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Abstract

Purpose of the review—Digital mental health interventions (DMHIs) are an effective and 

accessible means of addressing the unprecedented levels of mental illness worldwide. Currently, 

however, patient engagement with DMHIs in real-world settings is often insufficient to see clinical 

benefit. In order to realize the potential of DMHIs, there is a need to better understand what drives 

patient engagement.

Recent findings—We discuss takeaways from the existing literature related to patient 

engagement with DMHIs and highlight gaps to be addressed through further research. Findings 

suggest that engagement is influenced by patient-, intervention- and systems-level factors. At 

the patient-level, variables such as sex, education, personality traits, race, ethnicity, age and 

symptom severity appear to be associated with engagement. At the intervention-level, integrating 

human support, gamification, financial incentives and persuasive technology features may improve 

engagement. Finally, although systems-level factors have not been widely explored, the existing 

evidence suggests that achieving engagement will require addressing organizational and social 

barriers and drawing on the field of implementation science.

Summary—Future research clarifying the patient-, intervention- and systems-level factors that 

drive engagement will be essential. Additionally, to facilitate improved understanding of DMHI 

engagement, we propose the following: (a) widespread adoption of a minimum necessary 5-

element engagement reporting framework; (b) broader application of alternative clinical trial 

Conflicts of Interest
Jessica M. Lipschitz declares that she has no conflicts of interest.
Chelsea K. Pike declares that she has no conflicts of interest.
Timothy P. Hogan declares that he has no conflicts of interest.
Susan A. Murphy declares that she has no conflicts of interest.
Katherine E. Burdick declares that she has no conflicts of interest.

HHS Public Access
Author manuscript
Curr Treat Options Psychiatry. Author manuscript; available in PMC 2024 February 22.

Published in final edited form as:
Curr Treat Options Psychiatry. 2023 September ; 10(3): 119–135. doi:10.1007/s40501-023-00297-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



designs; and (c) directed efforts to build upon an initial parsimonious conceptual model of DMHI 

engagement.

Keywords

engagement; digital interventions; adherence; adoption; reporting guidelines; model of 
engagement.

Introduction

With mental health concerns reaching unprecedented prevalence (1, 2), there is urgent need 

for accessible, evidence-based psychiatric treatments. Digital mental health interventions 

(DMHIs) delivered via the internet and/or mobile apps offer a promising avenue for 

meeting this challenge. A number of reviews and meta-analyses have found that DMHIs 

are efficacious (3, 4). Additionally, they have the potential to remove many of the barriers 

that plague traditional psychiatric treatment (5–7). Most notably, DMHIs designed by 

professionals trained in evidence-based treatment can be much more widely available than 

treatment provided by individual clinicians at virtually no marginal cost. They also address 

other key issues with standard mental health treatment: they promote patient autonomy; they 

offer convenience (not requiring workday appointments or transportation); and they can be 

accessed at times when patients are most in need of support (which often do not align with 

when clinic appointments are scheduled).

Despite their promise, DMHIs have increasingly been demonstrated to have a major 

shortcoming: patient engagement with them is poor. When speaking about DMHI 

engagement, it is important to note that this concept refers to engagement in real-world 

conditions, such as when these interventions are implemented in routine care or commercial 

settings (e.g., sold via the Google Play or the Apple App Store). Engagement in efficacy 

trials, consisting of highly motivated users who seek out participation in a study and meet 

multiple eligibility criteria, is typically high, but does not reflect real-world conditions (8). 

This difference between engagement in more controlled efficacy trials and less controlled 

implementation settings is well illustrated in a study conducted by Gilbody et al. (9) 

in which two DMHIs (Beating the Blues and MoodGYM)—both with prior randomized 

controlled trials (RCTs) demonstrating strong efficacy (10, 11)—were implemented in 

routine care. Fewer than 20% of participants completed either of the assigned interventions. 

The issue of DMHI engagement is not specific to the interventions studied in Gilbody et al. 

(9). Indeed, studies using other DMHIs show similarly low rates of sustained engagement 

and intervention completion in real-world settings (12–16).

When discussing engagement, it is also important to note that some drop out from any 

treatment or technology is to be expected. After all, meta-analyses of psychotherapy suggest 

that around 20% of patients discontinue prematurely and these rates are even higher for 

treatment with psychotropic medication (17, 18). Similarly, average 30-day retention rates 

for mobile applications in general are under 6% (19). Even for exceptionally popular apps 

outside the healthcare domain, like Instagram and Twitter, 90-day retention rates are only 
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30–50% (20). It is important to note, however, that unlike standard consumer apps, DMHIs 

are clinical treatments where suboptimal engagement can have significant repercussions.

Thus, in the quest to understand DMHI engagement and to ascertain whether DMHIs are 

a viable solution to the unprecedented mental health concerns worldwide, several core 

questions emerge. First, at the patient-level, what characterizes patients who are likely 

to engage with these interventions? Second, at the intervention-level, what intervention 

components improve engagement? Third, at the systems-level, what aspects of the larger 

healthcare and social climate promote engagement? And fourth, in the context of research, 

how can we build an evidence base that allows us to address this problem?

Definitions of Engagement

Before examining these questions, it is important to clarify what is meant by “engagement.” 

Within psychiatry, the most common definitions of engagement relate to behaviors and 

this is where our discussion will focus. We offer an operational definition of behavioral 

engagement as use of the core components of a DMHI. Common metrics of behavioral 

engagement include uptake (i.e., downloading and using the intervention at least once), 

sustained use (i.e., remaining active in using the intervention for some period of time 

after downloading), and adherence/completion (i.e., using the intervention at the intended 

frequency for the intended duration). For DMHIs, these behavioral engagement metrics can 

readily be tracked on system backends, making engagement with DMHIs easier to gauge 

than engagement with other treatments such as psychotropic medication. This proposed 

operational definition of engagement is supported by significant research suggesting a 

relationship between behavioral engagement (i.e., usage) and clinical outcomes (21). It is 

important to note that engagement requirements differ across DMHIs. There is not one set 

amount of use that defines completion. Instead, this is defined in the context of each specific 

DMHI.

Engagement can also be defined more broadly. Many human-computer interaction 

researchers define engagement as capturing and maintaining the attention and interest of 

users and their temporal, emotional and cognitive investment with an intervention (22). 

Nahum-Shani et al. (23) discuss engagement with digital content (i.e., using the DMHI), 

engagement with notifications from the DMHI (i.e., reading and thinking about them), 

and engagement with non-digital tasks (e.g., behavioral activation exercises recommended 

by the DMHI) all as part of the multi-dimensional construct of engagement. Definitions 

like these are conceptually important as they capture the full and true meaning of DMHI 

engagement. They are also more difficult to reliably measure in the context of intervention 

trials and real-world implementations. Metrics such as number of clicks or active time 

spent in the DMHI may be reasonable proxies for cognitive engagement, but are far from 

exact. Some studies ask users for a self-report of their emotional reactions to content or 

whether they acted upon the intervention recommendations as a way to measure these 

more nuanced yet critical aspects of engagement. Additionally, self-report measures such as 

the User Engagement Scale (24, 25), Digital Working Alliance Inventory (26, 27) and the 

Unified Theory of Acceptance and Use of Technology scale (28) are validated options for 

measuring aspects of this broader definition of engagement. While such measures can be 
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useful, backend measures of behavioral engagement are still typically most available and 

most feasible in the context of real-world implementation, where engagement is most likely 

to be a concern.

The literature on engagement also frequently discusses two other metrics. The first is study 

completion, which refers to completion of post-treatment assessments, not completion of the 

key components of the DMHI. While study completion could be argued to serve as a proxy 

of DMHI engagement, its applicability is limited to research contexts. It is primarily useful 

as a metric for calculating sample size requirements for efficacy and effectiveness trials, not 

as an indication of DMHI engagement. The second is patient interest in certain interventions 

or aspects of interventions. Understanding patient interests and differences in interest across 

different demographic subgroups is useful for designing effective interventions. However, it 

does not necessarily extend to actual in situ engagement with those interventions.

Patient-Level Engagement Considerations

Across medicine, differential rates of treatment engagement by patient population have 

been identified and vary by healthcare domain. A handful of demographic variables have 

consistently been associated with higher engagement with DMHIs. Specifically, women 

show higher levels of DMHI engagement than men (29–34). Similarly, several studies have 

found that higher education levels predict higher engagement (32, 35–37). Finally, a number 

of studies suggest that certain personality traits, specifically neuroticism, agreeableness and 

introversion, are associated with greater interest in using DMHIs (38, 39). Out of these, 

however, only neuroticism has been found to be associated greater usage (40).

There remains some ambiguity on the extent to which other patient-level variables like 

race and ethnicity, age and symptom severity are related to engagement. With regard to 

race and ethnicity, some studies suggest that DMHI interest and intervention usage is 

greater among racial and ethnic minorities (41–43). Yet, other studies indicate that white 

patients show higher engagement (29). This is an important area for future inquiry because 

racial and ethnic minority patients tend to engage with traditional outpatient mental health 

services less frequently (44). If interest and usage are high in these populations, a potential 

opportunity exists to focus on reaching them with evidence-based services using DMHIs. 

These conflicting findings raise important questions about the extent to which tailoring 

DMHIs for specific racial or ethnic groups may improve engagement.

Similarly, studies have drawn different conclusions about the relationship between age 

and engagement in DMHIs. Some studies have found that younger patients express 

higher interest or show more behavioral engagement, whereas other studies have shown 

the opposite (29, 43, 45–47). These seemingly conflicting findings could potentially 

be attributed to differences in age breakdowns across studies and a potential nonlinear 

relationship. That is, perhaps age at either extreme (e.g., younger than 30 and older than 50) 

is a risk factor for disengagement (48).

Finally, a number of studies suggest that individuals with more severe symptoms report 

greater interest in DMHIs (47, 49, 50). However, when it comes to actual usage, some 
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studies suggest higher usage among those with more severe symptoms (29, 50), whereas 

other studies suggest that more severe symptoms are associated with lower usage (34, 51, 

52). It is possible that some of these conflicting findings could be attributed to difficulty 

drawing conclusions across studies of patients with different diagnoses. For example, some 

research suggests that patients with depression, which is marked by lack of motivation, 

show lower engagement than patients with anxiety disorders (53, 54). It also could be that 

the relationship between symptom severity and engagement is not linear. That is, higher 

severity of symptoms may motivate engagement up to a point, but those with the most 

severe symptoms may be less engaged. These questions require further exploration with 

more refined classification of data.

Intervention-Level Engagement Considerations

An important attribute of any DMHI intervention is the extent to which it includes 

some approach or strategy to enhance engagement. To date, the most heavily researched 

intervention-level engagement strategy has been the addition of human support. Meta-

analyses suggest a medium positive effect size of including human support versus no human 

support on the efficacy of DMHIs (55, 56). But the impact on engagement, and specifically 

engagement in real-world implementations of DMHIs, is less clear. Various studies suggest 

that human support increases engagement (57–59), but the finding is not universal. For 

example, Levin et al. (60) found that weekly coaching calls did not increase engagement 

relative to automated email prompts. Additionally, strategies for adding human support are 

widely varied—from less scalable options like weekly phone calls with a clinician to more 

scalable options like asynchronous communication with a health coach. The more scalable 

coach support protocols have been found to be effective at enhancing engagement in some 

studies (36, 61, 62), however other studies have found this style of coach support does 

not enhance engagement (63, 64). Thus, while human support appears to be a promising 

engagement strategy, results are not unequivocally favorable. The existing literature leaves 

many questions unanswered regarding the specific components of such support that drive 

engagement and the optimal dose of such support.

Gamification is another engagement strategy that has garnered recent interest. Gamification 

refers to incorporating principles from gaming into the DMHI. These include leveling up, 

winning points or virtual rewards, integration of short-term challenges, and use of imaginary 

settings or narratives (65). One of the key arguments for gamification has been that it could 

make interventions more fun or rewarding, and therefore, keep patients engaged for longer. 

Yet, while gamified interventions have often been found effective, few studies have actually 

evaluated how effective gaming intervention components are at improving engagement (66, 

67). Users have expressed mixed interest in gamified interventions (68) and at least one 

recent meta-analysis suggested that gamified depression apps did not generate improved 

adherence or efficacy over depression apps without gamification (69).

The use of contingency management is also a frequently discussed intervention-level DMHI 

engagement strategy. Contingency management is a principle drawn from behavior therapy 

referring to reinforcing or rewarding behavior change. The most common types of rewards 

applied are monetary either in the form of cash or prizes, but other types of rewards can 
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also be used. There is significant research showing that contingency management improves 

treatment outcomes in the context of health concerns like substance use, medication and 

treatment adherence and a range of health risk behaviors (70–72). Some recent studies 

have shown that these types of incentives also increase digital intervention adherence for 

health behaviors (73, 74). Applications of contingency management specific to engagement 

with DMHIs are limited, but early results are promising. For example, Boucher et al. (75) 

found that monetary incentives increased the regularity and volume of usage of a DMHI for 

depression and/or anxiety.

Finally, persuasive technology is another promising DMHI engagement strategy. Persuasive 

technology features that have been applied in DMHIs include text messages, push 

notifications, interactive features, opportunities for data visualization and tailoring/

personalization of intervention content (76). Significant research supports use of persuasive 

technology for engagement. Survey and qualitative studies suggest that patients express a 

desire for personalized content (77–79). Additionally, use of reminders (80), interactivity 

(81, 82), tailored push notifications (83), and data visualization (84) have been found 

to increase engagement with digital interventions. Persuasive technology may even be as 

effective as human support in enhancing engagement. For example, Kelders et al. (85) found 

that engagement was equivalent when a DMHI was enriched with persuasive technology 

features (i.e., tailoring, personalized feedback) and when it was enriched with coach support.

Just-in-time adaptive interventions (JITAIs) are a promising application of persuasive 

technology where users are prompted to interact with specific intervention content based on 

contextual data collected via self-report or passive monitoring (86). JITAIs can be effective 

for mental health concerns (87, 88) and may enhance engagement by delivering intervention 

content when a user is most receptive to it. However, real-world implementations in mental 

health are still limited (89), and the impact on engagement has not been directly evaluated.

Systems-Level Engagement Considerations

Strategies for healthcare systems to seamlessly integrate DMHIs in the context of routine 

care, thereby supporting engagement, have not been a focus of DMHI research to date. 

However, studies suggest that weaving DMHIs into the fabric of existing primary or 

specialty care may be a particularly promising approach for enhancing engagement. 

Specifically, previous work has shown that patients endorse greater interest in interventions 

recommended by their care team than those not accompanied by such a recommendation 

(90, 91). Additionally, referral from a healthcare provider is associated with lower DMHI 

attrition (92). These findings are consistent with research suggesting that social influence, 

defined as the extent to which important others support a given behavior, positively impacts 

technology adoption (28).

The research on barriers and facilitators of DMHI adoption and sustained use suggests 

a number of organizational variables that merit attention. Both Borghouts et al. (48) 

and Graham et al. (93) provide excellent overviews of this literature. Findings regarding 

several systems-relevant barriers and facilitators offer a starting point for determining 

what engagement strategies may be worth evaluating at the systems-level. Specifically, 
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systems-relevant barriers identified in this literature include interoperability issues with other 

clinical systems, limited technical support, limited staff resources, cost/limited avenues for 

DMHI reimbursement, clinicians’ negative perspectives on DMHIs, and limited support 

from clinical leadership (48, 93). Anastasiadou et al. (77) found that both patients and 

providers perceived barriers related to the organizational environment as more prominent 

than patient-level and intervention-level barriers. These findings suggest value in drawing on 

allied fields like implementation science and its rich set of implementation frameworks to 

inform the study of DMHI engagement.

Implementation science has a long tradition of exploring multi-level strategies to support 

the uptake and sustainment of evidence-based interventions. For example, the Expert 

Recommendations for Implementing Change study systematically compiled input from 

stakeholders and published a list of implementation strategies and definitions of these 

strategies (94). This list offers a directory for identifying implementation strategies that 

could promote engagement with DMHIs at the systems level. Studies drawing on this 

strong body of implementation science literature that test application of various strategies 

in different contexts (e.g., primary care, community care, specialty care, marketplace) is an 

important next step in DMHI research.

Important Gaps for Research

There are a plethora of important areas for research into engagement with DMHIs, many of 

which we have noted in the previous sections. Below, we highlight three additional areas that 

we have not yet touched upon that are particularly important for the research community to 

address.

Adopting Standards for Reporting Engagement Metrics. A recent review (95) of DMHIs for 

depression indicated that consistency in reporting engagement metrics is alarmingly poor. 

Specifically, only 64% of studies reported the number of participants who used the DMHI at 

least once; only 23% of studies reported how many participants were still using the DMHI 

during the last week of the treatment period; and only 50% of studies reported the number of 

participants who completed the DMHI.

Unfortunately, we cannot attribute these results to difficulty measuring engagement because 

metrics for DMHI use, as noted above, are typically quantifiable on the system backend. 

We also cannot attribute them to the study of DMHIs being a new field because depression 

represents one of the most heavily researched clinical areas for DMHIs.

These results suggest that establishing reporting guidelines that specify the minimum 

necessary provision of information on engagement when publishing clinical trials of DMHIs 

is critical. As a starting point, Lipschitz et al. (95) suggest that a five-element standard of 

engagement reporting be adopted for all studies of DMHIs. This framework encompasses 

the following essential metrics:

1. Adherence criteria, defined as an explicit statement of what it means for 

participants to have used the DMHI as intended or met some minimum 

intervention use threshold. This could be defined in terms of content coverage 
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(e.g., 80% of modules completed), frequency of use (e.g., use at least three times 

per week during the intervention period), or some other a priori threshold for 

intervention adherence.

2. Rate of uptake, defined as the percentage of participants randomized or referred 

to the DMHI who downloaded the intervention and used it at least once.

3. Level-of-use metrics, defined as both the total number of DMHI launches (i.e., 

average number of times used) and the total amount of time the DMHI was used 

(e.g., total minutes of use) during the intervention period.

4. Duration-of-use metrics, defined as the number of participants who used the app 

at least once per week every week of the intervention period unless less frequent 

use is identified as sufficient in the adherence criteria. Reporting the number of 

participants still using the DMHI in the final week of the intervention period or 

a survival analysis of time to last use are also particularly helpful duration-of-use 

metrics because they convey how long patients typically engage with the DMHI. 

When positive clinical outcomes are observed, these metrics also offer insight 

into the timeline for expected clinical improvement.

5. Number of intervention completers, defined as the number of participants who 

completed the intervention as intended per the specified adherence criteria.

Adopting this or some other minimum necessary reporting criteria is essential to move the 

field of DMHI engagement forward. Such reporting guidelines would allow for new insights 

into what constitutes sufficient engagement for clinical benefit; facilitate comparisons 

among DMHIs and between DMHIs and other treatment options; and offer benchmarks 

upon which further research must improve.

Considering Alternative Study Designs. To date, RCTs with parallel group designs have 

been the most common methodology in DMHI trials. But these only tell us whether an 

intervention package as a whole has a causal impact on outcomes of interest. Such trials are 

not designed to shed light on which components of an intervention impact the outcomes or 

when and how different intervention components should be applied.

Several other clinical trial designs offer data-driven strategies for answering questions 

related to treatment optimization for user engagement. As such, they provide efficient 

strategies for answering a number of questions related to engagement. The most widely used 

example is the factorial clinical trial, which involves packaging intervention components 

into various combinations such that the impact of each combination, as well as the main 

effect of each component itself (across combinations), can be evaluated (96, 97). Other less 

widely-used examples of trial designs include sequential multiple assignment randomized 

trials (SMARTs; 98, 99) and micro-randomized trials (MRTs; 100).

SMARTs (98, 99) offer insight into how components of a treatment package should 

be sequenced to optimize outcomes. They involve testing alternative treatments as a 

starting intervention and then identifying, at pre-specified points early in treatment, which 

individuals are responding/not responding to the initial intervention and randomizing both 

responders and non-responders to appropriate second-stage treatments. The causal effects 
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of the initial treatment approach and the adapted treatment approach on an outcome 

of interest can then be evaluated. SMARTs could be used to help identify how to 

augment interventions or what intervention components to add for patients who exhibit 

poor engagement with DMHIs. For example, one possible first stage intervention in a 

SMART might be a self-guided DMHI with or without tailored motivational messaging 

(randomized at a 50–50 split). After two weeks, those participants in either condition 

showing insufficient engagement could be re-randomized to receive augmentation with 

coach support or to continue with the self-guided intervention. SMARTs offer a particularly 

compelling design for implementation studies because they allow an opportunity to test 

adaptive implementation strategies for clinics or specific patients who do not respond 

favorably to an initial approach (e.g., 101, 102).

MRTs (100) offer insight into whether intervention components of a DMHI have a proximal 

or near-term effect on engagement and when those components should be delivered to 

maximize that effect. They involve establishing a schedule of “decision points”: times at 

which a component of a DMHI might be delivered (e.g., multiple times per day). For 

example, a DMHI component may involve the delivery of motivational push messages to 

the patient via a smart device. At each decision point, participants would be randomly 

assigned to receive or not receive these motivational push messages. Then the proximal 

impact (i.e., over the next hour, day or week rather than the full intervention period) of 

the intervention component (i.e., motivational push messages) as well as the interaction 

between that proximal impact and context (e.g., time of day, location when the message was 

delivered) are evaluated.

Studies employing these designs offer untapped opportunities to better understand 

engagement and optimize interventions for engagement. For example, they offer 

opportunities to efficiently test the effects of tailoring intervention components to a given 

patient’s demographic characteristics (e.g., age, gender or race).

Conducting Studies that Facilitate Building a Theory of DMHI Engagement. At this point, 

there is not one widely accepted theory of what drives DMHI engagement. Probably 

the most widely applied theoretical models are the Technology Acceptance Model (103) 

and the Unified Theory of Acceptance and Use of Technology (UTAUT; 28). These 

models were developed and validated predominantly in the context of employee adoption 

of new information technologies, a considerably different context than the adoption of 

patient-facing, medical treatment technologies. Furthermore, the recently articulated Affect-

Integration-Motivation and Attention-Context-Translation (AIM-ACT) framework has been 

proposed as an outline of psychological processes that dictate in-the-moment engagement 

with digital stimuli and may inform development of a broader theory on DMHI engagement 

(23). Finally, there is an expansive literature on behavior change theories related to 

treatment adherence (104). However, adherence to treatments like prescribed medication, for 

example, is also considerably different from adherence to DMHIs. Most notably, medication 

adherence is typically less cognitively demanding, less time consuming, and supported 

by more established efficacy data. While this literature-base provides a starting point for 

conceptualizing what drives adoption and sustained engagement with DMHIs, there is likely 

room to improve and hone these models.
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The key will be to develop and validate theories that can inform intervention designers 

about constructs that are most robustly associated with DMHI engagement. To do so, we 

can look toward constructs that show strong evidence in both the technology adoption and 

treatment adherence literature. Several constructs already exhibit robust associations with 

both technology adoption and treatment adherence and could serve as a starting point for 

a parsimonious theory of DMHI engagement. These constructs include: social influence 
(beliefs among people who are important to the patient that he/she should engage in 

the new behavior; 105, 106, 107), facilitating conditions (environmental support for the 

new behavior; 108, 109), attitude (the balance of positive and negative feelings about the 

behavior; 110, 111–115), self-efficacy (beliefs in one’s ability to execute the new behavior; 

111, 116–119), and habit strength (degree to which the behavior is an automatic part of 

one’s daily routine; 120, 121, 122). Initial theories specific to DMHI engagement could 

capitalize on these constructs as well as some of the predisposing characteristics discussed 

above and add additional constructs as new research emerges (see Figure 1).

Using this framework, some intervention characteristics, such as contingency management 

or gamification, could be conceptualized as variables that may produce higher engagement 

by shifting users’ attitudes toward the intervention (i.e., greater positive feelings about 

using the intervention). Other intervention characteristics, such as the integration of human 

support, could be conceptualized as enhancing engagement via social influence (in the 

case of involvement of a clinical team member with a prior relationship with the patient) 

or a facilitating condition (in the case of a newly assigned health coach specific to the 

intervention).

Taken together, DMHI engagement theory is an area ripe for innovation. Research can 

help evolve our understanding of theory by measuring constructs drawn from the cross-

disciplinary theories and frameworks put forward above and evaluating associations between 

these constructs and DMHI usage data or other engagement metrics. This will be an 

essential part of building a science of DMHI engagement and improving the utility of these 

treatments.

Conclusions & Recommendations

DMHIs hold tremendous promise to transform psychiatric treatment by dramatically 

increasing access to evidence-based care. However, engagement is a critical issue that 

will likely determine the extent to which DMHIs become a mainstay of psychiatric 

treatment. Adequately addressing the issue of engagement will require acknowledging 

several key points. First, engagement is a multi-level issue. It must be addressed at the 

patient-, intervention- and systems-levels. Second, engagement is a multidisciplinary issue. 

Addressing it will require collaboration between clinicians, data scientists, human-centered 

design researchers, technologists, and organizational leaders. Third, while there are many 

aspects of engagement, at its core, the engagement problem is an implementation problem. 

Like other innovations and evidence-based practices that are the focus of implementation 

research, many DMHIs may have demonstrated efficacy in controlled settings, but in real-

world settings they do not get and keep patients engaged enough to show sound clinical 

impact. Evaluating engagement requires studies in naturally-occurring, uncontrolled, routine 
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care and marketplace settings. And finally, the engagement problem can only be solved 
by rigorous research. Specifically, researchers must address the engagement issue head-

on by systematizing their reporting of engagement levels, considering alternative clinical 

trial designs rather than defaulting to RCTs with parallel group designs, and building a 

robust theoretical basis for evaluating the relationship between possible engagement-driving 

constructs and observed behavioral engagement. Only then will DMHIs have the potential to 

be the paradigm-changing force they could be in the treatment of mental health conditions.
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Figure 1. 
Parsimonious Conceptual Model of DMHI Engagement
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