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Abstract

Cerebral palsy (CP) is the most common cause of physical disability during childhood,

occurring at a rate of 2.1 per 1000 live births. Early diagnosis is key to improving functional

outcomes for children with CP. The General Movements (GMs) Assessment has high pre-

dictive validity for the detection of CP and is routinely used in high-risk infants but only 50%

of infants with CP have overt risk factors when they are born. The implementation of CP

screening programs represents an important endeavour, but feasibility is limited by access

to trained GMs assessors. To facilitate progress towards this goal, we report a deep-learn-

ing framework for automating the GMs Assessment. We acquired 503 videos captured by

parents and caregivers at home of infants aged between 12- and 18-weeks term-corrected

age using a dedicated smartphone app. Using a deep learning algorithm, we automatically

labelled and tracked 18 key body points in each video. We designed a custom pipeline to

adjust for camera movement and infant size and trained a second machine learning algo-

rithm to predict GMs classification from body point movement. Our automated body point

labelling approach achieved human-level accuracy (mean ± SD error of 3.7 ± 5.2% of infant

length) compared to gold-standard human annotation. Using body point tracking data, our

prediction model achieved a cross-validated area under the curve (mean ± S.D.) of 0.80 ±
0.08 in unseen test data for predicting expert GMs classification with a sensitivity of 76% ±
15% for abnormal GMs and a negative predictive value of 94% ± 3%. This work highlights

the potential for automated GMs screening programs to detect abnormal movements in

infants as early as three months term-corrected age using digital technologies.

Author summary

Cerebral palsy (CP) is the most common cause of physical disability in childhood and is a

permanent lifelong condition. To improve functional outcomes, early diagnosis is crucial

to facilitate early intervention. The General Movements (GMs) Assessment has high pre-

dictive validity for the detection of CP and is routinely used in high-risk infants. However,
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only 50% of infants with CP have overt risk factors at birth. There is a need for CP screen-

ing programs, but access to trained assessors limits their feasibility. To solve this problem,

we developed a deep learning method for automating GMs assessment from smart phone

videos. We acquired 503 videos captured at home by parents of infants aged 12 to 18

weeks term corrected. Our deep learning algorithm tracked 18 key body points on the

infant throughout the video with human-level labelling accuracy. A custom data process-

ing pipeline was designed to account for infant size, camera movements and different

video formats. A second machine learning algorithm was trained to predict GMs classifi-

cation and validated in a cohort of preterm (high-risk) and term-born infants. Our work

highlights how digital technologies can be used to automate GMs assessment, allowing

infants to be screened for abnormal movements as early as three months old at home.

Introduction

Cerebral palsy (CP) refers to a group of disorders that affect motor development, movement

and posture and are attributed to non-progressive disturbances or injuries to the developing

brain before 1 year of age [1]. Cerebral palsy is the most common cause of physical disability

during childhood, occurring at a rate of 2.1 per 1000 live births worldwide [2]. While those

born preterm or with low birthweight are at greater risk of having CP, almost 50% of infants

with CP are born at term without overt risk factors [3,4].

Early diagnosis is essential to improve clinical and functional outcomes of children with CP

[5]. Detecting abnormal motor development within the first 6 months after birth allows tar-

geted interventions, coincident with periods of rapid neurodevelopmental plasticity and mus-

culoskeletal development. It has been shown that early intervention improves children’s motor

and cognitive development as well parental wellbeing [5,6]. However, the average age of CP

diagnosis is 19 months [3], and only 21% of infants with CP are diagnosed before 6 months

[3,7], thus many infants miss a crucial window for early intervention.

The General Movements (GMs) Assessment can accurately predict those at highest risk of

CP within the first few months after birth [8,9]. General movements are spontaneous move-

ments involving the whole body with a changing sequence of arm, legs neck, and trunk move-

ments [10]. Between nine and twenty weeks of age, spontaneous movements are characterised

by continuous small movements with moderate speed and variable acceleration, termed ‘fidg-

ety’ movements [11]. These ‘fidgety movements’ are typically recognised using a trained asses-

sor’s gestalt perception, while the infant is lying awake on their back with no direct handling

or interaction [11]. This assessment is best completed from video recordings of the infant and

has high predictive validity for neurodevelopmental outcomes and excellent inter-rater reli-

ability [9,12,13]. The GMs assessment when used during the ‘fidgety period’ has the potential

to be an important screening tool in the diagnosis of CP.

The specialized training required by GMs assessors means that many primary care services

and hospitals do not offer routine GMs assessment, which limits the widespread adoption of

GMs assessment as a screening tool [14]. The ability to assess GMs using video recordings has

raised the potential to improve equitable healthcare access for those living in remote regions

or in low-resource settings. Recently, the development of smartphone apps that allow the stan-

dardised recording of video by an infant’s primary carers using a hand-held device, have been

shown to improve access to GMs assessment and allow identification of high-risk infants out-

side of clinical settings [12,13,15,16]. Automated scoring of GMs from video can provide a
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mechanism to overcome these bottlenecks and enable high-throughput assessment for screen-

ing programs.

Recent advantages in computer vision and deep learning have led to the emergence of pose

estimation techniques, a class of algorithms designed to estimate the spatial location of a set of

body points from videos or pictures, and track movements with high accuracy [17–20]. Pose

estimation tools do not require any specialised equipment, movement sensors or markers, and

can be readily applied to track movement in new videos once trained. Several open-source

pose estimation tools, pre-trained on large databases of human movement, are available for

direct application to new datasets [17,21–23]. However, the standard implementation of such

algorithms has been found to perform poorly in videos of infants, likely due to significant dif-

ferences in body segment size and scale [24,25]. Thus, fine-tuning or re-training of pose esti-

mation models is required to accommodate the anatomical proportions of infants [24,26,27].

Further, videos acquired outside of controlled, clinical or research laboratory settings may

vary significantly in terms of camera angle, length, resolution, and distance to subject, requir-

ing additional processing steps before analysis [24,28].

Several recent studies have yielded promising results predicting motor outcomes in infants

using movement tracking data from pose estimation tools [24,28–32]. Using a semi-automated

approach with manual key point annotation of clinical videos, Ihlen et al. demonstrated com-

puter-based movement assessments can perform comparably with observation-based GMs in

predicting CP (area-under-ROC-curve, (AUC) = 0.87) [31]. Using videos acquired in a spe-

cialised laboratory setting and an infant-adapted OpenPose model, Chambers et al. employed

a Bayesian model of joint kinematics to identify infants at high-risk for motor impairment

[24]. Recent applications of deep learning models to classify movement data have also reported

good performance, with one example detecting the presence or absence of fidgety movements

in 5-second video clips with 88% accuracy in a laboratory setting (n = 45 infants) [30]. In a

large, multisite study of high-risk infants (15% with CP) Groos et al. reported a positive predic-

tive value of 68% (negative predictive value of 95%) for later CP diagnosis using an ensemble

of Graph Convolutional Networks (GCN) applied to clinical videos [29]. Similarly, Nguyen-

Thai et al. applied GCNs to OpenPose tracking data to create a spatiotemporal model of infant

joint movement in 235 smartphone videos, reporting an average AUC of 0.81 for the predic-

tion of abnormal fidgety movements [28].

Despite initial progress, significant challenges remain for the application and uptake of this

technology. Many studies to-date have been limited by small sample size (typically < 100

infants) and few have been conducted outside of clinical or laboratory settings [32–34]. In this

study, using a large cohort of infant movement videos (n = 503) captured remotely via a dedi-

cated smart phone app, we test the efficacy of automatic pose estimation and movement classi-

fication using deep learning methods to predict GMs classification. In addition, we design a

custom processing pipeline to accommodate video capture from hand-held devices, identify

factors that adversely affect automatic body point labelling accuracy and locate salient move-

ment features that predict abnormal outcomes in individuals.

Results

Automated body point labelling with human-level accuracy

We acquired 503 3-minute videos from 341 infants at 12 to 18 weeks’ term-corrected age using

Baby Moves, a dedicated smartphone app [12]. To fine-tune a pose estimation model for infant

videos, we created a training dataset using a diverse selection of n = 500 frames from 100 vid-

eos (5 frames per video, see Methods). We manually annotated eighteen body points (crown,

eyes, chin, shoulders, elbows, wrists, hips, knees, heels and toes; Figure A in S1 Appendix)
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and trained a fully-customisable pose estimation model, Deep Lab Cut (DLC) [35] to automat-

ically detect each body point (Fig 1). Body point labelling using the trained DLC model was

highly accurate (Fig 1E) achieving a mean difference between manual and automatic annota-

tions of 3.7% of infant length (SD: 5.2). DLC performance was comparable to inter-rater reli-

ability (IRR) of two annotators (average ± SD: 3.6 ± 3.7% of infant length; Fig 1E). Labelling

accuracy varied moderately across body points, with the highest accuracy for the eyes

(average ± SD: manual/auto 1.6 ± 1.3% infant length; IRR 1.0 ± 0.5% infant length) and lowest

accuracy for the hips (average ± SD: manual/auto 6.3 ± 5.1% infant length; IRR 7.2 ± 3.1%

infant length) (Figure B, Table A in S1 Appendix). There was no significant difference in

labelling performance between video resolutions (Table B in S1 Appendix).

During labelling, the DLC model assigned each point a measure of prediction confidence.

After removing points labelled with low confidence (see Methods), we found that the percent-

age of frames labelled on average was 92% (SD: 16%). The percentage of frames in which each

point was confidently labelled was lowest for the wrists (average ± SD Left: 81 ± 21%, Right

78 ± 24%) and heels (average ± SD: Left: 69 ± 24%, Right 77 ± 20%) (Figure C in S1 Appen-

dix), due in part to these body points being occluded by other body parts at instances through-

out the video and exhibiting a greater range of movement. We conducted a sensitivity analysis

to determine potential factors that related to labelling failures (see Methods). We found that

the amount of clothing worn by the infant moderately affected model performance with outfits

that covered the hands and feet adversely affecting labelling of the extremities (F = 5.180,

p = 0.006; Table C in S1 Appendix). As a quality control step, only videos where on average at

least 70% of body points per frame were confidently labelled were included for further analysis.

After quality control, our final cohort comprised n = 484 videos from 327 unique infants.

Predicting GMs from video data

As videos were not acquired in standardised clinical or experimental settings, positional data

were pre-processed using a custom pipeline to account for different video acquisition parame-

ters and potential camera movements relative to the subject, prior to classification. This con-

sisted of body point mislabelling removal, gap filling, adjusting for camera movement, scaling

to unit length based on infant size and framerate normalisation (see Methods). After pre-pro-

cessing, each video was represented as a 46 × 4500 feature-by-frame matrix comprising stan-

dardized x and y coordinates of each body point and 2D joint angles of 10 joints in each frame.

Fidgety general movements may occur at different timepoints throughout the video occur-

ring with different frequencies and movements, therefore we aimed to identify short periods

where discriminant movements were present using a sliding window approach (Fig 2). We

trained a convolutional neural network to predict GMs classification based on short instances

(approximately 5-seconds) of positional data over time (Fig 2C), calculating video-level pre-

dictions by integrating over all clips for a given video. The classification model was trained to

predict an outcome of either normal or abnormal GMs. For the purposes of our model infant

videos classified as either abnormal or absent GMs were combined to form the abnormal

category.

Averaged over 25 cross-validation repeats (70% train/15% validation/15% test), the trained

model achieved an AUC (mean ± S.D.) of 0.795 ± 0.080 in unseen test data (Fig 2D) and bal-

anced accuracy of 0.703 ± 0.083 (Fig 2E). For abnormal/absent GMs, the positive predictive

value (PPV) was 0.277 ± 0.077 and the negative predictive value (NPV) was 0.941 ± 0.035. Sen-

sitivity and specificity were 0.755 ± 0.150 and 0.651 ± 0.078, respectively (Fig 2E). Each video

was included in the held-out test set on average 4 (SD: 2) times across the 25 folds (Figure D

in S1 Appendix).
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Fig 1. Data acquisition and analysis pipeline. A. Acquisition of 503 videos using the dedicated Baby Moves smartphone app

[12]. B. 100 videos were selected for DLC training, stratified by age at video acquisition, sex and GMs classification. C. From each

of the 100 training videos, five frames were selected for manual labelling using a k-means clustering algorithm (see Methods; total

DLC training dataset: 500 frames). D. The trained DLC model was used to label all frames in all videos. This constitutes the full

dataset with body point positional data used for GMs classification E. Labelling accuracy was evaluated in a subset of 50 frames
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Performance was consistent over a range of model parameters, including batch size, learn-

ing rate and weight regularisation (Figure E in S1 Appendix). The inclusion of video meta-

data, age at video acquisition and birth cohort (extremely preterm or term-born infants)

improved model performance significantly (Figure E in S1 Appendix), compared with classi-

fication using video data alone (AUC = 0.749 ± 0.077). Taking advantage of multiple model

instances trained across different cross-validation repeats, we found that GMs prediction were

generally consistent across different data splits in the cross validation (Fig 2D–2E, Fig 3).

We compared performance with an alternative baseline model: an l2-regularised logistic

regression applied to a set of timeseries features extracted from each video [36]. The baseline

model achieved an AUC of 0.706 ± 0.098 (0.604 ± 0.106 without video meta-data). A nonlin-

ear, kernelized logistic regression model achieved cross-validated AUC = 0.720 ± 0.100.

Examining spatial and temporal model attention during prediction

To identify potential features that were important to model prediction, we computed spatio-

temporal saliency maps for each video [37], (Fig 4). This value highlights features (for a given

body point in a single video frame) where changes in input would elicit the largest change in

model prediction and can be used as a measure of model sensitivity to input data [37,38]. An

example saliency map is shown for a single subject in Fig 4. Saliency varied across the length of

the video, corresponding with variations in model attention (white line, Fig 4). Clips with high

saliency, relative to all subjects in the test set, are highlighted with yellow bars on the input fea-

ture timeseries, illustrating model attention to periods of different length spread throughout

the video. Averaging total saliency across all clips for each body point reveals higher model

sensitivity to position of the lower body points (Fig 4 middle), including movement of the

knee and ankle joints.

Similar patterns of model saliency were observed across all participants. A map of group

average feature saliency (averaged across clips, participants and cross-validation repeats) is

shown in Fig 5A. Model saliency was highest in the lower body. This pattern was consistent

across cross-validation repeats (Figure F in S1 Appendix) and between normal and abnor-

mal/absent GMs prediction (Figure G in S1 Appendix).

To further characterise features to which the model prediction was sensitive, we compared

timeseries data in clips with high (90th percentile) and low (10th percentile) total saliency (Fig

5B–5C). The number of high saliency clips did not differ between normal (mean ± S.D. =

55.21 ± 33.93) and abnormal/absent (51.74 ± 35.56) GMs videos (Figure H in S1 Appendix).

For each clip, we calculated the mean (absolute) displacement of body points from the average

position, as well as the standard deviation of displacements over frames. We found that, high

saliency clips were characterised by body point positions closer to the average body position

(Fig 5B) and by a lower standard deviation of joint displacements over time compared to clips

with low saliency (Fig 5C).

GMs prediction and development at 2 years

We compared our model GMs predictions with participant’s motor, cognitive and language

outcomes at 2-years corrected age as assessed by the Bayley Scales of Infant and Toddler Devel-

opment-3rd edition (Bayley-III) (Fig 6; Figure I, Figure J in S1 Appendix). We found strong

evidence for differences in 2-year motor composite scores between infants with different

not included in the training dataset. The difference between manual and automatic labelling (Manual/auto) and inter-rater

reliability (IRR) of two annotators was calculated and expressed as percentage of infant length.

https://doi.org/10.1371/journal.pdig.0000432.g001
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Fig 2. GMs prediction from movement data. A. Framewise positional data from DLC labelled videos were preprocessed to derive a set

of feature timeseries (46 features × 4500 frames) per video. B. The classification model was trained on 128-frame clips for the full

timeseries (top). Data augmentation steps (magnitude scaling and time warping; bottom middle and right) were applied to each clip

during training. For each augmentation method, dashed grey lines indicate timeseries position prior to the augmentation step. C. Model

architecture. 1D convolutional layers were combined with an attention module to classify GMs. Causal convolutions (inset) were applied
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predicted GMs classifications (normal vs abnormal\absent) when metadata (age at acquisition

and birth cohort; extremely preterm or term-born infants) were included in the model, mean

difference 10.70 (95%CI = [6.77, 14.62], t(255) = 5.368, p<0.001). These differences were

diminished when using movement data alone, mean difference 1.74 (95%CI = [-2.52, 5.99], t

(255) = 0.805, p = 0.421) (Fig 6A). There was also strong evidence for differences in 2-year

cognition and language composite scores between predicted GMs classifications (Figure I,

Table D in S1 Appendix).

Discussion

Using deep learning applied to smart phone videos, we tracked infant movements at 12–18

weeks term-corrected age, predicting GMs classification outside of a controlled clinical setting.

Our paper illustrates the potential for early automated detection of abnormal infant move-

ments implemented through at-home video acquisition.

to account for the temporal structure of the data. D. Receiver-operator curves (ROC) for each of the 25 cross-validation repeats. The

mean curve is overlaid in teal. E. Model performance statistics for each of the cross-validation repeats. Mean and standard deviation

across repeats are overlaid in black. AUC = area under the ROC; NPV = negative predictive value; PPV = positive predictive value.

https://doi.org/10.1371/journal.pdig.0000432.g002

Fig 3. Variation in GMs prediction values from 25-fold cross validation. Prediction values reported when infant movement

included in held out test set, ordered by median prediction value. Top (orange) infant videos scored as abnormal or absent GMs

by expert rater, n = 73 infant videos. Bottom (blue) infant videos scored as normal GMs by expert rater, n = 396 infant videos.

Boxes with horizontal line represent interquartile range and median respectively, error bars represent 95% confidence interval

and dots represent outliers. Dashed line at 0.5 represents cut-off value for classifier between prediction categories.

https://doi.org/10.1371/journal.pdig.0000432.g003
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Our best performing model for predicting expert GMs classification, was a deep learning

model, consisting of 1D convolutions and an attention module. Our model achieved an AUC

0.80 (SD: 0.08), comparable to results obtained from Ihlen et al. and Groos et al. which directly

predicted CP in cohorts of high-risk infants using video recordings from stationary cameras in

Fig 4. Example of subject specific model attention to input features. Feature timeseries (top) and saliency map (bottom) for a single, correctly-classified

video from an infant with normal GMs. Timeseries are shown for each feature (n = 46), across the length of the video. Yellow bars indicate clips with high

model attention (75th percentile across all subjects). Saliency was calculated for each feature in each frame and summed over frames within each clip (n = 547

clips). The map has been upsampled and smoothed to match the length of the timeseries (frames = 4500). Lighter colours indicate higher saliency (arbitrary

unit). Clip attention derived from the attention module (upsampled and smoothed) is overlaid in white. Average saliency across the full video is shown for each

body point (middle) and joint angle (right). Lighter colours and larger size reflect higher saliency. The model prediction is shown top right, where 0 indicates

normal GMs prediction.

https://doi.org/10.1371/journal.pdig.0000432.g004

Fig 5. Body point saliency for all infants. a. Average saliency for all videos, lighter colours and larger size reflect higher saliency. b. Left, mean absolute

distances between each body point and their respective average position during clips of high (solid line, filled) and low (dashed line) saliency. Density plots

show the distribution of displacements for high and low clips over all videos and cross-validation repeats. Right, median difference between displacement in

high and low clips. c. Left, standard deviation (std) of displacements from the average position in high and low saliency clips, over all videos and cross-

validation repeats. Right, median difference in standard deviation distributions.

https://doi.org/10.1371/journal.pdig.0000432.g005
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clinical settings [29,31]. Our model outperformed alternative baseline models and was robust

over various hyperparameter settings. We demonstrated that including participant metadata is

crucial to improving model predictions, highlighting the increased risk for abnormal move-

ments in preterm born individuals [8]. Of the 41 infants with abnormal GMs as scored by

trained assessors 35 (85%) were from preterm infants and 6 (15%) from term-born infants.

We found that including metadata (birth cohort and age) improved model performance from

an AUC = 0.70 based on movement data alone to AUC = 0.80. Notably, classifying on birth

cohort alone would result in an AUC of 0.69, quantifying the added value of the movement

data.

Our predicted GMs were associated with poorer neurodevelopmental outcome at 2 years of

age. We found that this effect was largely dependent on preterm birth, although infants with

predicted abnormal GMs scored lower on average (mean difference 10.70) regardless of birth

cohort. However, most participants had Bayley’s-III motor scores within published normative

ranges (>85) [39]. The association between preterm birth and poor neurodevelopmental out-

comes is well established [8,13] and this finding reflects the relatively lower predictive validity

of GMs ratings, and therefore model predictions, for motor and cognitive outcomes at 2 years.

GMs classification is a strong predictor of CP [8,9]. We used abnormal or absent GMs as a

surrogate measure for CP risk. Abnormal or absent fidgety GMs during this developmental

window are both associated with neurodevelopmental impairment [8,13]. Combining abnor-

mal and absent groups, who may have different movement signatures, into a single group may

Fig 6. GMs prediction and motor development at 2 years. A. Bayley-III motor outcome stratified by GMs prediction (n = 252 infant

videos) and model variants trained using video movement and metadata (both = age at acquisition and birth cohort) and movement data

alone (none). Blue indicates GMs prediction = 0 (normal) and orange indicates GMs prediction = 1 (abnormal/absent) for all graphs. *
Indicates strong evidence for differences between GMs classification prediction from independent two-sample t-test. B. Top, density

function of motor outcome by birth cohort and GMs prediction. Bottom, Peak of density function. Term infants are represented by

dashed lines and preterm infants by solid lines.

https://doi.org/10.1371/journal.pdig.0000432.g006
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have affected model performance but numbers were too small to further split the groups

(n = 40 and 36 respectively). For the term-born infants that had absent GMs at the 12-week

timepoint (n = 11) most of these normalised by 14-weeks (n = 8), which may have impacted

our GMs prediction model’s performance. An area for future research is training classification

models that directly predict CP or other neurodevelopmental impairment [29,31]. We utilised

a flexible framework for our GMs classifier, so that this is possible in the future. This was pre-

cluded in our dataset due to the reduced number of infants with two-year follow-up (252/371)

and only 6 of those having a diagnosis of CP, while other neurodevelopmental impairments

were not reported. To progress this area of research, access to large data sets that are diverse in

both high- and low-risk infants and neurodevelopmental outcomes are required. Due to the

identifiable nature of infant videos the sharing of data to form these large data sets is often

challenging. While we are unable to provide the videos open access to progress research in this

area, we have made our trained DLC infant pose-estimation model and GMs classification

model openly available.

To track infant movement, we used a pose-estimation algorithm, Deep Lab Cut [35,40],

which has the advantage of being customisable across species, age and features of interest

using a minimal training dataset [40]. Our model achieved human-level labelling accuracy of

body parts with a mean difference of 3.7% of infant length (SD: 5.2). Due to the non-controlled

settings in which videos were acquired, we performed a sensitivity analysis, identifying video

features that could affect labelling accuracy in at-home video recordings. Body point labelling

was robust to background and video lighting but moderately affected by clothing worn by the

infant, specifically clothing covering hands or feet. Use of at home video recordings introduced

additional data processing challenges, including camera movement relative to the infant and

different video formats (frame rate, resolution, distance from infant). To accommodate this,

we developed a novel framework, that is versatile and supports videos taken outside a stan-

dardised clinical setting. There is increasing awareness around the inherent bias in pretrained

pose-estimation models, with a bias towards adult males with lighter skin tone [41]. The data-

set we used to train our pose-estimation model had an even distribution of sex however we

lacked diversity in skin tone, in part due to study location in Melbourne Australia and the

inclusion of only families that could speak English [12]. This is certainly an area where our

pose-estimation model could be improved in the future. We choose to label the wrist and heel

and big toe only in our pose-estimation model in part due to frame rate and resolution of our

videos. However, more detailed anatomical annotations for the hands and feet maybe benefi-

cial in recognition of the role those body parts play in identification of fidgety movement dur-

ing GMs assessment [11].

We used 5 second clips to train our model, this allowed us to identify periods of movement

that were informative to the model prediction. By analysing model saliency, we were able to

extract information about which movement features were attended to by the model, discrimi-

nating between abnormal and normal GMs. We identified that lower limb movements con-

tributed more to the classifier’s output, with higher saliency attributed to video clips where

infant position was closer to the average position, ignoring periods where the infant has

moved significantly from the supine position (i.e.: out-of-frame movement, rolling). Other

studies have used high-resolution video annotations identifying periods of abnormal move-

ment within videos [31]. While this approach is likely to improve automated movement iden-

tification it requires a significant amount of manual annotation and labelling that would be

difficult to achieve in larger cohorts.

Several recent studies have yielded promising results predicting motor outcomes in infants.

However, to date these studies have been limited by small sample size (typically < 100 infants),

only include high-risk infants and few have been conducted outside of clinical or laboratory

PLOS DIGITAL HEALTH Automatic identification of abnormal infant movements

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000432 February 22, 2024 11 / 21

https://doi.org/10.1371/journal.pdig.0000432


settings [32]. A strength of our study is the inclusion of both extremely preterm and term born

infants within our dataset. It is essential that these automated approaches are validated on both

preterm and term-born infants if they are to be implemented in population level screening

programs. Our study offers an automated approach to assess GMs, that is capable of accom-

modating videos recording outside the clinical setting. Our work highlights the potential for

automated approaches to screen for CP at a population level, which would enable increased

access to early interventions for these children.

Materials and methods

Study design

This is a retrospective secondary analysis of data acquired as part of the prospective, multi-cen-

tre, population-based cohort study Baby Moves [12]. This study developed and evaluated a

deep learning algorithm to track infant movement and predict GMs classification from infant

movement videos (Fig 1). Written informed consent was obtained from parent/caregivers of

infants prior to inclusion in the study. The study was approved by the Royal Children’s Hospi-

tal Ethics Committee (HREC35237). Full details of the study protocol can be found in Spittle

and colleagues [12].

Participant data

Videos were recorded using the Baby Moves smart phone app by the parent/caregiver on their

personal device between April 2016 and May 2017 [12]. The app prompted the parent/care-

giver to record and upload two movement videos, one at 12-weeks and the second at 14-weeks

term corrected age. Video upload was only possible in the app between 12-weeks and

17-weeks and 6 days term-corrected age. Videos were acquired from n = 155 (77 female

[50%]) extremely preterm infants (<28 weeks’ gestation) and 186 (91 female [49%]) term-

born infants, (Table E in S1 Appendix). In total, 503 videos from n = 341 infants aged between

12- and 18-weeks term corrected age were available. For a subset of n = 160 (75 preterm, 85

term), two videos were collected per infant during this period.

Video capture

To facilitate video recording outside of clinical or laboratory settings, the Baby Moves app pro-

vides detailed instructions and a dotted outline overlay to improve positioning of the infant in

the video frame [12]. Guidance was given to parents/caregivers to perform the video while the

infant was lying quietly and not fussing with minimal clothing, consisting of singlet and nappy

only. Subsequently, videos were securely uploaded to a REDCap database [42,43] at the Mur-

doch Children’s Research Institute for remote review. GMs were scored according to Prechtl’s

GMs Assessment [11] by two independent assessors that were unaware of participants’ neona-

tal history. General movements were classified as normal if fidgety GMs were intermittently or

continuously present, absent if fidgety GMs were not observed or sporadic, and abnormal if

fidgety GMs were exaggerated in speed and amplitude. If there was disagreement between the

two assessors, then a third experienced GMs trainer and assessor made the final decision. For

the purposes of automating the GMs Assessment, videos scored as either absent or abnormal

GMs were combined to form the abnormal group. Any videos rated as unscorable were not

evaluated in this study.

All videos were submitted in MP4 format. Due to differences in device model and settings,

three video resolutions were present in the dataset: 480 x 360 (n = 366 videos), 640 x 480 (13

videos) and 720 x 480 (126 videos) with a median frame rate of 30 frames per second (range:
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15 to 31). Each video was 3 minutes in length resulting in mean (SD) 5100 (497) frames per

video.

Automated body point labelling of smart phone videos

We trained a deep learning model using Deep Lab Cut, version 2.1 (DLC) [35] to label and

track key body points. To train the DLC model, we formed a training dataset consisting of a

subset of 100 videos from our dataset stratified for age, sex, birth cohort (preterm or term) and

video resolution. Only one video per infant was allowed in the training data set. For the train-

ing dataset, five frames from each video were manually labelled with 18 key body points:

crown, chin, eyes, shoulders, elbows, wrists, hips, knees, heels and big toes (Fig 1; Figure A in

S1 Appendix). Manual labelling was performed via the DLC graphical user interface. To

ensure diversity of movements in the 5 frames selected for labelling, we used a k-means clus-

tering algorithm implemented in DLC to select one frame from each of the five distinct clus-

ters within each video for labelling. We implemented a DLC model with a pre-trained ResNet-

50 backbone and trained for 1 million iterations on a NVIDIA TITAN Xp using a training/val-

idation fraction of 0.95/0.05.

Once trained, the DLC model was used to automatically label the 18 body points for all vid-

eos in the dataset. For each frame, the DLC model returned the x- and y-coordinates in pixels

of the body points relative to the corner of the video image and its prediction confidence. Body

points with a prediction confidence below 0.2 were removed as recommended by Mathis et al.

[35]. Labelling accuracy of the DLC model was evaluated on 50 frames, each from a different

video not included in the training dataset. This evaluation dataset was stratified for age, sex,

birth cohort (preterm or term) and video resolution to ensure diversity in images evaluated.

DLC body point labelling was evaluated using the difference between manual and predicted

labels for the evaluation dataset. To evaluate inter-rater reliability (IRR) for body point label-

ling a second human annotator repeated labelling on the same 50 frames. The difference

between labels for the two annotators were calculated. To compare differences across different

video resolutions body point labelling was expressed as a percentage of infant length (crown to

mid hip).

Additional metrics of DLC model performance included the number of unlabelled body

points per video. As videos were collected outside of a controlled clinical setting, we conducted

a sensitivity analysis to determine whether variability in certain factors across the individual

videos may influence model performance. Each video not included in the training dataset

(n = 403) was categorised by the following factors: Lighting (Dark/Okay/Bright), clothing

(Bodysuit/Nappy & singlet/Nappy only), skin tone (Light/Fair/Medium/Dark), infant in frame

entire video (Yes/No), background (Pattern/Solid Colour–Dark/Solid Colour–Light), extra

items in view (No/Another Child/Recorder’s feet/Toys/Other). We tested if model perfor-

mance was affected by the listed factors using a mixed model Analysis of Variance (ANOVA).

Pre-processing pipeline

Data pre-processing consisted of quality control, outlier removal, gap filling, adjustment for

camera movement, scaling and feature extraction (Fig 7).

Quality control

To ensure high-quality movement data from each video was available for further analysis, we

established a quality control measure based on body point labelling. Only videos in which

more than 70% of body points were labelled on average across all frames were used. This
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resulted in the exclusion of 21 videos from further analysis, resulting in a final dataset of 484

videos from 327 infants.

Outlier removal

Mislabelling of body points may occur with automated labelling therefore, we set-up a process

to remove these outliers on a frame-by-frame basis. This was done in a two-step process. First,

these body points were removed using an ellipse envelope centred in the centre of the torso

(mid-point of hips and shoulders). The ellipse was scaled relative to infant size, with unit

Fig 7. Preprocessing piepline. A. Quality control, videos with less than 70% of body points labelled on average were excluded from further analysis. B. Outlier

removal, outlier body points were removed (denoted by x) when outside of ellipical envelope for the whole body or each body point indiviudally. C. Gap filling

using linear interpolation for gaps less than 5 frames, or a multivariate imputer for gaps larger than 5 frames. D. Body points were rotated on a frame by frame

basis ensuring midline of body is aligned to the vertical. E. Body point position was scaled to unit length based on infant size, unit length distance crown to mid

hip. F. For each frame x- and y-coordiates and additional features consisting of joint angles from the left and right shoulder, elbow, hip, knee and ankle were

extracted.

https://doi.org/10.1371/journal.pdig.0000432.g007
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length set to distance between the infant’s crown and hip midpoint. The ellipse was scaled to 3

times unit length in the proximal to distal direction and two times unit length in the medial to

lateral direction. Body points lying outside of the ellipse were removed. Following this, a simi-

lar process was applied to each body point using an ellipse envelope centred at the body point’s

framewise median position. Each ellipse was again scaled by unit length with the proximal-dis-

tal and medial-lateral scaling set based on observed body point variance from the complete

dataset. Body point labels lying outside of their respective ellipses were removed.

Gap filling

Where gaps in body point data existed due to missing, removed, or occluded body point labels,

linear interpolation was used for gaps of five frames or less. For gaps greater than five frames

we used an iterative multivariate imputation [44], implemented in scikit-learn (v1.3.0) [45].

Adjusting for camera movement

As videos were recorded on hand-held devices, camera movement relative to the infant was

apparent during the three-minute video. To account for angular rotations, all points were

rotated on a frame-by-frame basis so the mid-line of the body (mid-shoulder to mid-hip), was

aligned to the vertical in each frame. In addition, body point position in each frame was nor-

malised to infant unit length, measured as distance from crown to mid-hip.

Framerate normalisation

All pre-processed movements data were normalised to the same length. Due to variation in

video frame rate, the number of frames in each 3-minute video varied. To account for this, all

videos were interpolated to 4500 timepoints in length or a framerate of 25 frames per second

using cubic 1D interpolation as needed.

Feature extraction

For each frame, we extracted each body point’s x, y position in addition to 10 joint angles (left

and right shoulders, elbows, hips, knees and ankles; in radians, resulting in p = 46 features per

frame (keypoints×{x, y}+joint angles).

Prediction of GMs from movement data

As abnormal GMs can occur at any point during each video, may last for different lengths of

time, and occur with different frequencies, we aimed to identify short periods of time where

abnormal movements were present in each video and use a sliding window approach to gener-

ate subject-level predictions (Fig 2). We trained a convolutional neural network to predict

GMs classification. During model training, each subject’s pre-processed timeseries data was

split into short clips of t = 128 frames in length (approximately 5 sec.) with stride = 8. In each

training epoch, we randomly sampled s = 1 clip per video, selecting more than one clip per

video per epoch did not offer an improvement in model performance and cost more memory

and computation (Figure E in S1 Appendix). Subject-level predictions were calculated by

integrating over all clips for a given video.

Model architecture

The model architecture is shown in Fig 2C. Each subject’s data is represented as a tensor

S2Rs×t×p where s is the number of sampled clips per video, t is the number of frames per clip

and p is the number of features per frame. We employ three 1D convolutions applied along the
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temporal dimension (filters = 64; kernel size = 3) with causal padding and ReLU activations.

After each convolutional layer, we applied batch normalisation (Fig 2C). Each convolution

was followed by max pooling along the temporal dimension with window size = 4 and stride = 4.

After the final convolution, features of each clip were concatenated across the remaining time-

steps to form feature matrix M2Rs×128 (Fig 2C). Clip features are then passed through a single

fully-connected layer (units = 64, ReLU). We applied dropout with a rate of 0.5 before and

after the connected layer. The convolutional neural network was implemented using Keras

with a TensorFlow backend [46].

To identify features that discriminate subjects with or without abnormal movements, we

passed each clip through a sigmoid attention module [47] (Fig 2C). In this context, clips with

feature vectors that discriminate between classes are given a larger weight. A clip level context

vector, u, is assigned to measure the importance of each clip to the final model output. First,

each clip, mc2R1×64, is passed though a single fully connected layer with weights and bias, W
and b, and a tanh activation to create clip level representation, uc:

uc ¼ tanhðWmc þ bÞ

The similarity between each clip’s representation and that of a context vector, u is calculated

and scaled:

ac ¼
1

1þ expð� uT
c uÞ

Where αc2[0,1] and represents the importance of each clip to the final model output. A

final representation is calculated though a weighted average of clip features:

v ¼
1

n

Xn

c¼1

acmc

Where v is a feature vector representing the sampled clips from each video. The context

vector, u, and the layer weights and biases are randomly initialised and jointly learned with

other model parameters during training. The context vector, u, can be considered a ‘signature’

that identifies a discriminative movement within a clip. The resulting weighted outputs form a

final feature vector, v. We apply a final dropout (0.5) to this vector and pass to a fully con-

nected layer with one unit and sigmoid activation to predict the class label of each subject.

We used binary cross entropy (BCE) as the loss function with Stochastic Gradient Descent

as the optimiser (Nesterov momentum = 0.9) [48]. As not all randomly sampled clips may con-

tain abnormal movement patterns during each training epoch, we employed label smoothing

of 0.1 to account for uncertainty in the assigned sample labels of each batch [49]. The learning

rate was set to 0.005, batch size was set to 8 and we added l2-regularisation of 0.005 to all weight

kernels. We trained for a maximum of 10000 epochs, evaluating loss in the validation set and

stopping training once validation loss had stopped improving for 100 epochs, retaining the

model with minimum loss for testing.

Data augmentation

Data augmentation is a common processing step in various image recognition and classifica-

tion tasks and provides additional protection against overfitting in small sample settings

[50,51]. We employed data augmentation methods for timeseries data including random mag-

nitude scaling and time warping [50] (Fig 2B). We used cubic splines to generate a series of

random, smooth sinusoidal curves (knots = 3–15; mean value = 1.0; sigma = 1.0). During
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training: i) the timeseries in each clip were multiplied with a randomly generated curve to

smoothly scale magnitude across the clip’s length and ii) time warping was applied by

smoothly distorting the time interval between points based on another randomly generated

curve, shifting the temporal position of adjacent points closer or further apart [50] (Fig 2B).

Model calibration and class imbalance

To account for the difference in class frequencies between normal and abnormal GMs (nor-

mal = 408 videos; abnormal/absent = 76 videos), we oversampled the minority class by a factor

of 5 during training. For each video in the training sample with an abnormal GMs classifica-

tion we sampled 5 sets of clips during each training epoch, resulting in approximately equal

number of training samples from each group.

While resampling methods can improve model performance in imbalanced datasets, they

can result in miscalibrated models due to the difference in class frequencies between the origi-

nal sample population and the oversampled training set [52,53]. We employed Platt scaling

[54] as a post-training method to calibrate model predictions. Model calibration was per-

formed by fitting a logistic regression over model predictions in the validation dataset, the

parameters of which are used to transform model outputs to calibrated probabilities at

inference.

Metadata

Age at video acquisition and birth cohort (extremely preterm or term-born) are both potential

confounders that can affect GMs classification [13]. To incorporate metadata into the model,

we applied an additional 1D convolution (filters = 4, kernel size = 1) to a feature vector of age

at video acquisition and categorical group membership (preterm or term-born). The outputs

were concatenated with the video features prior to the final layer for classification (Fig 2C).

Model evaluation

At inference, each test subject’s timeseries data were split into 547 overlapping clips (t = 128,

stride = 8) which were passed with associated metadata through the trained and calibrated

model to generate the final model output from the attention-weighted sum of all clips.

To evaluate model performance, we performed cross-validation by splitting the data into

three subsets: train (70%), validate (15%) and test (15%), ensuring that the proportion of infant

videos with abnormal GMs were similar across subsets. For infants with more than one video,

both videos were included in the same subset. Model performance was evaluated in the test set

using the area under the receiver operating curve (AUC), balanced accuracy (BA), specificity,

sensitivity and positive and negative predictive values (PPV; NPV). Cross-validation was

repeated 25 times, each with random splits of the dataset. Performance metrics in the test set

are reported as average values across the 25 cross-validation repeats. We explore the impact of

different parameter choices on model performance in the Supplemental Material (Figure E,

Figure G in S1 Appendix). To examine important model features, we calculated model

saliency for each test output using vanilla gradient maps [48].

Baseline model

We compared model performance to alternative models based on logistic regression. For each

video, we extracted a set of dynamical features previously shown to perform well in timeseries

classification tasks [36], resulting in p = 24 features per timeseries. We concatenated timeseries

features for each body point coordinate and joint angle along with associated meta data (age
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and birth cohort) into a single feature vector of length = 1106. Using this data, we trained an

l2-regularised logistic regression model to predict GMs classification. As with the convolu-

tional model, we performed 25 cross-validation repeats, splitting the data into 85% training

and 15% testing sets. Regularisation strength was set using a grid search (10−3–103) in a nested

5-fold cross-validation of the training data. To enable additional flexibility in the model, we

also implemented a nonlinear kernelised logistic regression using Nystroem kernel approxi-

mation [55]. The baseline models were implemented in scikit-learn [45] (1.0.2), timeseries fea-

tures were extracted using pycatch22 (0.4.2) [36].

GMs prediction and development at 2 years

Participants were followed up at 2-years’ corrected age and their development assessed using

the Bayley Scales of Infant and Toddler Development-3rd edition (Bayley-III) for motor, cogni-

tive and language domains. Bayley-III scores were available for 252/327 infants for motor and

cognitive domains and 232/327 infants for the language domain [13]. For infants with two vid-

eos, the video from the later time point was retained for comparison with Bayley-III domain

scores. Each video was assigned a single GMs prediction label based on the GMs prediction

label most frequently assigned during the 25-fold cross validation. This was done for each vari-

ant of model metadata inputs: movement data only (none), birth cohort, age at acquisition and

combined birth and age (both). For each model variant we compared 2-year outcomes

between GMs-prediction groups using an independent two sampled t-test (two-sided).

Supporting information

S1 Appendix. Supplementary methods and results related to article, Automated identifica-

tion of abnormal infant movements from smart phone videos.

(PDF)
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