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Abstract  
α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and 
accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson’s 
disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of 
Lewy bodies in the brain, the pathological hallmark of Parkinson’s disease. For decades, much 
attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than 
considering Parkinson’s disease as a systemic disease. Recent evidence demonstrates that, at least 
in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads 
to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-
to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur 
spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or 
pathological α-synuclein leakage from the central nervous system remains under investigation. In this 
review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of 
Parkinson’s disease. We also discuss the pathways by which α-synuclein pathology spreads from the 
body to the brain.
Key Words: aggregation; autonomic nervous system; barrier receptors; body fluid circulation; in 
situ generation; Parkinson’s disease; phosphorylation; propagation; synucleinopathies; α-synuclein; 
α-synuclein fibrils 

Introduction 
α-Synuclein: genes, protein characteristics, and protein behaviors
α-Synuclein (α-Syn) is encoded by the SNCA gene, which is located on the 
long arm of chromosome 4 (Mizuno et al., 1999). Mutations in the SNCA 
gene, including A53T, A30P, E46K, G51D, H50Q, duplication, triplication, 
multiplication, etc., result in their carriers being susceptible to α-Syn 
pathology, among which A53T carriers exhibit the strongest tendency to form 
α-Syn pathology in the brain (Ikeuchi et al., 2008; Byers et al., 2011; Porcari 
et al., 2015; Zhang et al., 2019; Boyer et al., 2020; Joshi et al., 2023; Lau et 
al., 2023). Compared to healthy controls, A53T carriers had lower levels of 
serum α-Syn, indicating dysregulated homeostasis of α-Syn caused by SNCA 
mutation (Emmanouilidou et al., 2020). A53T carriers also show early and 
persistent accumulation of phosphorylated α-Syn in the enteric nervous 
system as well as an altered profile of peripheral immune cells, suggesting the 
potential influence of SNCA mutation on peripheral α-Syn pathology (Bencsik 
et al., 2014; Idova et al., 2021).

α-Syn has three major domains: N-terminal domain [amino acid (a.a.) 1–60], 
central domain (a.a. 61–95), and C-terminal domain (a.a. 96–140) (Wang 
et al., 2019). The N-terminal domain is highly hydrophobic, containing a 
consensus sequence (a.a. sequence: KTKEGV) consisting of seven imperfect 
repeats (a.a. 7–87). Deletion of the 13 residues in the N-terminus accelerates 
the fibrillization of α-Syn (McGlinchey et al., 2021). The central domain 
is called the non-amyloid-β component, which is indispensable for α-Syn 
aggregation (Xu et al., 2016). The C-terminus is negatively charged and 
flexible, which resists aggregation of the protein (Kumari et al., 2021). In vitro 
and intracellular nuclear magnetic resonance evidence showed that in the 
normal cellular environment, α-Syn appears as monomeric and disordered 
(Theillet et al., 2016). Other evidence showed that α-Syn can also form 
helically folded tetramers that resist aggregation (Selkoe et al., 2014). The 
aggregation propensity of α-Syn is regulated by the extent of N-terminus 
exposure (Stephens et al., 2020).

As a synaptic protein, α-Syn regulates synaptic vesicle trafficking and 
neurotransmitter release. The exact physiological behaviors of α-Syn need 
to be further investigated (Burré et al., 2010; Butler et al., 2015). The 
accumulation and hyperphosphorylation of α-Syn play a pivotal role in the 
pathogenesis of Parkinson’s disease (PD) and other synucleinopathies. 

The already aggregated pathological α-Syn acts as “seeds” to template the 
aggregation of the remaining soluble counterparts. This abnormal behavior 
endows it with the characteristics of prion-like proteins (Fink, 2006; Peng et 
al., 2018; Lau et al., 2020). Aggregated α-Syn is also highly phosphorylated in 
the brain in PD. The phosphorylation of α-Syn is believed to be mediated by 
protein kinases including casein kinase 2 and death-associated protein kinase 
1. Other kinases may also contribute to the phosphorylation of α-Syn (Fujiwara 
et al., 2002; Su et al., 2019; Hu et al., 2020; Yu et al., 2022a). The processes 
of α-Syn aggregation and phosphorylation interact with each other in an 
ambiguous order of occurrence. Phosphorylation of α-Syn at Ser129, the most 
commonly observed phosphorylation site, promotes the formation of fibrils, 
which reversely act on the “soil” of α-Syn monomers and subsequently induce 
the formation of α-Syn-enriched insoluble inclusions in the cytoplasm of brain 
cells (Chen and Feany, 2005; Helwig et al., 2016; Froula et al., 2019; Leitão 
et al., 2021; Yang et al., 2021; Ghanem et al., 2022). Intracerebral injection 
of α-Syn preformed fibrils (α-Syn PFFs), an artificial analog of α-Syn fibrils, 
into wild-type mice gave rise to typical α-Syn pathology in the brain, along 
with loss of dopaminergic neurons, blood-brain barrier (BBB) dysfunction, 
glial activation, neuroinflammation, and PD-like behavioral deficits (Luk et 
al., 2012b; Kim et al., 2018; Yun et al., 2018; Bieri et al., 2019; Ding et al., 
2021; Butler et al., 2022). Pathological α-Syn can be detected not only in the 
brain but also in other peripheral organs, body fluids, and autonomic nerves, 
indicating the flowability and cell-to-cell transmission of pathological α-Syn 
(Mollenhauer et al., 2011; Wood, 2016; Iranzo et al., 2021; Sharabi et al., 
2021; Lobanova et al., 2022; Poggiolini et al., 2022).

Synucleinopathies
PD
Synucleinopathies cover a series of neurodegenerative diseases with 
α-Syn aggregates, including Lewy body (LB) diseases [including PD, PD with 
dementia (PDD), and dementia with LBs (DLB)] and multiple system atrophy 
(MSA) (Koga et al., 2021). PD is the second most common neurodegenerative 
disease and one of the most studied synucleinopathies, with growing 
prevalence, disability, and lethality over the years (Pagonabarraga et al., 
2015; Bloem et al., 2021). The pathological hallmark of PD is the loss of 
dopaminergic neurons in the substantia nigra (SN) and the formation of Lewy 
neurites and LBs consisting mainly of aggregated hyperphosphorylated α-Syn 
(Spillantini et al., 1997; Yang et al., 2022). Both genetic and environmental 
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factors contribute to the onset of PD (Goldsmith et al., 1997; Polymeropoulos 
et al., 1997; Menegon et al., 1998; Healy et al., 2008; Tysnes and Storstein, 
2017; Blauwendraat et al., 2020). To date, over 8.5 million people have been 
affected worldwide by PD (Rocca, 2018; GBD 2016 Traumatic Brain Injury and 
Spinal Cord Injury Collaborators, 2019; World Health Organization, 2022). 

PD is characterized by both motor and non-motor symptoms (Alarcón 
et al., 2023). The motor symptoms of PD include static tremor, rigidity, 
bradykinesia, and changes in posture and gait, resulting from hyperactivity 
of the acetylcholinergic system relative to deficiency of dopamine (de Bie et 
al., 1999; Tolosa et al., 2006; Li et al., 2012; Bai and Li, 2021; Nawaz et al., 
2022). The non-motor features of PD include sleep disorders, constipation, 
dysfunction of autonomic nerves, cognitive decline, and depression, which 
usually occur as atypical symptoms in early stages of PD (Cooper et al., 1992; 
Wakabayashi and Takahashi, 1997; Williams and Lees, 2005; Camilleri et al., 
2022; De Cock et al., 2022; Zhang et al., 2022b).

Other synucleinopathies
In addition to PD, LB diseases also include PDD and DLB. LB diseases share 
common neuropathological changes: Parkinsonism, cognitive decline, 
hallucinations, sleep disorders, and fluctuating attention (Donaghy et al., 
2018). PD pathology is more confined to the brainstem and limbic regions, 
while PDD and DLB pathology is more diffuse in the neocortex (Colosimo et al., 
2003). Huang et al. (2021) reported that in PDD, α-Syn predominantly causes 
dementia, while in DLB cases, the cooperation of α-Syn and amyloid β exert 
the effect. It has been reported that the α-Syn level in the cerebrospinal fluid 
(CSF) of DLB patients is higher than that of PDD patients (Bougea et al., 2018, 
2020). MSA has two major clinical subtypes, MSA-C (MSA with predominant 
cerebellar ataxia) and MSA-P (MSA with predominant Parkinsonism) (Kalia et 
al., 2015; Guo et al., 2023). MSA is characterized by the presence of α-Syn-
positive glial cytoplasmic inclusions (Papp and Lantos, 1994; Huang et al., 
2008; Teil et al., 2022). α-Syn-positive inclusions also invade neurons in MSA, 
resulting in neuronal cytoplasmic inclusions (Wakabayashi et al., 1998; Hass 
et al., 2021). The direct correlation between neuronal cytoplasmic inclusions 
and glial cytoplasmic inclusions remains largely unknown. The density of 
accumulative glial cytoplasmic inclusions is positively correlated with the 
clinical manifestations of MSA, typical of which is early and severe autonomic 
failure, presenting as urinary urge incontinence or retention and orthostatic 
hypotension (Ozawa et al., 2004; Swaminath et al., 2010; Squair et al., 2022). 
α-Syn aggregates were also found in the urinary system and correlated with 
urinary symptoms in MSA (Peelaerts et al., 2023).

‘Brain-first’ and ‘body-first’ transmission mode of α-Syn pathology
The accumulation and propagation patterns of α-Syn have been extensively 
studied in synucleinopathies. Pathological analysis performed by Braak 
et al. (2003) showed that α-Syn pathology initially occurs in the dorsal 
motor nucleus of the glossopharyngeal nerve and the anterior olfactory 
nucleus, medulla, pontine tegmentum, and midbrain, and finally invades 
the neocortex, leading to the hypothesis that α-Syn pathology may spread 
through the nervous system. In some patients with prodromal symptoms 
of PD, 123I-metaiodobenzylguanidine scintigraphy showed fully developed 
pathology in the peripheral autonomic nervous system and the locus 
coeruleus, equal to that in diagnosed PD cases. This peripheral dysfunction 
of the autonomic nervous system supports that PD pathology initiates from 
peripheral autonomic nerves and then spreads rostrally to the brainstem in 
some cases (Knudsen et al., 2018). In addition, using a multimodal imaging 
method, Jacob Horsager and colleagues further validated the existence of 
both subtypes of PD pathology: brain-first parkinsonism (pathology found 
sequentially in the amygdala, SN, locus coeruleus, dorsal motor nucleus, 
and heart) and body-first parkinsonism (pathology found sequentially in the 
intestine, heart, dorsal motor nucleus, locus coeruleus, and SN) (Horsager 
et al., 2020). However, the mechanisms underlying the propagation of α-Syn 
throughout the body remain under investigation. 

In this review, we aimed to summarize the existence and production of α-Syn 
pathology in the peripheral organs and their possible role as a source of 
peripheral and central α-Syn pathology. Furthermore, the propagation modes 
of peripheral α-Syn pathology, including the autonomic nerve pathway and 
body fluid pathway, and the fibrillization microenvironment in which these 
two pathways are conducive to the formation of peripheral α-Syn pathology 
were discussed to provide a peripheral and systemic view of α-Syn pathology 
as a supplement for recognizing the pathogenesis of synucleinopathies.

Search Strategy 
Articles published from the year 1992 to 2023 included in this narrative review 
were screened and selected from the PubMed database. The search keywords 
included, but were not limited to, Parkinson’s disease (and) α-synuclein (and) 
synucleinopathy; peripheral α-synuclein; α-synuclein (and) brain; α-synuclein 
(and) heart; α-synuclein (and) liver; α-synuclein (and) spleen; α-synuclein (and) 
spleen; α-synuclein (and) intestinal; α-synuclein (and) skin; α-synuclein (and) 
glands; α-synuclein (and) autonomic nerve; α-synuclein (and) blood. The 
articles that did not correspond to peripheral α-Syn pathology were excluded.

The Source of Peripheral α-Synuclein Pathology
Solid viscera and glands
α-Syn is abundantly expressed in the central nervous system (Agliardi et al., 
2022; Alam et al., 2022a; Pena-DIaz and Ventura, 2022). Thus, most previous 
studies have focused on α-Syn pathology in the brain (Luk et al., 2012a; Masuda-

Suzukake et al., 2013). Pathological α-Syn aggregates can also be detected in 
peripheral organs, such as the liver and heart, which have a high distribution 
density of nerves and blood vessels (Navarro-Otano et al., 2013; Javanshiri et 
al., 2022). Studies have indicated that the liver may help to clear pathological 
α-Syn, while overexpression of α-Syn in the perivascular nerve fiber lowered 
norepinephrin-induced contraction of the mouse aorta (Marrachelli et al., 
2010; Reyes et al., 2021). In these cases, pathological α-Syn may come from 
brain-originated α-Syn leakage across the BBB and blood-CSF circulation, which 
communicates with the autonomic nerve system, or possibly from in situ 
generation within these solid viscera. The neuroendocrine organs and glands 
are also affected by α-Syn pathology, which is related to symptoms such as 
depression in PD. For example, phosphorylated α-Syn can be detected in the 
posterior pituitary lobe and salivary glands (Homma et al., 2012). Therefore, a 
biopsy of the salivary glands may facilitate the early diagnosis of PD (Del Tredici 
et al., 2010; Gelpi et al., 2014; Vilas et al., 2016). According to these findings, the 
solid viscera and glands can be a potential source of peripheral α-Syn pathology.

Gastrointestinal tract
In the early stage of PD, intestinal inflammation induces dysregulation of 
the gut microbiota. Gut microbiota dysbiosis is closely related to motor 
phenotypes observed in PD (Dodiya et al., 2020). The gut microbiota and 
their secretions may directly promote the aggregation of α-Syn. It is possible 
that the formation of α-Syn pathology in the gut may alter the gut microbiota 
(Scheperjans et al., 2015; Sampson et al., 2016, 2020; Wang et al., 2021a). 
The intestinal bacteria Enterobacteriaceae can secrete the functional 
amyloid protein major fimbrial subunit of thin curled fimbriae, which is 
believed to contribute to α-Syn aggregation. Inhibiting the expression of 
the intestinal major fimbrial subunit of thin curled fimbriae alleviates α-Syn 
pathology (Sampson et al., 2020; Wang et al., 2021a). Antibiotic-treated mice 
display less α-Syn pathology; in contrast, recolonization of the microbiota 
will aggravate α-Syn pathology (Sampson et al., 2016). This is consistent 
with the observation that the density of Enterobacteriaceae is positively 
associated with the severity of postural instability and gait difficulty in PD 
patients (Scheperjans et al., 2015). α-Syn pathology observed in other parts 
of the digestive tract, such as the esophagus, is also correlated with disease 
progression (Tanei et al., 2021). Hits from these digestive tract pathological 
α-Syn and the pathological reactions it causes together contribute to 
prodromal enteric nervous system dysfunctions, which manifest clinically as 
hydrostomia, dysphagia, gastroparesis, and constipation (Manfredsson et al., 
2018). These observations support the presence of pathological α-Syn in the 
gastrointestinal tract and its potential in generating in situ α-Syn pathology.

Skin and mucosal tissues
PD is genetically associated with various skin diseases such as melanoma, 
sweating disorders, dermatophytosis, and seborrheic dermatitis (Dube 
et al., 2020; Scott et al., 2021). Antemortem skin biopsies conducted by 
Wang et al. (2020) revealed the existence of pathological α-Syn deposits 
with seeding activity within the skin among PD and other synucleinopathy 
cases. Phosphorylated, oligomeric, and aggregated forms of α-Syn are also 
commonly seen in various skin cells, such as cutaneous nerve cells, indicating 
communication of PD pathology between the cutaneous nerves and the 
central nervous system (Spehlmann, 1975; Doppler et al., 2017; Israel and 
Asch, 2020; Mazzetti et al., 2020; Marano et al., 2022; Nolano et al., 2022; 
Park et al., 2022). Therefore, detection of pathological α-Syn in the skin and 
olfactory mucosa is used to diagnose prodromal PD symptoms (Doppler et al., 
2022). These results revealed the possibility of pathological α-Syn in the skin 
and mucosal tissues as a source of peripheral synucleinopathy.

Transmission Pathways of α-Synuclein Pathology 
from Peripheral Organs to the Brain
The autonomic nerve pathway
Pathological α-Syn accumulates in peripheral tissues many years before the 
appearance of motor symptoms in synucleinopathies (Palma et al., 2018; 
Yamada et al., 2020; Camacho et al., 2021; Van Den Berge et al., 2021). 
Braak et al. (2003) hypothesized that synucleinopathic lesions originate from 
the peripheral nervous system and spread via the autonomic nerves to the 
dorsal motor nucleus of the vagus nerve and to the cerebral cortex. Kim 
et al. (2019) injected α-Syn fibrils into the duodenal and pyloric muscularis 
layers, which are densely innervated by the vagus nerve, and detected α-Syn 
lesions in the brain. As expected, pathological changes were first found in 
the dorsal motor nucleus and then in the caudal portions of the hindbrain. 
Vagotomy of the autonomic nerve pathway almost completely blocked the 
propagation from the gastrointestinal tract to the brain (Kim et al., 2019; 
Chen et al., 2021). Similarly, pathological α-Syn is also enriched in the 
appendix, and appendectomy may delay PD onset (Killinger et al., 2018). 
The widespread distribution of α-Syn deposits in autonomic nerves and 
their upward communication with the central nervous system provide solid 
evidence supporting the hypothesis that α-Syn may initiate from peripheral 
tissues. However, considering that α-Syn pathology is predominant in the 
brain rather than in other tissues, peripheral α-Syn deposits may originate 
from central nervous system leakage rather than in situ generation. Under in 
vivo conditions, aggregated α-Syn in the brain may spread to the autonomic 
nerves, which is then transferred to autonomic nerve-enriched peripheral 
tissues via mechanisms including macromolecule transport, endocytosis, 
exocytosis, or neuroendocrine processes (Li et al., 2022). Pathological α-Syn 
may be further processed in the peripheral organ environment or retained 
in situ for a long time, thus accounting for nonmotor autonomic symptoms, 
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including hydrostomia, dysphagia, gastroparesis, and constipation (Barboza et 
al., 2015). Conversely, peripheral pathological α-Syn also crosses the BBB and 
is transported to the central nervous system, becoming part of the sources 
leading to central α-Syn pathology. This dual transmission forms a vicious 
circle between central and peripheral α-Syn pathology (Arotcarena et al., 
2020).

The body fluid circulation pathway
The autonomic nerve pathway that pathological α-Syn relies on to propagate 
between the central nervous system and enteric nervous system could result 
in PD being considered as a systematic disease. However, the autonomic 
nervous system is not the only pathway that contributes to the flowability of 
pathological α-Syn. Early in 2006, El-Agnaf et al. (2006) validated the existence 
of pathological α-Syn in the CSF. High levels of α-Syn in the CSF are associated 
with PD symptoms and progression (Mollenhauer et al., 2013; Wurster et 
al., 2022; Coutinho et al., 2023). In addition to the CSF, pathological α-Syn 
has also been detected in other bodily fluids, including the saliva, lymph, 
and blood (Sergeyeva et al., 2011; Kluge et al., 2022; Luan et al., 2022). For 
instance, plasma α-Syn levels are also reported to be related to some signs 
of PD (Malec-Litwinowicz et al., 2018). Similar to the autonomic nervous 
system pathway, the circulation of intracellular bodily fluids, including the 
plasma, CSF, interstitial fluids, and lymph, also results in the transmission of 
pathological α-Syn between the brain and the peripheral organs (Kim et al., 
2012; Matsui and Matsui, 2017; Bartl et al., 2022).

α-Syn expression in the blood is most abundant in red blood cells (Liu et 
al., 2021). Erythrocytic α-Syn is expressed at both the mRNA and protein 
levels throughout the lifetime of red blood cells; therefore,  α-Syn possibly 
influences the hemopoietic system (Nakai et al., 2007). It has been reported 
that erythrocytic α-Syn levels are linked to the occurrence of constipation, a 
common autonomic symptom of PD (Martínez-Rodríguez and Rey-Buitrago, 
2020). In addition, the level of hemoglobin-binding α-Syn is elevated in 
patients with α-Syn pathology, which is also reported to be related to some 
sympathetic symptoms observed in PD (Umehara et al., 2020; Zhang et 
al., 2022a). In the brain parenchyma, α-Syn is located on the presynaptic 
membrane, showing high proximity in spatial position with membrane lipid 
rafts, which may participate in its transmission among brain cells (Perissinotto 
et al., 2020); in contrast, α-Syn in the blood binds to lipoproteins, thus 
influencing lipid transport (Emamzadeh and Allsop, 2017; Sinclair et al., 2021).

Phosphorylation is a widely studied post-translational modification of α-Syn 
that promotes α-Syn aggregation. The levels of phosphorylated α-Syn both 
inside red blood cells and on the erythrocytic membranes of patients with PD 
are much higher than those of healthy controls (Tian et al., 2019). Moreover, 
the level of oligomeric α-Syn in erythrocytes was increased in the early stage 
of PD (Liu et al., 2022). There is evidence that higher erythrocytic oligomeric 
α-Syn levels predict accelerated disease progression (Yu et al., 2022b). These 
blood-oriented phosphorylated α-Syn proteins resist digestion by protein 
kinase K, similar to α-Syn inclusions extracted from the brain, and are capable 
of binding phospholipids and plasma proteins (Abd-Elhadi et al., 2015; Iyer 
et al., 2016). In addition to being transported by plasma proteins, these 
pathological phosphorylated α-Syn proteins may also be transmitted from the 
blood to the brain by erythrocytic extracellular vesicles via membrane fusion 
with the BBB (Matsumoto et al., 2017). Additionally, phosphorylation is not 
the only post-translational modification found in erythrocytic α-Syn; it has 
been reported that the lysine residues in erythrocytic α-Syn can be modified 
by acetylation, glycation, ubiquitination, SUMOylation, and even nitration 
and acylation, similar to that found in the brain of PD patients. In conclusion, 
this data supports that erythrocytic α-Syn may play a role in the peripheral 
formation and propagation of synucleinopathies (Amagai et al., 2023).

On the one hand, the abovementioned erythrocytic normal and pathological 
α-Syn may originate from the leakage of brain-oriented pathological α-Syn 
through the BBB or blood-CSF circulation. Many experiments have validated 
this brain-to-blood propagation. When radio-labeled α-Syn fibrils are injected 
into certain brain regions or directly into the lateral ventricle, they can be 
detected in the CSF, peripheral blood, and even in some peripheral tissues 
(Sui et al., 2014). On the other hand, from the peripheral perspective, other 
peripheral administration routes of α-Syn PFFs, including oral, intranasal, 
intraperitoneal, and intramuscular administration, as well as tail vein injection, 
can also lead to brain α-Syn pathology similar to that induced by intracerebral 
injection of α-Syn PFFs, proving the existence of α-Syn propagation between 
the blood and brain through the circulation of bodily fluids (Ayers et al., 2017; 
Earls et al., 2019; Macdonald et al., 2021; Masuda-Suzukake et al., 2021; Awa 
et al., 2022).

Multiple Factors Mediate the Propagation of 
Peripheral α-Synuclein Pathology to the Brain 
BBB receptors
The BBB is the main barrier and the most pivotal structural basis blocking 
the entry of peripheral pathological α-Syn into the brain. The BBB is altered 
in the brain of PD patients, which results from hits of pathological α-Syn 
(Dohgu et al., 2019; Tsunemi et al., 2020; Xia et al., 2021; Huang et al., 
2022a). Brain microvascular endothelial cells, astrocytes, and pericytes are 
the main components of the BBB and blood-CSF barrier (Campisi et al., 2018). 
Peripheral pathological α-Syn is most likely transported across the BBB via 
interaction with receptors on these cells and extracellular vesicles. These 
receptors can be divided into three categories according to their affinity 

to pathological α-Syn: transporters mediating α-Syn transmission by direct 
binding, facilitators regulating vesicle trafficking of pathological α-Syn, and 
receptors affecting BBB permeability conducive to α-Syn propagation (Table 
1; Calderón-Garcidueñas et al., 2008; Kanekiyo et al., 2011; Jangula and 
Murphy, 2013; Chen et al., 2015; Mao et al., 2016; Masaracchia et al., 2018; 
Phillips et al., 2018; Bae and Lee, 2020; Rauch et al., 2020; Emmenegger 
et al., 2021; Gasca-Salas et al., 2021; Gu et al., 2021; Kim et al., 2021; 
Pediaditakis et al., 2021; Streubel-Gallasch et al., 2021; Wang et al., 2021b, 
c; Zhang et al., 2021, 2023a, c; Alam et al., 2022b; Chen et al., 2022; Feng et 
al., 2022; Huang et al., 2022a; Lan et al., 2022; Prieto Huarcaya et al., 2022; 
Roshanbin et al., 2022; Ruan et al., 2022; Salman et al., 2022; Shin et al., 
2022; Vellingiri et al., 2022). Direct binding was found between α-Syn fibrils 
and lymphocyte-activation gene 3, as well as amyloid precursor-like protein 
1, which are widely expressed in blood, immune, and endothelial cells, thus 
mediating the transmission of α-Syn fibrils (Mao et al., 2016; Zhang et al., 
2021). The second category includes astrocytic vascular endothelial growth 
factor A (VEGFA), low-density lipoprotein receptor-related protein 1, Ras-
related in brain 7 (Rab7), and leucine-rich repeat kinase 2 (LRRK2), which 
are reported to regulate vesicle trafficking of pathological α-Syn. Blocking 
astrocyte VEGFA signaling in the in vitro BBB model effectively protects the 
barrier against the harmful effects of oligomeric α-Syn, while dysregulation of 
Rab7 signaling and LRRK2 signaling causes abortive clearance of pathological 
α-Syn, leading to α-Syn accumulation and propagation (Bae and Lee, 2020; 
Wang et al., 2021b; Alam et al., 2022b; Chen et al., 2022; Lan et al., 2022). 
When treating in vitro models of the BBB with α-Syn fibrils, a series of targets, 
including lipoprotein receptor-related protein 1 and LRRK2, have been proven 
to undergo alterations (Pediaditakis et al., 2021). Physical and environmental 
hits, such as ultrasound, air pollution, heavy metals, and a ketogenic diet, 
and chemical factors, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 
lipopolysaccharide, cerebrolysin, and tissue plasminogen activator, are also 
reported to affect other BBB receptors, such as aquaporin 4, thus enhancing 
BBB permeability and contributing to the entry of pathological α-Syn into the 
brain (Calderón-Garcidueñas et al., 2008; Jangula and Murphy, 2013; Chen 
et al., 2015; Phillips et al., 2018; Gasca-Salas et al., 2021; Wang et al., 2021c; 
Feng et al., 2022; Ruan et al., 2022; Salman et al., 2022; Vellingiri et al., 2022).

However, it is controversial whether these interactions between pathological 
α-Syn and the receptors can actually aggravate the α-Syn pathology 
(Emmenegger et al., 2021; Gu et al., 2021). Often, these receptors have 
poor selectivity for α-Syn monomers, oligomers, and fibrils, as well as other 
aggregated proteins (Rauch et al., 2020). Even when confronted with the 
same protein fibrils, these receptors exhibit distinct binding affinities. α-Syn 
fibrils with post-translational modifications, such as phosphorylation at 
Ser129, are believed to have a higher bonding affinity with lymphocyte-
activation gene 3 than pure fibrils (Zhang et al., 2023a). Except for poor 
selectivity, the widespread distribution and functional diversity of these 
receptors also limits their weight in regulating α-Syn propagation. For 
instance, lipoprotein receptor-related protein 1 is expressed on various cell 
types, including neurons, astrocytes, microglia, macrophages, fibroblasts, 
and smooth muscle cells, and cooperates with other endocytosis-related 
receptors, such as heparin sulfate proteoglycan, regulating cell-to-cell 
propagation of not only pathological α-Syn, but also pathological proteins 
typical of Alzheimer’s disease (Kanekiyo et al., 2011). Likewise, in addition to 
promoting transmission, the LRRK2 and Rab7 pathways are also responsible 
for normal phagocytosis and clearance of pathological α-Syn (Masaracchia 
et al., 2018; Streubel-Gallasch et al., 2021). When peripheral pathological 
α-Syn is attached to a BBB receptor, clearance via lysosomal degradation and 
autophagy may occur first before it can enter the exocytosis pathway and 
then be transmitted among brain cells. It can be speculated that there is a 
receptor-mediated balance among endo- and exocytosis, and the clearance 
and propagation of pathological proteins, the disturbance of which ultimately 
leads to successful propagation of α-Syn pathology from the periphery to 
the central nervous system (Volpicelli-Daley et al., 2011; Rodrigues et al., 
2022). Therefore, there is an urgent need to identify the key receptors with 
specificity that mediate the spreading of pathological α-Syn.

Properties of α-Syn fibrils
The main forms in which pathological α-Syn exists in PD brains are α-Syn 
oligomers, fibrils, and ribbons (Peelaerts et al., 2015; Rodriguez et al., 
2015). The highly aggregated form, α-Syn ribbons, has the strongest seeding 
activity, while the oligomer and fibril are prone to cause cell toxicity and 
cell-to-cell transmission, respectively (Mahul-Mellier et al., 2015; Uemura 
et al., 2023). In different synucleinopathies, aggregated α-Syn possesses 
different properties. Both insoluble and soluble fractions of α-Syn-enriched 
brain extracts derived from MSA patients can induce the accumulation of 
normal α-Syn, while only insoluble fractions derived from patients with 
PD retain this seeding ability (Yamasaki et al., 2019; Van der Perren et al., 
2020). Phosphorylation at Ser129 of α-Syn is another point distinguishing PD 
from other synucleinopathies (Sonustun et al., 2022). Approximately 90% 
of α-Syn in LBs in PD is hyperphosphorylated. Ubiquitination, acetylation, 
nitrification, palmitoylation, etc. also occupy a minority of modifications of 
α-Syn, influencing the properties of α-Syn fibrils (Sevcsik et al., 2011; Kunadt 
et al., 2015; Rott et al., 2017; Ho et al., 2023; Zhang et al., 2023b). Among 
these, phosphorylation of serine, ubiquitination, nitrification, glycation, etc. 
are believed to promote α-Syn aggregation and propagation (Table 2; Nonaka 
et al., 2005; Kim et al., 2006; Danielson et al., 2009; Lee et al., 2009; Waxman 
et al., 2010; Liu et al., 2011; Padmaraju et al., 2011; Izawa et al., 2012; Binolfi 
et al., 2016; Arawaka et al., 2017; Vicente Miranda et al., 2017; Zhang et 
al., 2017a, b; Wen et al., 2018; Barinova et al., 2019; Chavarría et al., 2019; 
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Table 1 ｜ BBB receptors interacting with α-Syn and α-Syn fibrils 

Receptor name Interaction type with α-Syn Effect on α-Syn transportation

LAG3 Direct binding Transmission
APLP1
TLR2 Direct interaction
LRP1 Indirect interaction Vesicle trafficking, 

BBB permeabilityChanged gene expression by α-Syn 
monomer

HSPG Indirect interaction, synergies with 
LRP1

Vesicle trafficking

Rab7 Indirect interaction
VEGFA
LRRK2 Indirect interaction

Changed gene expression by α-Syn 
monomer

IGF1R Indirect interaction Molecular shuttle
TfR
NEK BBB permeality
AQP4
Nurr1
M6PR
LRP2 Changed gene expression by α-Syn 

monomer
BBB function

ABCB1
CLDN4 Changed gene expression by α-Syn 

fibril
BBB function

CLDN9
CLDN1
SLC2A6
SLC16A6
GJA4

Data were from studies Calderón-Garcidueñas et al., 2008; Kanekiyo et al., 2011; Jangula 
and Murphy, 2013; Chen et al., 2015; Mao et al., 2016; Masaracchia et al., 2018; Phillips 
et al., 2018; Bae and Lee, 2020; Rauch et al., 2020; Emmenegger et al., 2021; Gasca-
Salas et al., 2021; Gu et al., 2021; Kim et al., 2021; Pediaditakis et al., 2021; Streubel-
Gallasch et al., 2021; Wang et al., 2021b, c; Zhang et al., 2021, 2023a, c; Alam et al., 
2022b; Chen et al., 2022; Feng et al., 2022; Huang et al., 2022a; Lan et al., 2022; Prieto 
Huarcaya et al., 2022; Roshanbin et al., 2022; Ruan et al., 2022; Salman et al., 2022; 
Shin et al., 2022; Vellingiri et al., 2022. ABCB1: Adenosine triphosphate-binding cassette 
subfamily B member 1; APLP1: amyloid precursor-like protein 1; AQP4: aquaporin-4; 
CLDN1: claudin-1; CLDN4: claudin-4; CLDN9: claudin-9; GJA4: gap junction protein alpha 4; 
SLC2A6: facilitated glucose transporter member 6; HSPG: heparan sulfate proteoglycan; 
IGF1R: insulin like growth factor 1 receptor; LRRK2: leucine-rich repeat kinase 2; LRP1: 
low-density lipoprotein receptor-related protein 1; LRP2: low-density lipoprotein 
receptor-related protein 2; LAG3: lymphocyte activation gene-3; M6PR: mannose-6-
phosphate receptor; SLC16A6: monocarboxylate transporter 6; NEK: NimA related 
kinase; Nurr1: nuclear receptor-related factor 1; Rab7: Ras-related in brain 7; TLR2: Toll-
like receptor 2; TfR: transferrin receptor-1; VEGFA: vascular endothelial growth factor A; 
α-Syn: α-synuclein.

Table 2 ｜ Posttranslational modifications that affect α-Syn properties

Modification Sites Modification effects

Phosphorylation Ser129 Promoting α-Syn aggregation
Ser87
Tyr39
Tyr136
Tyr125 Suppressing α-Syn aggregation

O-GlcNAcylation Thr72 Suppressing α-Syn aggregation
Ser87

Ubiquitination Lys6 Promoting α-Syn aggregation
Lys10
Lys12

Nitrification Tyr125 Promoting α-Syn aggregation
Tyr133
Tyr136
Tyr39

Glycation Not applicable Promoting α-Syn aggregation
Arginylation Glu83 Suppressing α-Syn aggregation
Acetylation Not applicable Postponing α-Syn aggregation
SUMOylation Not applicable Suppressing α-Syn aggregation
Nitroalkylation Not applicable Suppressing α-Syn aggregation
Adenylylation Not applicable Suppressing α-Syn aggregation
N-homocysteinylation (chemical 
modification)

Lys80 Promoting α-Syn aggregation

Pyroglutamate (pGlu)79 (chemical 
modification)

Gln79 Promoting α-Syn aggregation

Glyceraldehyde-3-phosphate 
(chemical modification)

Not applicable Preventing α-Syn aggregation

4-Hydroxy-2-nonenal (chemical 
modification)

His50 Promoting α-Syn aggregation

Dicarbonyl compounds (chemical 
modification)

Not applicable Suppressing α-Syn aggregation

Tyrosine hydroxylase (chemical 
modification)

Tyr136 Promoting α-Syn aggregation

Docosahexaenoic acid (chemical 
modification)

Not applicable Promoting α-Syn aggregation

Asparagine endopeptidase 
(proteolysis)

Asn103 Promoting α-Syn aggregation

Data were from studies Nonaka et al., 2005; Kim et al., 2006; Danielson et al., 2009; Lee 
et al., 2009; Waxman et al., 2010; Liu et al., 2011; Padmaraju et al., 2011; Izawa et al., 
2012; Binolfi et al., 2016; Arawaka et al., 2017; Vicente Miranda et al., 2017; Zhang et 
al., 2017a, b; Wen et al., 2018; Barinova et al., 2019; Chavarría et al., 2019; Sanyal et al., 
2019; Semenyuk et al., 2019; Zhao et al., 2020; Andersen et al., 2021; Dhakal et al., 2021; 
Hartlage-Rübsamen et al., 2021; Bell et al., 2022; Farzadfard et al., 2022; Jin et al., 2022; 
Kam et al., 2022; Panigrahi et al., 2023; Zhou et al., 2023. α-Syn: α-Synuclein.

Sanyal et al., 2019; Semenyuk et al., 2019; Zhao et al., 2020; Andersen et al., 
2021; Dhakal et al., 2021; Hartlage-Rübsamen et al., 2021; Bell et al., 2022; 
Farzadfard et al., 2022; Jin et al., 2022; Kam et al., 2022; Panigrahi et al., 
2023; Zhou et al., 2023). α-Syn can also be modified by other proteins, lipids, 
and small molecular compounds, which enhance or suppress its propagation 
or seeding activity (Masaracchia et al., 2018; Kim et al., 2021; Streubel-
Gallasch et al., 2021). For example, asparagine endopeptidase cleaves α-Syn 
at N103, generating the α-Syn (1–103) fragment, which forms aggregates with 
higher pathogenicity, suggesting that fragmentation of α-Syn influences the 
properties of fibrils (Zhang et al., 2017b). Furthermore, chemical substances, 
such as homocysteine derivatives, can also modify α-Syn on the K80 residue, 
thus forming more toxic fibrils with higher seeding and propagation activity 
(Zhou et al., 2023). Most of these modified α-Syn proteins are more resistant 
to digestion by proteinases and are more likely to undergo fibrillation and 
aggregation; therefore, they are less easily engulfed and degraded by their 
host cells. In addition, they are more prone to undergo neuron–neuron, glia–
neuron, and peripheral cell-brain cell propagation, forming the spreading 
mechanism of pathological α-Syn among the central nervous system and from 
the peripheral tissues to the central nervous system (Pluvinage et al., 2019; 
Yuan et al., 2022).

Microenvironment promotes the formation of peripheral α-Syn pathology
The ag gregat ion  and propagat ion  of  α-Syn  requi res  a  spec i f i c 
microenvironment. Thus, we propose that there is a fibril l ization 
microenvironment (FME) composed of pathological α-Syn, the peripheral 
immune system, the erythrocytic intracellular environment, the autonomic 
nerve system, soluble and insoluble cytokines, ionic concentration, pH, 
temperature, hemodynamics, and the BBB (Figure 1). These elements 
together contribute to the focal enrichment of pathological α-Syn, isolating 
it from the liquid phase of the intracellular fluid and irreversibly forming 

agglutinative fibrils and ribbons (Huang et al., 2022b). For instance, 
dysfunction of ionic homeostasis, disturbance of BBB receptors, acidic pH, 
and dysregulation of phosphatases promote the formation and cell-to-cell 
transmission of α-Syn pathology (Bhak et al., 2014; Li et al., 2020, 2023a; 
Yu et al., 2021). From the peripheral view, the peripheral blood provides an 
immunity-centered FME that promotes the generation and propagation of 
peripheral pathological α-Syn. In addition, the adjacency in location between 
the blood and the autonomic nerves further enhances the effect of FME on 
the transmissibility of α-Syn pathology throughout the body.

Once pathological α-Syn is agglutinated in erythrocytes (possibly taking 
several decades before the observation of clinical manifestations caused 
by acute ischemic stroke, thoracic trauma, infection, etc.), it can activate 
and recruit peripheral immune cells, including B lymphocytes for 
antibody production and T lymphocytes for antigen presentation prior to 
neurodegeneration, in line with the clinical detection of α-Syn antibodies 
in the peripheral blood of PD patients (Xiao et al., 2014; Sulzer et al., 2017; 
Harms et al., 2018; Tulisiak et al., 2019; Wu et al., 2019; Karikari et al., 2022; 
Ruf et al., 2022; Li et al., 2023b). Although α-Syn antibodies help to eliminate 
pathological α-Syn in the peripheral blood and the activated autophagic and 
lysosomal proteins within these immune cells also promote an active process 
of proteasomal degradation of pathological α-Syn, the reaction of pathological 
α-Syn and its antibody still activates the complement system (Papagiannakis 
et al., 2015; Miki et al., 2018; Gregersen et al., 2021). Thorough activation of 
the peripheral immune and inflammatory system can directly promote the 
propagation of α-Syn pathology (Kim et al., 2022). Simultaneously, penetration 
of active T lymphocytes across the BBB into the brain has also been proven to 
cause neuroinflammation and aggravation of central α-Syn pathology, again 
proving the influence of the immune environment on α-Syn transmission 
(Williams et al., 2021). This in vivo regulation between the peripheral 
immune system and α-Syn pathology provides an explanation for the failure 
of antibody therapy in treating PD, owing to the counterforce of the immune 
system on promoting α-Syn pathology, indicating an immunity-centered FME 
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Figure 1 ｜ Diagram of FME and the propagation mode of pathological α-Syn from 
peripheral organs to the brain. 
The FME is composed of pathological α-Syn, the peripheral immune system, members 
of the BBB, the erythrocytic intracellular environment, and soluble and insoluble 
cytokines. (a) The erythrocytic intracellular environment contributes to the generation 
of pathological α-Syn. (b) Erythrocytic pathological α-Syn recruits B cells. (c) B cells 
secrete autoantibodies against α-Syn. (d) Autoantibodies of α-Syn promote clearance 
of erythrocytic pathological α-Syn. (e) A combination of α-Syn and its antibody leads to 
activation of the complement system. (f) Members of the complement system reversely 
aggravate α-Syn pathology. (g) T cells discriminate peptides of α-Syn and perform 
antigen presentation. (h) Recruiting of B and T cells and vesicle trafficking of pathological 
α-Syn give rise to infiltration of inflammatory factors and peripheral pathological α-Syn 
across the BBB. (i–l) Penetration of peripheral immune cells and peripheral pathological 
α-Syn causes central synucleinopathy and neuroinflammation. Created with Adobe 
Illustrator. BBB: Blood-brain barrier; CNS: central nervous system; FME: fibrillization 
microenvironment; RBC: red blood cell; α-Syn: α-synuclein.

contributing to the formation and propagation of peripheral α-Syn pathology 
(Lang et al., 2022; Pagano et al., 2022).

Conclusion
The production of pathological α-Syn in peripheral organs, the crosstalk 
between the body fluid and autonomic nervous system, the participation of 
BBB receptors, and the peripheral FME that affects α-Syn properties support 
peripheral organs as the source of PD pathology and even the initiation 
of α-Syn pathology. The existence of reverse diffusion from the blood to 
brain, from peripheral to central tissues, and the circulatory aggravation 
of α-Syn pathology on either side of the BBB urges us to understand the 
pathogenesis of PD from a systemic and global perspective. Therapies 
facilitating the clearance of peripheral α-Syn and inhibiting the forward and 
reverse transportation of peripheral and central α-Syn, early intervention of 
peripheral FME, and prevention of the circulatory spread of α-Syn pathology 
may alleviate the propagation of PD pathology. To date, the autonomic 
nerve pathway has been the most recognized route that mediates the 
transmission of pathological α-Syn from the periphery to the brain. Although 
emerging evidence has proven the existence of the body fluid pathway, 
there is a lack of feasibility in cutting off the body fluid connection as in the 
autonomic nerve pathway, bringing difficulties to further studies centering 
on humoral transmission of α-Syn pathology. In this review, we discussed 
the autonomic nerve pathway and body fluid circulation pathway as two 
separate mechanisms; however, we have not extended α-Syn pathology 
transmission to the crosstalk between the abovementioned two pathways. 
Whether pathological α-Syn in the bodily fluids can directly reach the brain 
parenchyma relying on body fluid circulation, or first interact with peripheral 
autonomic nerves and then indirectly reach the brain parenchyma needs 
further investigation.
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