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Abstract

Kinase inhibitors (KIs) are important cancer drugs but often fea-
ture polypharmacology that is molecularly not understood. This
disconnect is particularly apparent in cancer entities such as sar-
comas for which the oncogenic drivers are often not clear. To
investigate more systematically how the cellular proteotypes of
sarcoma cells shape their response to molecularly targeted drugs,
we profiled the proteomes and phosphoproteomes of 17 sarcoma
cell lines and screened the same against 150 cancer drugs. The
resulting 2550 phenotypic profiles revealed distinct drug responses
and the cellular activity landscapes derived from deep (phospho)
proteomes (9–10,000 proteins and 10–27,000 phosphorylation
sites per cell line) enabled several lines of analysis. For instance,
connecting the (phospho)proteomic data with drug responses
revealed known and novel mechanisms of action (MoAs) of KIs and
identified markers of drug sensitivity or resistance. All data is
publicly accessible via an interactive web application that enables
exploration of this rich molecular resource for a better under-
standing of active signalling pathways in sarcoma cells, identifying
treatment response predictors and revealing novel MoA of
clinical KIs.
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Introduction

Molecularly targeted drugs including many kinase inhibitors (KIs)
have revolutionised the clinical management of several cancers.
This advancement was enabled by a precise understanding of the
oncogenic mechanism and the development of a bespoke molecule
that addresses it. However, this simple paradigm is challenged by
the realisation that the molecular composition of cancer cells is

highly heterogeneous and dynamically changes over time. In
addition, most KIs show polypharmacology that is influenced by
the cellular context the drug operates in. Therefore, understanding
the mode of action (MoA) of drugs in a particular cellular system is
essential for its successful use as a medicine (Davis, 2020; Schenone
et al, 2013; Tulloch et al, 2018).

One way to address this challenge in a systematic fashion is to
record the genotypes, transcriptional activity and protein expres-
sion signatures (proteotypes) (Aebersold and Mann, 2016) of
cancer cell lines at baseline and to correlate these signatures with
drug phenotypic responses. These correlations may reveal direct
relationships between genes/proteins and the actions of small
molecules, which may serve as molecular markers for drug
sensitivity or resistance. Much work in this direction has been
performed at the level of genomic mutations and measuring the
transcriptomes of cancer cells (Barretina et al, 2012; Garnett et al,
2012; Rees et al, 2016; Seashore-Ludlow et al, 2015). More recently,
these investigations have been extended to the level of the
proteome. To date, the proteotypes of >1000 cancer cell lines have
been recorded and correlated with drug sensitivity data (Frejno
et al, 2020; Frejno et al, 2017; Gholami et al, 2013; Lawrence et al,
2015). This approach has proven useful in several cases by
providing insights into specific cancer biology and illuminating
the cellular MoAs of small molecules. Many of these datasets have
also become important publicly available resources for cancer
research (Barretina et al, 2012; Corsello et al, 2020; Frejno et al,
2017; Garnett et al, 2012; Gholami et al, 2013; Goncalves et al, 2022;
Nusinow et al, 2020; Rees et al, 2016; Reinhold et al, 2012;
Roumeliotis et al, 2017; Seashore-Ludlow et al, 2015; Tsherniak
et al, 2017).

Despite the above advances, the relationships between the levels
of protein post-translational modifications (PTM) and drug
responses have only received limited attention (Frejno et al, 2020;
Gosline et al, 2022). This is somewhat surprising as decades of
cancer research has established that the activity of many cancer
pathways is regulated by PTMs, most notably by protein
phosphorylation. Consequently, KIs have become successful cancer
drugs and, to date, >70 are approved for use in humans and
certain other diseases (Cohen et al, 2021). That said, the full
range polypharmacologies of KIs is only beginning to emerge
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(Klaeger et al, 2017) and their impact on the phosphoproteome is
not systematically understood (Gosline et al, 2022; Kauko et al,
2020; van Alphen et al, 2020).

Most of the aforementioned studies have focussed on profiling
diverse sets of cancer cell lines covering major cancer entities for
which many cell line models are available. In contrast, rare cancers
are often under-represented even though the unmet medical need is
just as high. Sarcomas fall within this category. They are not only
rare (~1% of all human cancers; ~15% of all paediatric cases) and
lack effective therapeutic options (Grunewald et al, 2020), but also
often exhibit a low mutational burden (Nacev et al, 2022). Genomic
profiling of sarcoma cells or tissues can be beneficial for the
diagnosis and classification of certain subtypes, but information
about actionable genomic alterations is often limited (Gounder
et al, 2022; Grunewald et al, 2020; Nacev et al, 2022). This may in
part be because sarcomas are extremely diverse and more than 70
histological subtypes have been identified to date (Gounder et al,
2022; von Mehren et al, 2020). For example, in a recent genomic
profiling study of 2138 sarcoma cases, only one-third contained at
least one actionable alteration (Nacev et al, 2022). A few kinases
have been identified as drivers of cell growth in sarcoma cells (Bai
et al, 2012) and four KIs have been approved for the treatment of
sarcomas (Imatinib, Pazopanib, Sunitinib and Avapritinib) mostly
because on the basis of inhibiting the tyrosine kinases KIT and
PDGFR. Several further KIs are in clinical evaluation (Wilding et al,
2019), implying a considerable potential for repurposing clinically
approved KIs for treating sarcoma.

In this work, we systematically asked the question which
phosphorylation-regulated signalling pathways may operate in sarcoma
cells and which clinically approved KIs may, therefore, be repurposed
for the treatment of sarcomas. To do so, a drug screen comprising 150
clinical drugs (including 139 KIs) in 17 diverse sarcoma cell lines was
performed and complemented with recording their corresponding
(treatment-naive) baseline proteomes and phosphoproteomes. Integra-
tion of the phenotypic and proteomic data identified, for instance,
several KIs that are effective in most sarcoma lines. By computing the
activity landscapes of the cell lines (Frejno et al, 2020), activated kinases
and pathways could be identified. In addition, the analysis highlighted a
group of proteins and phosphorylation sites that may be used as
markers for sensitivity or resistance to a single KI or a group of KIs
sharing the same targets. As only few examples can be discussed in the
current manuscript, all data is accessible via an interactive web interface
in ProteomicsDB (Lautenbacher et al, 2022; Samaras et al, 2020;
Schmidt et al, 2018) (https://www.proteomicsdb.org/sarquarium/). The
data, analysis and computational tools provide a valuable resource for
further investigations into how the cellular proteotype shapes cellular
phenotype of drug responses.

Results

Selection of sarcoma cell lines and clinical drugs

The selection of cell lines for this study was guided by three major
considerations: (1) They already showed response in prior phenotypic
drug screens. Here, we relied on published literature in which 63 human
sarcoma lines were screened against 100 FDA-approved oncology
agents, 345 investigational agents and including 52 KIs (Teicher et al,
2015). (2) To ensure the feasibility of the current work, cell lines were

prioritised for complementarity in drug response towards the above 52
KIs assuming that phenotypic response diversity would be reflected by
the molecular diversity of the same cell lines. (3) All cell lines are
commercially available and a detailed description of the rational and
criteria for cell line selection can be found in “Methods”. Further
information on the resulting 17 cell lines representing 12 diverse
histological subtypes can be found in Dataset EV1. Four subtypes are
represented by two cell lines because they showed very distinct drug
responses to KIs even though they are classified as the same subtype.
The choice of compounds (total of 150, Dataset EV2) focused on KIs
because of the focus of the current study on the phosphoproteome. The
screening deck contained all 71 approved KIs (at the time of writing)
and 52 phase III drugs. These 123 KIs are particularly valuable as they
may be repurposed and/or recommended for treatment in a
compassionate use setting. Further, 16 phase I, II, or II/III KIs were
included to cover complementary target proteins (Klaeger et al, 2017).
In addition, four chemo drugs and one epigenetic drug already used for
treating sarcomas today were included, as well as six non-KIs used for
treating other types of cancer.

Datasets

Three systematic datasets were generated (Fig. 1; see “Methods” for
details). First, all cell lines were phenotypically screened in a dose-
dependent fashion (11 doses plus vehicle control) against all cancer
drugs (in triplicate), generating 2550 dose–response profiles with
excellent reproducibility (median coefficient of variation, CV of
1.74%; Dataset EV3; Fig. EV1A). The quantitative data (EC50)
correlated reasonably well with publicly available drug response
data (Teicher et al, 2015) for the 16 cell lines and 55 compounds
that are common between the two (R = 0.4–0.7; Appendix Fig. S1).
Second, baseline (i.e., treatment-naive) full proteomes were
recorded for the same 17 cell lines quantifying 9200–10,200 protein
groups per cell line (Fig. EV1B; Dataset EV4). Five of these lines
had also been profiled by the CCLE consortium (Nusinow et al,
2020) and the relative protein quantities determined in their study
(based on TMT reporter ion intensity) correlated well with the ones
determined here (based on MS1 intensity of TMT-labelled peptides;
R = 0.53–0.66; Appendix Fig. S2). The proteomes of the four cell
lines, G401, RD, RD-ES and SW1353 cells were measured in three
independent biological replicates which reproduced and correlated
well (>90% of all proteins reproduced with CVs below twofold;
Pearson correlations between R = 0.89–0.92, Fig. EV1C; Dataset
EV4; Appendix Fig. S3). Third, baseline (i.e., treatment-naive)
phosphoproteomes were recorded for the same 17 cell lines
quantifying 10,200–27,200 phosphorylation sites (p-sites) per cell
line (Fig. EV1B; Dataset EV5). Again, the phosphoproteomes of the
above four cell lines were measured in three biological replicates
and 60–90% of all phosphopeptides reproduced with CVs below
twofold and showed correlated coefficients of between R = 0.68-
and 0.93 (Fig. EV1C; Dataset EV5; Appendix Fig. S4). These
datasets formed the basis for all further analysis and only such cases
are highlighted or discussed in the manuscript for which observed
effects were substantially larger than the technical variation (i.e.
>0.3 ΔAUC for drug response; >tenfold p-peptide or protein
abundance; minimum of detection in eight cell lines). When
exploring the data in ProteomicsDB (see below), we advise readers
to be cautious when investigating abundance or drug response
differences between cell lines that are close to the determined
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technical reproducibility of the proteomic and drug screening
workflows.

Sarcoma cell lines exhibit distinct responses to KIs

All dose–response viability curves from the phenotypic drug screen
can be viewed in a section of ProteomicsDB called “Sarquarium”
(https://www.proteomicsdb.org/sarquarium/). This study very sub-
stantially increased the content of the database for drug viability
data and is a valuable resource for the community. To explore
similarities and differences in drug responses, the phenotypic data
were clustered (unsupervised) by the area under the curve (AUC;
Fig. 2A; Dataset EV3). It is apparent that many drugs did not
substantially inhibit the growth of sarcoma lines (Fig. 2A, red
areas). This may be expected because many of the KIs target
specific kinases and signalling pathways, e.g., EGFR or HER2, that
may not be oncogenic drivers in these cells. This specific case is
supported by e.g., public datasets (Barretina et al, 2012; McDonald
et al, 2017) for nine of the sarcoma lines used here, for which no
oncogenic driver alteration has been found for EGFR or HER2
(Dataset EV1).

In contrast, drugs targeting cellular mechanisms of general
importance for cell survival, such as DNA replication, transcription
and the cell cycle, generally potently inhibited the proliferation of
most cell lines (blue areas). These drugs include the cell cycle
inhibitors Trabectedin (a natural product that covalently modifies
guanine bases of DNA and is a first-line chemodrug for the
treatment of sarcoma), Dinaciclib (a multi-CDK inhibitor, blocking
the cell cycle), Volasertib (a PLK1 inhibitor interfering with
mitosis) as well as a series of multi-kinase inhibitors (Fig. 2A,B).
Volasertib is an interesting case because it recently received orphan
drug designation by the US Food and Drug Administration (FDA)
for the treatment of rhabdomyosarcoma (FDA-Orphan-Drug-
Designations-and-Approvals, 2020). PLK1 serves essential func-
tions throughout the M phase of the cell cycle, including regulation
of mitotic exit and cytokinesis. Previous studies suggested that
PLK1 inhibition by Volasertib promotes the degradation of PAX3-
FOXO1, a fusion protein frequently found in rhabdomyosarcoma

patients, thereby inhibiting cancer growth in PDX models (Abbou
et al, 2016). Our data showing that Volasertib is effective across
many sarcoma lines may provide a rational for additional clinical
trials in other sarcoma subtypes. The designated PI3K inhibitor
Copanlisib also showed high potency against most of the sarcoma
lines (Fig. 2A, red label on the right). However, most of the other
PI3K inhibitors in the screen did not show substantial effects,
implying that yet unknown off-target(s) of Copanlisib may be
responsible for its inhibitory effect on sarcoma cells (Fig. EV2A).

Other clusters of drugs in Fig. 2A represent more differentiated
responses of cell lines. One such cluster groups the receptor
tyrosine kinases (RTKs) VEGFR, PDGFRB and FGFR. Other
clusters contain drugs targeting PI3K, MAP2K, or mTOR,
indicating that these cell lines share molecular characteristics that
make them responsive to these drugs (Fig. 2A). Surprisingly,
Pazopanib, an approved multi-kinase inhibitor for the treatment of
sarcomas, was not very effective in any of the sarcoma lines
contained in this panel (Fig. 2C). In contrast, selected cell lines
showed full, medium or no response to Trametinib (a MAP2K
inhibitor). This heterogeneity of response was observed for MAP2K
inhibitors in most of the cell lines. When filtering the data for EC50
values of <100 nM, AUCs of <0.9 and relative inhibition effect
>50% to focus on the most potent drugs, it became apparent that
most cell lines responded to 3–10 KIs and that A204 cells (a
rhabdoid line) were susceptible to KIs (Figs. 2D and EV2B; Dataset
EV3). These cells responded to several RTK inhibitors, multi-kinase
inhibitors and mTOR inhibitors, implying high activity of several
oncogenic signalling axes in these cells. While the above data and
analysis shows that phenotypic screens can be powerful for
identifying advanced clinical compounds with repurposing poten-
tial, the reasons why certain cell lines do or do not respond to these
agents often remain elusive.

Molecular activity landscapes explain drug responses
and suggest effective drugs

To better understand the above drug responses at the molecular
level, the phenotypic drug profiles were integrated with the

Figure 1. Schematic representation of the experimental and data analysis workflows.

Seventeen sarcoma cell lines representing 11 histological subtypes were used as models to investigate the relationships between their proteotypes and drug phenotypes.
Three datasets were generated for this cell line panel: First, response (viability) to 150 cancer drugs (grouped by state of clinical evaluation). Second, baseline protein
expression (following lysis, tryptic digestion and peptide off-line fractionation by high pH reversed-phase liquid chromatography and online LC–MS/MS analysis. Third,
baseline phosphorylation following phosphopeptide enrichment by immobilised metal affinity chromatography and online LC–MS/MS analysis. p-site phosphorylation site.
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proteomes and phosphosproteomes of treatment-naive (termed
baseline from here on) cell lines (Datasets EV4 and EV5). The
simple rationale for this analysis is that drugs targeting specific
kinases in certain pathways would be expected to be more effective
in cell lines driven by the presumably elevated activity of these
kinases and pathways at baseline. To test this hypothesis, we
calculated an activity score for each kinase in each cell line by
combining kinase abundance (from full proteomes; mandatory
criterion), with at least one of the following three criteria: kinase
phosphorylation abundance, kinase activation loop abundance and
kinase-substrate phosphorylation abundance (all from phospho-
proteomes; see “Methods” for details). A similar strategy was
developed in a previous study by the authors (Frejno et al, 2020),
and we extended it here to include kinase activation loop

phosphorylation as reported by others for the INKA score
(Beekhof et al, 2019). This way, we computed activity scores for
383 kinases across all cell lines. This information can be visualised
as a heatmap representing the activity landscapes of the cell lines
(Fig. 3A; Dataset EV6). It is apparent that the molecular
heterogeneity of the different cell lines is reflected in their activity
landscapes. While some cell lines exhibited high scores for many
kinases, e.g., VA-ES-BJ (epithelioid sarcoma), G401 (kidney
rhabdoid tumour), KHOS-NP (osteosarcoma), the Ewing sarcoma
line RD-ES, appeared comparatively “silent” in kinase activity.
Interestingly, RD-ES is the only cell line in this study showing
mixed adherent and suspension characteristics in culture. It also
has by far the lowest number of phosphorylation sites identified
among all sarcoma lines (Fig. EV1B). This may suggest that RD-ES

Figure 2. Phenotypic drug screening revealed common and distinct drug responses of sarcoma cell lines.

(A) Heatmap summarising the responses of 17 sarcoma lines (rows) to 150 clinical cancer drugs (columns). Dotted line boxes highlight clusters of drugs representing
common targets or effects. AUC area under the curve. (B, C) Examples for cell viability dose–response curves from panel (A). Measurements were in technical triplicates
and error bars denote the standard deviation (SD). (D) Numbers of kinase inhibitors that affect the viability of cell lines with EC50 values of smaller than 100 nM (AUCs
<0.9 and relative inhibition effect >50%). Source data are available online for this figure.
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cells are not strongly driven by kinase-regulated signalling
pathways.

Ranking kinases by their activity scores enabled forming
hypotheses for each cell line as to which drug may be able to
inhibit its proliferation. These hypotheses could be experimentally
substantiated in many cases (Figs. 3B and EV3). For example,
PDFGRB and FGFR scored highly in G401 cells (a rhabdoid
tumour line), suggesting that these two kinases are essential for cell
growth (Fig. 3B). In contrast, activity scores of the same two kinases
were low in HT1080 cells (a fibrosarcoma line), suggesting that the
proteins may not be essential for proliferation. Examination of the
phenotypic drug response data of four FGFR and 11 PDGFR
inhibitors indeed confirmed that G401 cells are among the most
sensitive, whereas HT1080 did not respond to these drugs (Figs. 3C
and EV3A). This result aligns well with previous work showing that
co-inhibition of these two kinases leads to growth inhibition of
rhabdoid tumour lines (Wong et al, 2016). A further example is
shown in Fig. EV3B for MAP2K inhibitors. Here, RD-ES cells had
very low activity scores for MAP2K (a kinase that directly
phosphorylates MAPK1 and MAPK3) and these cells, in contrast
to most others, also showed no response to MAP2K inhibitors.

When breaking down the kinase activity score into protein
abundance and substrate phosphorylation, the value of the
phosphoproteomics information became apparent in many cases.
For example, AURKA abundance was not particularly high in the
Ewing sarcoma line SK-ES-1, but AURKA activity was high, as
evidenced by the high ranks of AURKA substrates (Fig. EV3C). In
line with this hypothesis, SK-ES-1 cells were the most sensitive to
the AURKA inhibitors Alisertib and Barasertib. Similarly,
DDR2 showed high activity by substrate phosphorylation levels
but not by protein abundance in the rhabdoid line A204 (Fig.
EV3D) (Hinson et al, 2013). Even though there are no designated
DDR2 inhibitors in the compound library used here, several KIs
have DDR2 as a potent off-target (Klaeger et al, 2017).
Consequently, A204 cells responded much stronger to potent
DDR2 inhibitors (Nintedanib, Dasatinib, Ponatinib, Lucitanib)
than most other KIs (Fig. EV3D).

Taking this concept a step further suggests that the activity
scores of kinases in cell lines would enable the rational choice of an
effective drug for this cell line. To test this idea, we first
focussed the analysis on kinases that are targets of at least one of
the (clinical) compounds in our screen (Klaeger et al, 2017;

Figure 3. Connecting molecular activity landscapes and drug responses.

(A) Activity landscapes of sarcoma lines (right panel) computed from the proteomic data based on the intensities of the molecular features shown in the left panel (see
“Methods” for details). (B) Distribution of activity scores of protein in G401 and HT1080 cells showing differences in activity scores for FGFR and PDGFRB. (C) Relative
viability (AUC) of sarcoma cell lines in response to four FGFR inhibitors. (D) Left panel: list of kinases ranked by activity score in SW684 cells. The asterisk denotes a
kinase that is a target of the most potent kinase inhibitor. Right panel: relative sensitivity of SW684 cells to all drugs in the screen. (E) Left panel: same as panel (D) but for
KHOS-NP cells. Middle panel: dose–response curves for the phase I/II inhibitors CYC-116 and PF-3758309 (the gene names of the targets of the drugs are indicated in
parenthesis). Measurements were in technical triplicates and error bars denote the standard deviation (SD). Right panel: relative sensitivity of KHOS-NP cells to all drugs
in the screen. Source data are available online for this figure.
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Samaras et al, 2020). Subsequently, these kinases were ranked by
their activity scores. For instance, in SW684, a fibrosarcoma line
that showed little response towards most of the drugs used in this
study (Fig. EV2B), PI3K and MAPK1 were among the ten highest
kinase activity scores (Fig. 3D). Indeed, PI3K inhibitors and drugs
targeting MAP2K (the direct upstream kinase of MAPK1) were
among the most effective drugs for this cell line. Conversely, the
computed activity scores for CDK1 and PKN1 were very low (Fig.
EV3E) and, consequently, Dabrafenib (inhibitor of BRAF and
CDK1) and Tofacitinib (PKN1) were not potent in reducing the
viability of SW684 cells. Dinaciclib (a multi-CDK inhibitor) also
only had a small phenotypic effect on SW684 cells, In fact, the
computed CDK1 activity in SW684 cells was the lowest of all cell
lines and SW684 cells were the least Dinaciclib-responsive of all
17 sarcoma lines (Fig. EV3E, right panel).

Another example is the osteosarcoma line KHOS-NP that also
showed minimal response to most KIs in the drug screen. Still, the
top ten list of active kinases enabled choosing the phase I
compounds CYC-116 and PF-3758309 as likely effective drugs on
the basis of their ability to inhibit PAK6, CDK17, BUB1 and IRAK3
(Fig. 3E). The latter information was provided by ProteomicsDB
(https://www.proteomicsdb.org/analytics/selectivity) which con-
tains target information for a large number of clinical KIs (Klaeger
et al, 2017). Albeit not very potent in absolute terms, these two were
among the best compounds for inhibiting the growth of KHOS-NP
cells. In addition, this cell line responded well to the MAP2K
inhibitors Trametinib and cobimetinib as well as Dinaciclib (a
multi-CDK inhibitor) and Volasertib (a PLK1 inhibitor). This is in
line with the fact that MAPK1, CDK1, CDK17 and PLK1 also have
high-activity scores in this cell line. The above results demonstrate
that the activity landscapes of kinases computed from the
proteomes and phosphoproteomes of cell lines can, in many cases,
either explain drug sensitivity toward certain inhibitors or provide
a rationale for choosing a particular KI to address the kinase
activity driving the growth of sarcoma lines.

It is important to note that a high or low kinase activity score
computed from the proteome and phosphoproteome data may not
necessarily be relevant for the phenotype measured in the drug
screen (here cell viability) as these kinases may serve other
important functions in cells. Two examples are shown in Fig. 3D
where e.g., MET and KIT appear to be highly active in SW684 cells.
Yet, none of the MET inhibitors used has an effect on cell viability.
The same is true for KIT inhibitors, while the reason why Dasatinib
and Midostaurin show some effect on cell viability is because both
drugs target many other kinases.

Proteome expression profiles identify drugs acting at
preferred steps of the cell cycle

Exemplified by the cell cycle, we asked if the proteome expression
data can be used to identify drugs that act preferentially in a
particular cellular process. To explore this, we estimated the
proportion of cells in a certain cell cycle phase form the bulk
proteome based on the differential expression of proteins across the
cell cycle reported in previous studies (Kelly et al, 2022; Ly et al,
2017). Then, we correlated the expression of these 119 “periodic
proteins” with the response to 87 drugs (minimum AUC <0.8) (Fig.
EV3F). For 10 out of 14 drugs (with Pearson correlation <−0.5),
the estimated proportion of cells in a particular stage of the cell

cycle agreed the one that the respective drug has been reported to
arrest cells (Dataset EV7). Examples include Dinaciclib, a CDK2,5,9
inhibitor that blocks cells in S-phase and is most negatively
correlated in Cluster 2. The same was observed for Doxorubicin, an
inhibitor of DNA replication that happens in S-phase (Cluster 2).
The correlation for Dasatinib was strongest in Cluster 4 (early M
phase) but given the many targets of this drug, it is difficult to
attribute this effect to a particular kinase. In cluster 5, we observed
a large number of drugs with positive correlations (resistance)
(Dataset EV7). Interestingly, eight of these are PI3K/mTOR
inhibitors, indicating that cells in M phase are particularly resistant
to inhibition of these pathways.

Drugs with related MoA share markers of drug response

The results of the phenotypic drug screen showed that the cellular
responses towards inhibitors that target the same kinases were
relatively similar across the sarcoma lines (Fig. 2A). This indicates
that the cellular MoAs of these drugs in the sensitive cell lines
would also be similar. Therefore, we reasoned that such similar
responses might be explained by the abundance of the same (group
of) proteins or p-sites involved in the pathways targeted by the
drugs. If so, these proteins or p-sites may be used as markers of
sensitivity (or resistance) for a particular drug or a group of related
drugs. To explore this systematically, we used an extended sparse
multiblock partial least-square regression (SMBPLSR) algorithm
(Frejno et al, 2020). SMBPLSR clusters drugs showing similar
responses across cell lines and correlates the abundance of multiple
proteins and p-sites with the responses toward these drugs. Twelve
such clusters of drugs were found (Dataset EV8), and three are
illustrated in Fig. 4. The first cluster contains four MAP2K
inhibitors and markers for drug sensitivity, including proteins and
p-sites known to be members of the MAPK pathway, which
validates the approach (Figs. 4A, left panel and EV4A). These
include the expression of SPRY2 and S100A16, as well as two
p-sites on GIGYF2 (middle panel) (Hanafusa et al, 2002; Higashi
et al, 2010; Zhu et al, 2016). Figure 4A also shows that the higher
the abundance of the calcium-binding protein S100A16 is in a cell,
the higher the sensitivity to the MAP2K inhibitor Cobimetinib.

The second cluster contains six PI3K and mTOR inhibitors
(Fig. 4B). Among the sensitivity markers is phosphorylation on T33
of RRM2 (ribonucleotide reductase family member 2; Fig. EV4B).
RRM2 catalyses the conversion of ribonucleotides (NDPs) to
deoxyribonucleotides (dNDPs), the essential building blocks for
DNA synthesis. Phosphorylation of T33 of RRM2 has been shown
to promote the degradation of RRM2 protein to maintain genome
integrity and DNA repair in G2/M phase (D'Angiolella et al, 2012).
A previous study has also shown that mTORC1 is a determinant for
G2/M checkpoint recovery, and inhibition of the mTORC1
pathway delays mitotic entry after DNA damage (Hsieh et al,
2018). Therefore, we hypothesise that high phosphorylation of
RRM2 T33 may be a negative regulator of activated mTOR
signalling. The strongest resistance marker for the same drugs is
phosphorylation of T394 of Lamin A (LMNA) (Fig. 4B). Lamin A is
an intermediate filament protein supporting the nuclear envelope
and phosphorylation of Lamin A has been found throughout
interphase and mitosis (Torvaldson et al, 2015). However, specific
phosphorylation of T394 has not been detected during interphase
(Kochin et al, 2014). Several G2/M marker proteins such as
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AURKB, TOP2A/B and CDCA8 showed statistically significant
associations with response to the mTOR inhibitor Ridaforolimus
(Appendix Fig. S5). Mining a recent large-scale kinase-substrate
relationship study (Johnson et al, 2023) suggested that BUB1, a
mitotic checkpoint serine/threonine-protein kinase, EEF2K, AAK1,
MST1, or PASK may be upstream kinases of T394. However, none
of these kinases correlated statistically significantly with T394
abundance or phenotypic response to mTOR inhibitors in terms of
kinase abundance or computed activity. Hence, it remains unclear
exactly how Lamin A phosphorylation links to G2/M of the cell
cycle and resistance to mTOR inhibition.

The third cluster contains AURK and PARP inhibitors (Fig. 4C).
PARP inhibitors are approved drugs for treating ovarian and
fallopian tube cancer (Ashworth and Lord, 2018). In earlier work, it
has been observed that the amplification of AURKA was associated
with sensitivity to PARP inhibitors in 39 ovarian cancer cell lines
(Ihnen et al, 2013), indicating an underlying mechanistic link
between the AURK and PARP pathways. We identified phosphor-
ylation at S678 on BCL11B as a sensitivity marker which was not
observed at the protein level (Figs. 4C, right panel and EV4C).
BCL11B is a zinc finger transcription factor up-regulated by the
oncogenic fusion protein EWS/FLI, creating a constitutively active

Figure 4. Drugs with related MoAs share common markers of drug response.

(A) Left panel: cluster of drugs resulting from multiblock partial least-square regression (SMBPLSR) analysis containing MAP2K inhibitors. Middle panel: ranked list of
proteins and phosphorylation sites from the SMBPLSR analysis as indicators of drug sensitivity (pink) or resistance (blue). Right panel: correlation between the extent of
phenotypic response towards Cobimetinib and the abundance of S100A16. R Pearson correlation coefficient, p P value. (B) same as (A) but for mTOR/PI3K inhibitors. (C)
Same as (A) but for AURK and PARP inhibitors.
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transcription factor that is present in 85% of all Ewing sarcomas
(Bailly et al, 1994). Interestingly, the expression of another
sensitivity marker, PPP1R1A (protein phosphatase 1 regulatory
subunit), has recently been reported to be induced by EWS/FLI in
Ewing sarcoma lines as well (Fig. EV4D) (Orth et al, 2022). As the
two Ewing sarcoma lines in our panel were susceptible to AURK
and PARP inhibitors in our and prior screens (Fig. EV4E) (Garnett
et al, 2012; Teicher et al, 2015), the data suggests that the sensitivity
to AURK and PARP inhibitors in this cluster might be triggered by
an EWS/FLI-regulated signalling pathway (Ihnen et al, 2013).
Conversely, high phosphorylation of CD44 (a cell surface receptor
with multiple functions) at S706, and much more so CD44 protein
levels, were found to be a resistance marker (Fig. EV4F,G). CD44
expression levels were high in most sarcoma cell lines except for the
two Ewing sarcoma lines (Fernandez-Tabanera et al, 2022; Teicher
et al, 2015; Tsherniak et al, 2017). This observation suggests a
negative association of CD44 abundance with active AURK and
PARP signalling. However, the underlying mechanism has yet to be
investigated.

As an interesting side note, we also identified a cluster
containing Eribulin, Rigosertib, and KX2-391 (Dataset EV8).
Eribulin is a clinically approved chemodrug for many types of
cancer, including soft tissue sarcomas. It inhibits microtubule
polymerisation, which blocks mitotic spindle formation, leading to
mitotic arrest and cell death by apoptosis (van Vuuren et al, 2015).
KX2-391 is a non-ATP competitive substrate-pocket-directed SRC
inhibitor and inhibition of microtubule polymerisation has recently
been identified as a second MoA (Smolinski et al, 2018). Rigosertib
is a designated PLK1 inhibitor but previous studies have reported
that an impurity in the preparation of Rigosertib also has anti-
microtubule polymerisation effects (Baker et al, 2020; Jost et al,
2020). Hence, the reason that these drugs were grouped together,
most likely results from their unintended effect on microtubule
polymerisation.

Correlating phenotypes and proteotypes identifies
markers of drug response

To discover and prioritise proteins and p-sites associated with drug
response, we applied Elastic net regression (Zou and Hastie, 2005)
(see “Methods” for details) to 9.7 million associations resulting
from 150 drugs, 12,000 proteins and 53,000 phosphosites. These
can be explored in ProteomicsDB and analysis recapitulated many
known and identified many potential new proteins and p-sites
involved in the targeted pathways. One example shown in Fig. 5A
is Cobimetinib, a MAP2K inhibitor used in combination with
other drugs for the treatment of advanced melanoma (Boespflug
and Thomas, 2016). Our analysis recapitulated numerous proteins
and p-sites in the MAPK signalling pathway that act as sensitivity
markers. This included MAP3K1 phosphorylation at S266,
activation loop phosphorylation of MAPK1 at Y187, as well as
downstream substrates such as phosphorylated ERRFI1, GYGFI,
PXN, FOSL1 and CDC42EP3 (Cairns et al, 2018; Higashi et al,
2010; Maurus et al, 2017; Nagashima et al, 2015; Sinkala et al,
2021). The activity scores of MAPK1 in sarcoma lines also strongly
correlated with drug sensitivity toward Cobimetinib, implying that
resistant lines have low levels of intrinsic MAPK signalling activity
(Fig. EV5A). Fewer potential resistance markers were identified
compared to sensitive ones, including phosphorylated S669 of the

E3 ubiquitin ligase CBL. Interestingly, CBL protein levels did
not correlate with response to Cobimetinib (Fig. EV5B). As
CBL can terminate many tyrosine kinase receptor signalling
pathways (Rubin et al, 2005; Tang et al, 2022), higher levels of
CBL S669 phosphorylation may lead to activation of the ligase
activity and, in turn to the reduction of MAPK signalling and
rendering the cells less sensitive to MAP2K inhibitors. This
hypothesis is supported by the strong negative correlation between
the phosphorylation levels of MAPK1 active loop Y187 and CBL
S669 (Fig. EV5C).

Another interesting example is presented by Infigratinib, an
FGFR inhibitor approved for the treatment of advanced or
metastatic cholangiocarcinoma patients carrying an FGFR2 fusion
(Kang, 2021). As expected, several proteins and p-sites were
identified as markers of sensitivity to Infigratinib (Fig. 5B). Notably,
these included levels of several p-sites (but not protein levels) of
FRS2, a key adaptor protein mediating FGFR signalling (Figs. 5B,
left and EV5D). In contrast, SPRY2 is an antagonist of the FGFR
pathway and phosphorylation at S115 and S139 were identified as
resistance markers of Infigratinib because the activation of this
protein results in a low level of FGFR signalling (Fig. EV5E).
Among the less expected sensitivity markers were phosphorylation
of ERBB2/HER2 at S1054, MAST2 (a serine/threonine-protein
kinase) at S191, ULK2 (Serine/threonine-protein kinase) at S430
and TOP2B (DNA Topoisomerase) at S1552 (Figs. 5B,C and
EV5F). The function of many of these p-sites is not known.
However, the correlation between phosphorylation abundance and
drug response implies some involvement in FGFR signalling in
sarcoma cell lines. In fact, ULK2 has previously been shown to
decrease the phosphorylation of FRS2 via binding to FRS2 and thus
negatively regulates FGFR1 signalling (Avery et al, 2007). There-
fore, it may be speculated that phosphorylation of S430 of ULK2
may interfere with its binding to FRS2, increasing the amount of
free FRS2 and promoting FGFR signalling.

FGFR inhibition by Infigratinib downregulates
phosphorylation of ERBB2 and TOP2B

While the correlation and regression methods used above can be
powerful, they do not necessarily imply causal relationships. To
follow up on some of the observations made in the previous section,
we measured the phosphoproteome of the FGFR2-overexpressing
and FGFR2 inhibitor-sensitive rhabdoid sarcoma line G401
(Fig. 3B,C) in response to Infigratinib in a time-dependent fashion.
More specifically, G401 cells were treated with 100 nM Infigratinib
and samples were taken at nine time points ranging from 5min to
24 h. DMSO controls were included at every time point to account
for any (phospho)proteome changes due to cell growth during the
experiment (Fig. EV6A). About 7900 proteins and 13,000 p-sites
were quantified along the time course (Dataset EV9; Fig. EV6B).
While regulation of protein abundance was not very pronounced
after Infigratinib inhibition, substantial changes in phosphorylation
levels were already observed after 10 min. Among these were FRS2
S428 and GAB1 T503 clearly indicating the down-regulation of
FGFR signalling by the drug (Figs. 5D and EV6C). When looking
up the candidate p-sites suggested by the elastic net regression
above, ERBB2/HER2 S1054 and TOP2B S1552 were decreased after
10 min of Infigratinib treatment and remained down over the entire
time course (Figs. 5E and EV6D). These results clearly show that
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the hypothesis created by elastic net regression can be experimen-
tally confirmed.

The kinase responsible for the phosphorylation of TOP2B at
S1552 is not known. Phosphorylation levels of this site not only
correlated with Infigratinib response but also with other FGFR
inhibitors (Erdafitinib and Rogaratinib), the multi-CDK inhibitor
Dinaciclib and the DNA intercalator Dactinomycin (Fig. EV6E).
This implies that the effects of all these drugs converge at the level
of mitosis, a process in which TOP2B is intimately involved. Unlike
S1130 and S1134 phosphorylation by CK1 on TOP2B, which
promotes its degradation (Shu et al, 2020), TOP2B abundance did

not change in response to Infigratinib (Fig. EV6F). We again
resorted to the aforementioned large-scale kinase-substrate rela-
tionship study to as which kinase may be responsible for TOP2B
S1552 phosphorylation (Johnson et al, 2023). This analysis returned
CDC7 and CK2 (both CK2A1 and CK2A2) as the strongest
candidates but none of these showed a statistically significant
correlation with computed kinase activity and TOP2B S1552
phosphorylation abundance. While this does not rule them out, the
current data also does not provide supporting evidence.

Although crosstalk between different signalling cascades are not
uncommon in cancer cells, a connection between ERBB2/HER2

Figure 5. Correlating phenotypes and proteotypes identifies markers of drug response.

(A) Result of elastic net regression for the MAP2K inhibitor Cobimetinib highlighting proteins and phosphorylation sites indicative of drug resistance or sensitivity. (B)
Same as panel (A) but for the FGFR inhibitor Infigratinib. (C) Correlation analysis between the level of phenotypic response of cell lines towards Infigratinib and the
abundance of ERBB2 S1054 (top panel) and the abundance of TOP2B S1552 (bottom panel). (D) Time-dependent analysis of FRS2 S428 (top panel) and GAB1 T503
(bottom panel) in response to Infigratinib in G401 cells. Both phosphorylation sites are known members of FGFR signalling. (E) Same as panel (D) but for two novel
phosphorylation sites ERBB2/HER2 S1054 (top panel) and TOP2B S1552 (bottom panel). Source data are available online for this figure.
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and FGFR signalling in sarcoma cells has not yet been established
and its functional consequences are not yet clear. The upstream
kinase of ERBB2/HER2 S1054 is unknown, but the site is annotated
to respond to EGF (PhosphositePlus). That said, it is unlikely that
HER2 signalling is directly involved in tumour progression in G401
as none of the HER2 inhibitors in our screen inhibited the growth
of G401 cells (Fig. EV6G). However, it has been shown that
Infigratinib can sensitise EGFR mutant and drug-tolerant lung
cancer cells, and that dual EGFR and FGFR inhibition may prevent
and overcome drug resistance (Raoof et al, 2019). Recently, it has
also been found that acquired resistance toward Infigratinib in
hepatocellular carcinoma correlates with higher phosphorylation
levels of ERBB2/3 and increased EZH2 expression (Prawira et al,
2021). We also found decreased phosphorylation levels of EZH2
after Infigratinib treatment, including phosphorylation on T487 of
EZH2, which is known to induce cell growth (Fig. EV6H).
Together, these results imply a functional connection between
ERBB2/HER2 and FGFR signalling, which might rationalise both
the hypothesis raised from the elastic net regression and the follow-
up experiments.

Discussion

Identifying associations between phenotypic drug responses and
genomic, transcriptomic and proteomic signatures has proven
useful in understanding the modes of action of drugs and to
identify markers of drug resistance or sensitivity. Several large-scale
efforts have been established to provide such resources for the
community e.g., CCLE, CTRP, DepMap etc. (Barretina et al, 2012;
Frejno et al, 2020; Garnett et al, 2012; Rees et al, 2016; Reinhold
et al, 2012; Tsherniak et al, 2017). However, the molecular
complexity of cellular systems often renders the interpretation of
associations difficult. As protein phosphorylation plays crucial roles
in oncogenic signalling, we previously extended drug
phenotype–proteotype association analysis to the level of the
phosphoproteomes of 125 diverse cancer cell lines (Frejno et al,
2020). However, not many clinical KIs were included in these
experiments and the focus on biologically diverse cell lines often
limited or even confounded the results.

In this study, we characterised the proteomes and phospho-
proteomes of a small set of sarcoma lines representing many
histological subtypes and, in parallel, systematically
created phenotypic responses to drugs focusing on clinical KIs.
These datasets allowed us to explore associations in a more
controlled fashion than taking all or partial data from the
literature. The analysis showed that many associations (drug
targets or downstream proteins/p-sites) reported in the literature
could be recapitulated. More importantly, many phosphorylation
sites were identified that directly or indirectly associated drugs with
targeted pathways in a plausible fashion and one of these
was confirmed experimentally as an example. We also note that
many of these were only apparent at the level of the
phosphoproteome.

However, it is clear that the associations observed in this study
do not provide the full picture regarding the MoAs of the drugs
investigated. Correlations do not always translate into causality and
the number of cell lines in this study was relatively small, limiting
statistical power in many cases. Therefore, the many new

hypotheses that can be generated by mining the information
deposited in ProteomicsDB will need experimental validation.

On a more technical level, our workflow isolated the complete
phosphoproteome which typically leads to the identification of
relatively few tyrosine phosphorylated peptides (713 pY-sites of a
total of 53,087 p-sites identified across all cell lines; about 230 pY-
sites per cell line on average) and thus potentially missing
important information. For instance, a previous study (Bai et al,
2012) reported ~1900 pY-peptides across several sarcoma cell lines
of which 39 were found on tyrosine kinases. From this data, the
authors identified potential driver tyrosine kinases in A204 and
RD-ES cells (both also used in the current study). These authors
found a dependency of A204 cells on PDGFR and FGFR signalling,
which was confirmed by another study (Wong et al, 2016) showing
that dual inhibition of PDGFR and FGFR signalling had a
synergistic effect. Our data also identified the FGFR association
because the overall phosphoproteomic signature captured by our
activity score was strong enough. However, in the same study from
Bai et al, RD-ES cells were found to be dependent on IGF1R/INSR
signalling. We could not confirm this from our results, as the
activity scores of these two kinases (and many further kinases) were
relatively low (Fig. 3A; Dataset EV6) and our compound deck did
not include IGF1R/INSR inhibitors. A prevailing issue is the fact
that most phosphorylation sites are still not functionally annotated.
This remains a major obstacle for the functional interpretation of
the proteotype–phenotype drug profiles. While the associations
made in this study can aid in the functionalisation of the
phosphoproteome, it can be anticipated that stronger information
will come from phosphoproteomic analysis that include direct
drug, genetic or other perturbations as well as further efforts to
define kinase-substrate relationships in a cellular context (Johnson
et al, 2023; Mitchell et al, 2023; Zecha et al, 2023).

Despite these limitations, the current study expands the
repertoire of cell lines for which parallel high-quality phenotypic
drug response and (phospho)proteomic data exist. Such datasets
serve several important purposes. Broadly speaking, they provide a
straightforward means to better understand the often puzzlingly
heterogeneous drug effects in the context of molecularly hetero-
geneous cancer model systems. More specifically, integration of
such data may identify molecular markers of drug response which
may be used (i) to better understand drug effects in vitro, (ii) as
pharmacodynamic biomarkers in preclinical 3D culture, organoid
or animal models or (iii) to measure drug response in patients. It is
worth noting that the activity scores computed from the
experimental data may be used more broadly than portrayed in
this study. As mentioned above, high-scoring kinases in a particular
cell line may not necessarily be relevant for the phenotype assayed
for (here viability). However, the same scores may be used for
finding molecular associations for any other phenotypic readout,
which, in the long run, will provide further functional context.

An important future potential use, and a major motivation to
undertake the current study in the first place, is in precision cancer
medicine. It has become apparent that even cancers of similar
origin or pathological classification can have vastly different
genotypes and proteotypes. As the amount of proteomic patient
profiling data is increasing rapidly, it becomes more and more
important to be able to derive potential treatment options from the
proteomic profiles of individual patients. Even though cancer cells
are imperfect models for human cancer in vivo, cellular systems are
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amenable for systematic drug response screening, while patient-
derived material is often not. Therefore, strong associations made
in vitro between molecular signatures at the (phospho)proteome
level and the response to certain cancer drugs offer the opportunity
to make novel treatment recommendations in molecular tumour
boards or provide new ideas for clinical trials. The current work is
placed within this context and the authors anticipate that making
the data available in ProteomicsDB will engage the scientific
community to mine the data in this or other directions.

Methods

Cell lines

Cell lines used in this study were obtained from ATCC, CLS (CLS
Cell Lines Service GmbH, Germany), and DSMZ (German
Collection of Microorganisms and Cell Cultures GmbH, Germany).
SYO-1 is not commercially available and was a kind gift from Dr.
Stefan Fröhling (NCT/DKFZ Heidelberg, Germany). The detailed
information can be found in Dataset EV1. Cell lines were not
authenticated for this study but came with authentication
certificates from purchased sites.

Drug library

The compounds were purchased from Selleckchem (Absource
Diagnostics GmbH, Germany) and MedChemExpress (Hölzel
Diagnostika Handels GmbH, Germany). As manufacturers noted,
the compounds were dissolved in DMSO except for three
compounds that were not soluble in DMSO. The stock concentra-
tion was 10 mM, whereas four compounds were made of the
maximal concentration according to their solubility. Two drugs,
Eribulin and Trabectedin, were donated from the hospital Klinikum
Rechts der Isar (Munich, Germany) after regular chemotherapy and
in a lower concentration of 0.9% NaCl. Detailed information on
compounds can be found in Dataset EV2.

Selection of cell lines and drugs

The selection of cell lines started from a published dataset including
63 human sarcoma lines that were screened against 100 FDA-
approved oncology agents and 345 investigational agents (Teicher
et al, 2015). Only 28 of these cell lines were commercially or public
available (January 2019; Appendix Table S1). To maximise diversity
in drug response, we correlated the drug responses of these 28 cell
lines toward 52 KIs using the R package “pheatmap” (Appendix
Fig. S6). Next, both diversity in sarcoma subtypes and phenotypic
diversity (whether they were clustered closely) were used for
selection. Four subtypes, including Ewing sarcoma, fibrosarcoma,
osteosarcoma and rhabdomyosarcoma, are represented by more
than one cell line because the above correlations between these cell
lines were poor.

The choice of compounds (total of 150, Dataset EV2) focussed
on KIs because of the focus of the current study on the
phosphoproteome. The screening deck contained all 71 approved
KIs (at the time of writing) and 52 phase III drugs. These 123 KIs
are particularly valuable as they may be repurposed and/or
recommended for treatment in a compassionate use setting.

Further, 16 phase I, II, or II/III KIs were included to cover
complementary target proteins (Klaeger et al, 2017). In addition,
four chemo drugs and one epigenetic drug already used for treating
sarcomas today were included, as well as six non-KIs used for
treating other types of cancer.

Cell culture

Cell lines were grown in the conditions suggested by manufacturers
or literature (Teicher et al, 2015). Upon receiving, the cells were
grown and frozen in six vials. One of the vials was used to generate
another six stock vials. Cells from the same batch of frozen stock (at
the same passage) were thawed for the drug screen and proteomics
analysis separately. In both conditions, the cells were cultured in
less than two months. The additional supplemented with Pen Strep
(100 U/mL penicillin and 100 ug/mL streptomycin, Gibco #15140-
122) was added to the cell culture for the high-throughput drug
screen. Detailed information on culture conditions can be found in
Dataset EV1. All cell lines were grown at 37 °C and 5% CO2.

High-throughput drug screen

Prior to the drug screen, the density test was performed. Each cell
line was cultivated in 384-well plates (CulturPlateTM, Perkin Elmer,
MA, US) with different densities ranging from 750–7500 cells per
well in 50 µl using a Multidrop™ Combi Reagent Dispenser
(Thermo Fisher Scientific, Waltham, MA, USA). After 96-h
incubation, the density reached 80–90% of confluence was chosen.
The cell number used for each cell line can be found in Dataset
EV1. For the drug screen, cells were seeded in 384-well plates 24 h
prior to drug treatment and cultured in standard conditions. Five
compound plates were prepared with ten dilution series from
10 mM to 0.0002 mM in one to three steps. Six compounds with
lower stock concentrations were diluted similarly, resulting in
different final concentrations. Each experiment was performed in
triplicate by adding 2.5 µl of dilution series and incubated for 72 h.
Five micro molars of Staurosporine (Selleckchem #S1421) served as
a positive control in each plate, whereas 0.1% DMSO as a negative
control (Appendix Table S2). The viability was measured using the
ATPLite assay following the manufacturer’s instructions (Perkin
Elmer, MA, USA) and calculated by the percent of cell growth. The
Z-Prime of all assays ranges from 0.76 to 0.96.

Cell lysis

For proteomics analysis, adherent cells grown in the 15-cm Petri
dish (Greiner Bio-One GmbH, Germany) to a confluence of
80–90%. The adherent cells were washed twice with cold PBS and
lysed in lysis buffer (40 mM Tris-HCl, pH 7.6, 2% of SDS). The
suspension cells were harvested by centrifugation in 50-mL falcon
at 1000×g for 5 min at 4 °C. After two washes with PBS and
centrifugation, the cell pellet was suspended by lysis buffer. The cell
lysates were frozen at −80 °C freezer until further use. For the time-
dependent experiment, the cells were grown in the 10-cm Petri dish
and harvested at the indicated time point with PBS wash, followed
by adding lysis buffer. Cell lysates were boiled at 95 °C for 5 min,
and trifluoroacetic acid (TFA) was added to a final concentration of
1% (Dagley et al, 2019) to hydrolyse DNA and reduce viscosity.
Three molar Tris (pH 10) was added to reach a final concentration
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of 195 mM (pH 7.8) to quench the samples. Protein concentration
was determined using the Pierce BCA Protein Assay Kit (Thermo
Scientific, MA, USA).

Time-dependent treatment

The cell line G401 was seeded to the 10-cm cell petri dish (Greiner
Bio-One GmbH, Germany), with 1.7 × 106 cells of each dish. After
incubation for two days, 0.1 μM of Infigratinib or DMSO was added
to the cells. The remaining untreated dishes were lysed immediately
as time point zero. The other dishes were lysed at 5 min, 10 min,
15 min, 30 min, 90 min, 3 h, 6 h, 12 h and 24 h after treatment. The
lysis procedure was described in the previous section. The cell
lysate was stored at −80 °C after boiling at 95 °C for 5 min.

Lysate clean-up, protein digestion and peptide de-salting

The lysate was cleaned up using the SP3 method on an automated
Bravo liquid handling system (Agilent Technologies, CA, US) as
previously described (Hughes et al, 2019) with minor modifications
(Zecha et al, 2020). In short, 20 µl of carboxylate beads mix (50 µg/
µl in H2O, Sera-Mag Speed beads, cat# 45152105050250 and
65152105050250, GE Healthcare, IL, USA) were added to a 96-well
plate (cat#951020401, Eppendorf, Germany). Following by one
precipitation step with 60% ACN, two wash steps with 80% ethanol,
and one wash step with 100% CAN, the beads were incubated with
100 µl of digestion buffer (50 mM HEPES, pH 8.5; 10 mM Tris(2-
carboxyethyl)phosphine (TCEP); 50 mM chloroacetamide (CAA))
for 1 h at 1200 rpm and 37 °C. After reduction and alkylation,
samples were digested overnight at 37 °C and 1200 rpm using a 1:50
trypsin-to-protein ratio. The supernatant containing peptides was
transferred to a new 96-well plate and acidified by formic acid (FA)
to reach a final concentration of 1%. Peptides were desalted using
RP-S cartridges (5 μL bed volume, Agilent) and the standard
peptide cleanup v2.0 protocol on the AssayMAP Bravo Platform
(Agilent). Briefly, RP-S cartridges were primed with 100 μL of 50%
ACN/0.1% FA and equilibrated with 50 μL of 0.1% FA at a flow rate
of 10 μL/min. The samples were loaded at 5 μL/min, followed by an
internal cartridge wash with 0.1% FA at a flow rate of 10 μL/min.
Peptides were eluted with 80 μL of 70% CAN/0.1% FA at a flow rate
of 5 μL/min. Samples were dried down and stored in −80 °C until
further use.

TMT labelling and multiplexing

The desalted peptides were labelled with TMT6 or TMT11 plex as
previously described (Zecha et al, 2019). In short, one hundred µg
of TMT reagent in 5 µl of anhydrous ACN was used to label 100 µg
of peptides in 20 µl of 50 mM HEPES buffer (pH 8.5) and the
labelling reaction was stopped by adding 3 µl of 5% hydroxylamine.
After drying to remove excessive ACN, the (pulled) peptides were
dissolved in 0.1% FA and desalted by 250 mg Sep-Pak C18-
Cartridges (Waters, MA, USA) after vacuum drying. For reasons of
compatibility with another ongoing project in the laboratory,
peptides for baseline (phospho)proteomic analysis were labelled
with TMT (6-plex) but samples were not (!) multiplexed. Instead,
each cell line sample was analysed separately and the MS1 peptide
intensity data was used for quantification purposes. For time-
dependent (phospho)proteomics analysis, the TMT-labelled

peptides were multiplexed in two batches of TMT11 (Lot number:
TMT10plex, UK291565; TMT11, UH283151). Each batch consisted
of nine time points (DMSO or Infigratinib-treated) with two
identical zero time point samples to enable bridging data between
batches (bridge channel).

HPLC fractionation

TMT-labelled peptides were fractionated by off-line basic reversed-
phase (bRP) fractionation as previously described (Zecha et al,
2020) with slight modifications for phosphoproteomics analysis. In
brief, Dionex Ultra 3000 HPLC system equipped with a XBridge
BEH130 C18 column (3.5 µm 4.6 × 250 mm) (Waters, MA, USA)
was operated at a flow rate of 1 mL/min with a constant 10% of
25 mM ammonium bicarbonate (pH 8.0) in the running solvents. A
57-min linear gradient from 7 to 45% ACN followed by a 6 min
linear gradient up to 80% ACN was performed. Ninety-six fractions
were collected every half minute from min 7 to 55 and pooled into
48 fractions (fraction 1 + 49, fraction 2 + 50, etc.). To acidify the
samples, 50% (v/v) FA in water were added to a final concentration
of 1% (v/v) FA. For proteomics analysis, 75 µl of total volume
(~15% of total peptide amount) was transferred to a new 96-well
plate. Both plates were dried down and stored at −80 °C.

Phosphorylation enrichment

The dried fractions remaining from bRP HPLC fractionation were
dissolved in IMAC Equilibrium buffer (80% ACN/19.9% ddH2O/
0.1% TFA) and pooled into 12 fractions for phosphoproteomics
analysis. Twelve fractions of phosphorylated peptides were
enriched in 12 Fe(III)-NTA cartridges (5-μL bed volume, Agilent)
with Phosphopeptide Enrichment v2.0 protocol on the AssayMAP
Bravo Platform (Agilent). Briefly, the cartridges were primed with
150 μL of IMAC Priming buffer (99.9% CAN/0.1% TFA) and
equilibrated with 150 μL of IMAC Equilibrium buffer at a flow rate
of 10 μL/min. Next, the samples were loaded at five μL/min,
followed by three internal cartridge washes with IMAC Equilibrium
buffer at 50 μL/min. Finally, the phosphorylated peptides were
eluted with 50 μL of 1% ammonia at a flow rate of 5 μL/min into
50 μL of 10% formic acid. Samples were dried down and stored at
−80 °C until subjected to LC–MS/MS.

LC–MS/MS analysis

Full proteomes
For proteomics profiling, a Dionex UltiMate 3000 RSLCnano
System equipped with a Vanquish pump module and coupled to a
Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scien-
tific) was operated under micro-flow conditions as we described
recently (Bian et al, 2021). Peptide fractions were dissolved in 1%
FA/2%ACN and the fraction corresponding to 3–4 µg peptides was
injected directly to Acclaim PepMap 100 C18 column (2-µm
particle size, 1 mm ID × 150 mm; Thermo Fisher Scientific).
Peptides were separated at a flow rate of 50 µl/min using a 25-
min linear gradient of 4–32% micro-flow solvent B (0.1% FA and
3% DMSO in ACN) in micro-flow solvent A (0.1% FA and 3%
DMSO in water). The data-dependent acquisition (DDA) with an
H-ESI source were used to measure all the baseline proteomes and
time-dependent proteomes with a high-resolution orbitrap (OT)
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method. In brief, full scan MS1 spectra were recorded in the OT
from 360 to 1600 m/z at 60k resolution using an automatic gain
control (AGC) target value of 4e5 charges and a maximum
injection time (maxIT) of 50 ms. For baseline proteomes,
MS2 spectra were acquired in the OT at 50k resolution after
higher energy collisional dissociation (HCD, 34% NCE) and using
an AGC target value of 1e5 charges, a maxIT of 86 ms, an isolation
window of 0.7 m/z, and an intensity threshold of 5e4.The cycle time
was set to 1.2 s and the dynamic exclusion lasted for 40 s. For time-
dependent proteomes, MS2 spectra were acquired in the IT (ion
trap) after HCD (32% NCE) and using an AGC target value of 1.2
e4 charges, a maxIT of 40 ms, an isolation window of 0.6 m/z, and
an intensity threshold of 1e4. The quantitative information on
TMT reporter ions was obtained by synchronous precursor
selection (SPS) of up to eight most intense peptide fragments
(McAlister et al, 2014) and further fragmentation via HCD using a
NCE of 55%. The MS3 scan was recorded in the OT at 50k
resolution (scan range 100–1000 m/z, isolation window of 1.2 m/z,
AGC of 1e5 charges, maxIT of 86 ms). The cycle time was 1.2 s and
the dynamic exclusion lasted for 50 s.

Phosphoproteomes
For phosphoproteomics profiling, peptide fractions were dissolved
in 0.1% FA and a half (time-dependent) or one-third (baseline) of
the fraction was loaded to a trap column (75 µm × 2 cm, packed in-
house with 5-µm C18 resin; Reprosil PUR AQ, Dr. Maisch). After
washing with 0.1% FA at a flow rate of 5 µL/min for 10 min,
peptides were transferred to an analytical column (75 µm × 45 cm,
packed in-house with 3-µm C18 resin; Reprosil PUR AQ, Dr.
Maisch). Peptides were separated at a flow rate of 300 nL/min using
an 80-min linear gradient of 4–32% of solvent B (0.1% FA and 5%
DMSO in ACN) in solvent A (0.1% FA and 5% DMSO in water).
The data-dependent acquisition (DDA) was used with a high-
resolution orbitrap (OT) method. In brief, full scan MS1 spectra
were recorded in the OT from 360 to 1500 m/z at 60k resolution
using an automatic gain control (AGC) target value of 4e5 charges
and a maximum injection time (maxIT) of 50 ms. For baseline
phosphoproteomes, MS2 spectra were acquired in the OT at 15k
resolution after higher energy collisional dissociation (HCD, 33%
NCE) and using an AGC target value of 2e5 charges, a maxIT of
55 ms, an isolation window of 1.2 m/z, and an intensity threshold of
2.5e4. The numbers of the dependent scan was set to 25 and the
dynamic exclusion lasted for 90 s. For time-dependent phospho-
proteomes, MS2 spectra were acquired in the OT at 30k after
collision-induced dissociation (CID, 35% CE) and using an
isolation window of 0.7 m/z. Neutral loss mass was set to
97.9763. The quantitative information on TMT reporter ions was
obtained by synchronous precursor selection (SPS) of up to 10 most
intense peptide fragments in the OT and further fragmentation via
HCD using a NCE of 55%. The MS3 scan was recorded in the OT at
50k resolution (scan range 100–1000 m/z, isolation window of 1.2
m/z, AGC of 1.2e5 charges, maxIT of 120 ms). The cycle time was
3 s and the dynamic exclusion lasted for 90 s.

Data analysis

Raw data processing
The raw files were searched in MaxQuant 1.6.2.10 (Tyanova et al,
2016) against a human database provided by UniProt (downloaded

Aug 11, 2018) and common contaminants. For baseline proteomes,
the experiment type was left in default settings with a false
discovery rate (FDR) cutoff of 1%. Searches were restricted with a
precursor ion tolerance of 20 ppm and a fragment ion tolerance of
0.4m/z. TMT-labelling N-terminus and lysine (229.1629) mod-
ification were considered as fixed modification, while cysteine
carbamidomethylation, methionine oxidation and N-terminus
acetylation were allowed as variable modifications. Trypsin/P was
specified as the proteolytic enzyme with up to two missed cleavage
sites allowed, and absolute quantification by iBAQ was enabled.
Matching was enabled between fractions of samples (20 min
alignment window, 0.2-min matching window). Default score
cutoffs required a minimal Andromeda score of 40 and a delta
score of 6 for modified peptides. For time-dependent proteomes, all
the settings mentioned above were used with a few modifications.
The 11plex TMT was specified as isobaric label within a reporter
ion MS3 experiment type. Cysteine carbamidomethylation was
considered as a fixed modification, while methionine oxidation and
N-terminus acetylation were allowed as variable modifications. For
baseline and time-dependent phosphoproteomes, the settings
mentioned above were used with a few modifications. STY
phosphorylation was added to the variable modifications, and
matching was enabled between fractions of samples in 20-min
alignment window and 0.7-min matching window. Protein
quantification was obtained from the summed area under peptide
elution profiles for baseline samples or from summed peptide
reporter intensities for time-dependent treatment samples.

Data post-processing
The files “proteinGroups.txt” and “Phospho (STY)Sites.txt” from
MaxQuant were used for the proteome and phosphoproteome
analyses. The abundance of proteins and phosphosites (p-sites) was
quantified using intensity-based absolute quantification (iBAQ)
(Schwanhausser et al, 2011) and MS1 precursor intensities for
baseline (phospho)proteomes and corrected reporter intensity for
time-dependent (phospho)proteomes. P-sites were not filtered a
priori for localisation probability, yet the probabilities are provided
for all p-sites in the online data matrix online when exploring
elastic net regression and correlation data (https://
www.proteomicsdb.org/sarquarium). Moreover, 85% of the identi-
fied phosphosites exhibit a localisation probability greater than
0.75, the conventional definition of class I phosphosites (Appendix
Fig. S7). The post-processing were performed in RStudio (version
1.4.1717) using R (version 4.1.1) with packages “data.table” and
“missMethods” (RCoreTeam, 2021; Rockel, 2020; RStudioTeam,
2020; Srinivasan, 2021). Hits to the reverse and contaminant
database were removed. To correct for different loading amounts of
the samples, quantification values were normalised by median-
centring all samples to the overall median of the respective dataset
(Appendix Fig. S8). Missing values in full proteome and
phosphoproteome data were imputed using the protein-wise and
p-site-wise (row-wise) half-lowest observed intensity method. The
log10-transformed data of non-imputed and imputed intensities in
baseline (phospho)proteomics profiling were provided in Dataset
EV4 (full proteome) and Dataset EV5 (phosphoproteome). For
time-dependent (phospho)proteomes, the reporter intensities were
median-centric normalised without any imputation and reported in
Dataset EV9. Graphic presentations were generated by BioRender,
GraphPad Prism 5 (version 5.01), Adobe Illustrator CS6 (version
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16.0.0), R packages “pheatmap” (Kolde, 2019), “RColorBrewer”
(Neuwirth, 2014), “dbplyr” (Ruiz, 2021), “tidyr” (Wickham, 2021),
“beeswarm” (Trimble, 2021), “reshape2” (Wickham, 2007), "jani-
tor" (Firke, 2021), "basicTrendline" (Yu, 2020), “ggplot2” (Wick-
ham, 2016).

Cell viability AUC calculation
The dose–response data were normalised into a range between 1
(no response or full viability) and 0 (full response or no viability).
Then, the classical symmetric four-parameter log-logistic model
was fitted to each combination of drugs and cell lines:

f x; b; c; d; eð Þð Þ ¼ cþ d � c
1þ exp b log xð Þ � log eð Þð Þð Þ

Where the four parameters correspond to: c=“Lower Limit”,
d=“Upper Limit”, b=“Slope” and e=“ED50”. Finally, the AUC was
calculated as the standardised area under the dose–response curve in
dose logspace using a modified computeAUC function from the
drexplorer package (Zou and Hastie, 2005) v1.1.22 as described
earlier (Frejno et al, 2017). These standardised AUC values also
range between 1 (no response) and 0 (full response).

Activity score calculation
The activity score of each kinase was calculated according to a
previously proposed approach with a few modifications (Frejno
et al, 2020). In brief, four matrices were generated. (a) kinase
abundance (log10-transformed) from full proteome data were
mapped to the kinase list downloaded from Uniprot (pkinfam,
08.11.2021). The z-scores were calculated by the R package “som”
(Yan, 2016) across 17 cell lines. (b) kinase phosphorylation from
phosphoproteome data were extracted according to the kinase list.
The abundances of p-sites (non log10-transformed) from the same
kinase were summed up followed by the log10 transformation and
z-scores calculation. (c) kinase active loop phosphorylation from
phosphoproteome data were mapped with active loop analysis from
Phomics (Munk et al, 2016) followed by z-scores calculation. (d)
kinase-substrate phosphorylation from phosphoproteome data
were mapped to kinase-substrate list and the abundances of
substrates (non log10-transformed) from the same kinase were
summed up, followed by the log10 transformation and z-scores
calculation. As a hard requirement, there has to be kinase
abundance information from the full proteome data. Otherwise,
no score is calculated for this kinase. We then add abundance of
any of the three other layers (b, c, d) to the kinase (a) regardless of
whether or not all three are available. To report the druggable
activity landscapes, we curated a list from target profiling on
ProteomicsDB (https://www.proteomicsdb.org/, downloaded on
Feb 23, 2022). All the matrices mentioned above can be found in
Dataset EV6.

Calculation of proportions of cells in different cell cycle phases
Briefly, the pseudoperiodic protein clusters from Kelly et al (Kelly,
2022) was downloaded. In that study, the proteomics profiling of
sixteen cell populations collected across annotated phases of the cell
cycle showed five clusters containing a total of 119 “periodic”
proteins. For each of the 17 cell lines in our study, the proportions
of cells in different cell cycle phases from the bulk proteome data

were inferred as follows: (1) The identified proteins in our study
were mapped to the list of pseudoperiodic proteins clusters of Kelly
et al (all 119 proteins were found). (2) The intensities of all proteins
in each Kelly cluster was summed up for each cell line. (3) Each
Kelly cluster was rescaled from 0 to 1 among 17 cell lines to remove
the bias from clusters that contain more proteins (higher summed
intensity). (4) We calculated and normalised (0 to 1) the proportion
of each Kelly cluster in each cell line (value of each cluster
compared to the total sum of the five Kelly clusters in one cell line).
These steps generated an approximation of the proportion of cells
in a particular stage of the cell cycle (Dataset EV7 Tab3). Second,
the Pearson correlation of each Kelly cluster proportion with drug
response for each drug was computed. Only 87 drugs were chosen
in our data that had a minimum AUC <0.8 to avoid obtaining
correlations from drugs with very small effects. The correlations are
provided in Dataset EV7 and plotted in pdf files (available via
ProteomeXchange).

Sparse multiblock partial least-square regression (SMBPLSR)
To identify drugs sharing correlated viability profiling and, at the
same time, selecting biomarkers that predict the cell line sensitivity
of the selected drugs, we used a method extended from partial
least-square regression, i.e., sparse multiblock partial least-square
regression (SMBPLSR). The method is described in detail in
(Frejno et al, 2020; Karaman et al, 2015). Briefly, SMBPLS
extended partial least square (PLS) in two ways. First, it accepts
multiple matrices storing independent variables as the
predictor. Then, SMBPLSR algorithm maximises the summed
covariance between the components identified from each inde-
pendent matrix and the components identified from the dependent
matrix, e.g.,

argmax u1; ::; uk; ¼ ; uK ; vð Þ ¼
XK

k¼1

cov2 Xkuk; Yvð Þ

where X1 to XK are K independent matrices (predictors; protein and
phosphorylation intensity matrix), and Y is the dependent matrix
(drug sensitivity matrix of cell lines). Uk is a vector storing the linear
combination coefficients of variables in the independent matrix k
(protein or phosphorylation site loadings). Vector v stores the linear
combination coefficient of variables in the dependent matrix (drug
loadings). Second, an L1 penalty is introduced on the drug and the
proteins/phosphorylation site loadings. The sparsity on drug loading
identifies a subset of drugs sharing correlated cell viability profiles.
The sparsity on protein/phosphorylation site loading selects a subset
of protein and phosphorylation markers that correlates well with the
viability profiling of selected drugs. In our analysis, the two
independent matrices are the iBAQ intensity of proteins and the
intensity of phosphorylation sites. The dependent matrix is the cell
line viability profiling of drugs, represented as the area under the
curve (AUC). In total, 12 components are fitted. In each component,
six drugs are selected, and 50 proteins and phosphorylation sites are
identified as potential biomarkers.

Elastic net regression
To discover proteins and p-sites that are associated with drug
response, we applied Elastic net regression (Zou and Hastie, 2005)
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to our data. Elastic net regression combines L1 (Lasso) and L2
(Ridge) regularisation to find a relatively sparse combination of
protein and p-sites that can predict the response variable (drug
response). The hyperparameter α ∈ [0, 1] is used to balance the L2
(α = 0) and L1-penalties (α = 1). A second hyperparameter λ
controls the degree of regularisation. Elastic net regression models
were fit using the R package glmnet v4.1-2. Elastic net regression
was performed as described earlier with minor adaptations (Frejno
et al, 2020). First, missing values were imputed by half of the lowest
detected intensity for each protein and p-site. For each drug, we
used bootstrapping to create multiple elastic net models. The
hyperparameter λ was optimised using the cv.glmnet function while
fixing α = 0.05. Using this optimal λ, we then selected the optimal α
out of 0.01, 0.05 and 0.1, again using cross-validation. With these
optimal hyperparameters, we then trained 100 elastic net models
and used the average coefficient and selection frequency across all
100 models to create plots resembling classic volcano plots.
Proteins and p-sites with a high average coefficient and high
selection frequency can be considered candidate biomarkers for
predicting drug response for that particular drug. It is useful to note
that running Elastic net regression on the same data twice or
swapping cell line replicates, does not necessarily lead to the same
results but robust candidates will generally reproduce (see
Appendix Fig. S9).

Basic correlation
The correlation coefficients were calculated between the response of
a given drug and the abundance of a given protein or p-site across
all cell lines. The Pearson correlations with and without the
imputation of missing values can be explored on ProteomicsDB
(https://www.proteomicsdb.org/sarquarium). For the follow-up
analysis, only drug-protein/p-site pairs with more than eight
pairwise complete observations were considered to avoid artificially
high/low correlations due to imputations.

Time-dependent (phospho)proteome analysis
The MQ evidence file was used as the primary input for a custom
data analysis pipeline (https://github.com/kusterlab/decryptM)
(Zecha et al, 2023). This pipeline relied on public libraries such
as numpy (version 1.20.2), pandas (version 1.2.4), scipy (version
1.6.3), statsmodels (version 0.12.2), matplotlib (version 3.4.2) and
seaborn (version 0.11.1) and was written in python (version 3.9.4).
Experimental information such as correspondence between time
points and TMT channel ([1:0 min, 3:5 min, 4:10 min, 5:15 min,
6:30 min, 7:90 min, 8:180 min, 9:360 min, 10:720, 11:1440 min]),
were stored in a toml-file, which can also be downloaded via
ProteomeXchange. First, all impurity-corrected TMT channels
were median-based normalised. Methionine oxidation was
removed from the modified sequence, and all duplicated modified
sequences were summed up. Next, ratios were calculated against the
time point zero. Finally, the time-dependent data points were
linearly interpolated and sorted by the absolute maximal response.
The numbers of up- or downregulated proteins/p-sites were
reported by filtering the relative responses with more than twofold
(relative ratio <0.5 or >2) at least at one time point. All curves are
provided in Dataset EV9 and plotted in pdf files (available via
ProteomeXchange). The protein groups file from the full proteome
time courses was transformed into the same format as the evidence
file and processed as described above. The only difference was that

one curve represented a protein group rather than a modified
peptide.

Data availability

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) (Deutsch et al, 2023) via the MassIVE
partner repository with the dataset identifier PXD039363 and
PXD046959.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-023-00004-7.
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Expanded View Figures

Figure EV1. Summary of data quality.

(A) Distributions of coefficient of variation (CV) of AUC (area under the curve) values determined from cell viability assays (n= 3) in response to 150 cancer drugs (each
circle represents one drug). The central band represents the median, while the hinges denote the first and third quartiles with whiskers extending up to 1.5 times the
interquartile range (IQR). (B) The number of quantified protein groups/peptides (left) and p-sites/phosphorylated peptides (right). (C) Unsupervised hierarchical
clustering of biological triplicates of four cell lines on protein (left) and phosphoprotein (right) level. Pearson correlation was shown. R2, R3: biological replicates.

Molecular Systems Biology Chien-Yun Lee et al

EV1 Molecular Systems Biology Volume 20 | Issue 1 | January 2024 | 28 – 55 © The Author(s)



Chien-Yun Lee et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology Volume 20 | Issue 1 | January 2024 | 28 – 55 EV2



Figure EV2. Summary of the phenotypic dose–response characteristics of all cell lines and all drugs.

(A) Viability curves of five selected PI3K inhibitors in A204 cells. Measurements were in technical triplicates and the error bars were shown in SD. (B) Distribution of
calculated EC50 values for all cell lines and all drugs. Numbers in brackets after each cell line name indicate the number of drugs that show effects larger than AUC>0.9
and have relative effect sizes of >50%. The red dotted line marks an EC50 value of 100 nM. The central band represents the median, while the hinges denote the first and
third quartiles with whiskers extending up to 1.5 times the IQR.
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Figure EV3. Integration of phenotypic drug response and proteomic activity scores.

(A) Phenotypic drug response of two sarcoma lines towards 11 PDGFRB inhibitors. (B) Distribution of activity scores of proteins in RD-ES (top panel) and RD cells (bottom
panel) showing that MAP2K1 and its downstream substrates MAPK1 and MAPK3 have different activities in the two cell lines. This translates into differences in phenotypic
response of the two cell lines to MAP2K inhibitors (right panel). (C) Ranked list of kinases either considering kinase abundance, substrate phosphorylation abundance or
computed activity in SK-ES-1 cells (left panel) showing that AURKA phosphorylation and activity is substantially higher than protein abundance. This translates into a
strong response of the cell lines to AURKA inhibitors (right panel). (D) Same as panel (C) but for DDR2 in A204 cells. (E) Left panel: list of kinases ranked by activity score
in SW684 cells. The asterisk denotes a kinase that is a target of the kinase inhibitor. Middle panel: relative sensitivity of SW684 cells to all drugs in the screen. Right 2
panels: CDK1 activity score and drug responses toward Dinaciclib among 17 sarcoma lines. (F) The heatmap summarises the Pearson correlations of proportions of cell
cycle clusters (from Kelly et al) and drug responses from 87 drugs (AUC <0.8).
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Figure EV4. Examples of correlation analysis of phenotypic drug sensitivity and protein or p-site abundance for drugs forming clusters in sparse multiblock partial
least-square regression (SMBPLSR) analysis.

(A) SPRY2 protein levels as a marker for sensitivity towards Binimetinib (left panel) and GIGYF2 S275 phosphorylation abundance as a sensitivity marker for Selumetinib
(right panel; both drugs are MAP2K inhibitors). (B–D) Same as panel (A) but for Rapamycin (mTOR inhibitor) and Barasertib (PARP inhibitor). (E) The response of two
Ewing sarcoma lines (in red and pink) towards AURK and PARP inhibitors is more pronounced than for all other cell lines. (F, G) Same as panel A but for Talazoparib
(PARP inhibitor). Again, the two Ewing sarcoma lines (in red and pink) are the most sensitive to this drug.
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Figure EV5. Examples for correlation analysis of phenotypic drug sensitivity and protein or p-site abundance from candidates identified by elastic net regression.

(A) Correlation of MAPK1 activity score and drug responses across sarcoma lines. (B–F) Correlation of protein and p-site abundance vs. drug responses across sarcoma
lines (B, D–F). Correlation of the abundance of CBL S669 and MAPK1 Y187 across sarcoma lines (C).
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Figure EV6. Time-resolved (phospho)proteomic analysis of G401 cells in response to Infigratinib.

(A) Experimental workflow and number of protein and phosphopeptide identifications/quantification. For each time point of drug treatment, a DMSO control was included
to account for abundance changes that are not due to the drug treatment. (B) Number of drug-induced protein expression changes (left panel) and phosphopeptide
abundance (at least twofold compared to zero min at different time points). (C) Heatmap of fold-changes of phosphopeptides from proteins involved in FGFR signalling
(annotations from Reactome) compared to DMSO at different time points after Infigratinib treatment. (D) Time course of p-sites of MAST2 and ULK2 proteins following
Infigratinib treatment. (E) Elastic net regression analysis using the phosphorylation site S1552 of TOP2B to identify drugs associated with this p-site. (F) TOP2B protein
level at different time points after Infigratinib treatment. (G) Distribution of AUC values from the phenotypic drug screen in G401 cells (139 kinase inhibitors shown).
Inhibitors targeting HER2 are highlighted in red. (H) Time course of EZH2 T487 following Infigratinib treatment.
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