in melting temperature of primers should not

exceed 5 °C.

6. The primer ideally should start and end with guanine or cytosine.
7. The designed oligos were grouped by annealing temperature for

the next step.
8. In 96-well PCR plate 10 ng of DNA template together with oligos

were used per 50 µL of PCR reaction (denaturation at at 98 °C for
2 min, annealing for 15 s and extension at 72 °C for 5 min, 25
cycles of amplification) using phusion high-fidelity
polymerase (NEB).

9. 1 µL of DpnI (NEB) was added to the plate with PCR products
and incubated at 37 °C for 1 h. The reaction was stopped at 65 °C
for 20 min.

10. The PCR products (6 µl per well) were confirmed through 96-well
E-gel with SYBR (Thermo Fisher, Catalog no G720801) using
25 µl of loading buffer (Thermo Fisher) and 20 µl of E-Gel 96
High range DNA marker (Thermo Fisher).

11. 3 µL of digested PCR product was transformed into chemically
competent DH5a cells (30 µL) in a 96-well PCR plate, then
recovered in 80 µL of pre-warmed SOC medium at 37 °C for 1 h
without shaking.

12. 70 µL of transformed bacteria was plated on 48-well square agar
plates and incubated at 37 °C overnight.

13. Afterwards, colonies were selected and inoculated into a 96 deep-
well plate containing 2 ml of LB medium and 100 µg/ml
ampicillin. The plate was then incubated at 37˚C with continuous
shaking at 700 rpm in the incumixer for 24 h.

14. The amplified vectors were extracted from the inoculated
culture with Plasmid Plus 96-well Miniprep kit (Qiagen). The
concentration was measured with a Nanophotometer and
diluted to 100 ng/µl. Next, 600 ng of insert was used for full-
length sequencing using primers covering the mutation and
ORF-specific primers (Dataset EV11) to fully cover the ORF
length (Dataset EV12).

BRET assay

Transfection
HEK293 cells were grown and maintained in high-glucose (4.5 g/l)
DMEM (Thermo Fisher) for BRET assays. Media was supplemen-
ted with 10% fetal bovine serum (PAN-Biotech) and 1% Penicillin/
Streptomycin. Cells were grown at 37 °C, 5% CO2, and 85% RH.
Cells were subcultured every 2–3 days and transfected with
lipofectamine 2000 transfection reagent (Invitrogen) in Opti-
MEM medium (Thermo Fisher) using the reverse transfection
method according to the manufacturer’s instructions. For transfec-
tions, cells were seeded at a density of 4.0 × 104 cells per well in a
white 96-well microtiter plate (Greiner) in phenol-red-free, high-
glucose DMEM media (Thermo Fisher) supplemented with 5%
fetal bovine serum (Thermo Fisher). Transfections were performed
with a total DNA amount of 200 ng per well. If the expression
plasmid concentration amount was below 200 ng/well, pcDNA3.1
(+) was used as a carrier DNA to reach the total amount of DNA of
200 ng. All protein pairs were tested in both N-terminal fusion
orientations (NL-A with mCit-B and NL-B with mCit-A). The
following proteins were also tested as C-terminal fusions: CSNK2B-
NL, ESRRG-NL, CUL3-NL, PEX3-NL, PEX19-NL, PSMC5-NL,
PEX3-mCit, PEX19-mCit, PEX16-mCit, RORB-mCit, ESRRG-
mCit, PAX6-mCit, CSNK2B-mCit, PSMC5-mCit, KCTD7-mCit
(Dataset EV12).
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Measurement
The plate was incubated 2 days at 37 °C, 5% CO2, and 85% RH
before measurements. All measurements were done with the
Infinite M200 Pro microplate reader (Tecan). First, 100 µl of the
medium was aspirated from each well. The mCitrine fluorescence
(FL) was measured in intact cells (excitation/emission 513 nm/
548 nm) using a gain of 100. On rare occasions, the plate reader
recorded an overflow with these settings (i.e. for GIGYF1
constructs). In these cases, we repeated the measurement with
optimal gain settings and used a fluorescein control to normalize
fluorescence signals measured with different gain settings. For this
purpose, Fluorescein was obtained from Sigma-Aldrich (Catalog
No 46955-250MG-F) and used without further purification. A stock
solution of Fluorescein (1 mg/ml in Ethanol) was prepared by
dissolving 1.3 mg Fluorescein in 1.3 ml absolute ethanol. 100 µl of a
20 µg/ml solution of Fluorescein were added to an empty well
immediately before starting the fluorescence measurements. The
20 µg/ml solution of Fluorescein was obtained by preparing a 1:50
dilution in water of the stock solution. After measuring the
fluorescence, coelenterazine-h (PJK Biotech GmbH) was added to a
final concentration of 5 µM. The cells were briefly shaken for 15 s
and incubated for 15 min inside the plate reader at 37 °C. After
incubation, total luminescence was measured first followed by
short-wavelength (WL) and long-wavelength luminescence (LU)
measurements using the BLUE1 (370–480 nm) and the GREEN1
(520–570 nm) filters at 1000 ms integration time. Corrected BRET
ratios were calculated as described in (Trepte et al, 2018). Briefly,
for every transfected protein pair NL-A and mCit-B, the following
two control pairs were measured: NL-Stop with mCit-B and NL-A
with mCit-Stop. The maximal BRET from both control pairs was
subtracted from the actual test pair to correct for donor
bleedthrough, unspecific binding to the tags, and background
signal.

Determination of binding events in BRET assay
To determine whether a protein pair interacted in the BRET assay
or not, we used donor:acceptor DNA transfection ratios of 2:50 ng
in all cases except for PEX3-PEX16 where we used 8:25 and
PEX3:PEX19 where we used 8:50 ng DNA ratios due to low
expression levels of PEX3 and a degradation effect of higher PEX16
protein levels on PEX3 expression levels. We requested that
cBRETs determined at these transfection ratios were ≥0.05,
fluorescence measurements representing mCitrine fusion expres-
sion levels to be ≥500 units, and total luminescence measurements
representing NL fusion expression levels to be ≥50,000.

Saturation assay
For donor saturation experiments various donor DNA amounts (1,
2, 4 and 8 ng) encoding NL-fused proteins were co-transfected with
increasing amounts of acceptor DNA (12.5, 25, 50, 100, 200 ng)
encoding mCitrine-fused proteins. Fluorescence, total lumines-
cence, and BRET measurements were done as described before.
BRET measurements were corrected for bleedthrough using NL-
Stop transfections. Fluorescence and total luminescence measure-
ments were corrected for background signal using transfections
with pcDNA3.1(+) and subsequently used to estimate amounts of
expressed proteins and to plot acceptor/donor ratios on the x-axis
of titration plots.

Fitting of titration curves
Titration curves were fitted using the leastsq function from the
scipy.optimize python package (Virtanen et al, 2020) using the
model BRET = ((A/D) * BRETmax)/(BRET50 + (A/D)) described
in (Drinovec et al, 2012), which assumes a 1:1 binding mode, to
obtain estimates for the BRETmax and BRET50. Standard errors of
the BRET50 estimates were obtained from the variance-covariance
matrix, calculated by multiplying the fractional covariance matrix
(output by leastsq function) by the residual variance. Measuring BRET
signals in intact cells for increasing acceptor/donor protein expression
ratios results in an eventual saturation of the signal. Fitting this curve
allows extraction of the maximal BRET that can be reached and the
BRET50, which is the acceptor/donor ratio at which half of the
maximal BRET is obtained. The BRET50 is indicative of binding
affinity, in analogy to the IC50, however, its accurate estimation
requires saturation of the BRET to be observed in the experimental
system, which cannot always be achieved because of limited amounts
of DNA that cells can be transfected with. Alternatively, if mutations
are unlikely to change the overall structure of the fusion constructs and
do not alter expression levels compared to wildtype, single point BRET
measurements at acceptor/donor ratios prior to BRET saturation are
also indicative of changes in binding strength. The BRET titration
curves that we obtained for the PNKP-TRIM37 interaction clearly
deviated from the assumed 1:1 binding mode because at higher
acceptor:donor ratios we observed a sudden increase in BRET again
contrary to an expected saturation. The model could thus not be fitted
to the titration data.

Antibodies

Purified anti-HA.11 Epitope Tag, Clone: [16B12], Mouse, Mono-
clonal (Biolegend, BLD-901502), 1:2000.

Purified anti-GIGYF1, Rabbit, Polyclonal (BETHYL labora-
tories, Cat. #A304-132A-1), 1:1000.

GAPDH Loading Control Monoclonal Antibody (GA1R), HRP-
coupled (Thermo Fisher Cat. MA515738HRP), 1:3000.

Co-immunoprecipitation and western blot

Snrpb (full-length) and C-terminal truncation mutant (amino acids 1-
190) was cloned from mouse cDNA and ligated into pFRT-TO
destination plasmid using AscI and PacI restriction sites. The constructs
additionally contain C-terminal 2xHA and mNeonGreen tags. Flp-In™
T-REx™ 293 Cell Lines (Thermo Fisher, catalog number: R78007)
expressing Snrpb endogenously from a single locus were generated
according to the manufacturer’s instructions. In brief, pFRT-TO and
pOG44 plasmids were co-transfected and hygromycin-resistant colonies
were grown, picked and expanded. The Snrpb transgene expression was
validated by western blot, RT-qPCR, and immunofluorescence, which
showed that ectopic Snrpb-HA was expressed at levels highly similar to
the endogenous Snrpb protein.

For the co-immunoprecipitation experiments, 8 × 106 cells were
seeded in a 10 cm dish. The following day, expression of Snrpb-HA
was induced by adding 0.1 μg/mL Doxycycline (D9891, Sigma
Aldrich) to the culture medium. Parental cells not expressing any
HA-tagged transgene were used as a negative control of
immunoprecipitation. The next morning the cells were harvested
by scraping in culture media, followed by centrifugation and a
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single wash in ice-cold PBS. The whole cell extract was prepared by
15 min incubation on ice with 0.3 mL of lysis buffer (200 mM NaCl,
50 mM HEPES, pH 7.6, 0.1% IGEPAL, 10 mM MgCl2, 10%
Glycerol, Protease Inhibitor Cocktail (P8340, Sigma Aldrich),
Phosphatase Inhibitor (P5726, Sigma Aldrich) followed by 2 cycles
of sonication in a Bioruptor Plus (30 s on, 30 s off) and
centrifugation for 20 min at 16,000 × g. The extract was quantified
by a Bradford assay and 1 mg was used for immunoprecipitation,
for which the NaCl concentration was adjusted to 100 mM final
concentration by diluting with an equal volume of Lysis Buffer
containing 0 mM NaCl. 0.05 mg was set aside as input control (5%).
0.02 mL of Thermo Scientific™ Pierce™ Anti-HA Magnetic Beads
(Thermo Fisher Cat. 13464229) were incubated with 1 mg protein
extract for 1 h at 4 °C on a rotating wheel. The beads were washed
three times before eluting the immunoprecipitated proteins with
0.02 mL of 1 x NuPAGE™ LDS Sample Buffer by incubating at 42 °C
for 10 min while shaking at 800 rpm. Another 0.01 mL were used
for elution, were then combined making a total of 30 μL, which
were transferred to a fresh tube and to which 3 μL of 1 M DTT were
added. Input and immunoprecipitated eluates were then separated
on a 10% Tris-Glycine SDS PAGE using 1xMOPS buffer,
immunoblotted on 0.45 μm PVDF membranes (Tris-Glycin
Transfer Buffer, 10% Methanol, 300 mA, 1 hour), blocked with
5% milk in TBS-0.2% Tween for 30 min at RT. Primary antibodies
were incubated overnight at 4 °C on a rocker followed by washes
and incubation with secondary HRP-labeled antibodies (1 h at RT
in 5% milk, TBS-0.2% Tween). Blots were developed using Pierce™
ECL Western Blotting Substrate (Thermo Fisher Cat. 32209) or
SuperSignal West Femto Maximum Sensitivity Substrate Kit
(Thermo Fisher Cat. 34095) and imaged on a ChemiDoc MP V3
(Bio-Rad). The cell line was authenticated via X-Gal staining, qPCR
and Sanger Sequencing.

Data availability

The datasets and computer code produced in this study are
available in the following databases:

- Interaction data: submitted to the IMEx (http://
www.imexconsortium.org) consortium through IntAct (Del
Toro et al, 2022) and assigned the identifier IM-29904.

- Computer scripts for data processing and analysis: available at
GitHub under https://github.com/KatjaLuckLab/AlphaFold_
manuscript.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-023-00005-6.
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