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Abstract

Since 2016, deep learning (DL) has advanced tomographic imaging with remarkable successes, 

especially in low-dose computed tomography (LDCT) imaging. Despite being driven by big 

data, the LDCT denoising and pure end-to-end reconstruction networks often suffer from the 

black box nature and major issues such as instabilities, which is a major barrier to apply deep 

learning methods in low-dose CT applications. An emerging trend is to integrate imaging physics 

and model into deep networks, enabling a hybridization of physics/model-based and data-driven 

elements. In this paper, we systematically review the physics/model-based data-driven methods for 

LDCT, summarize the loss functions and training strategies, evaluate the performance of different 

methods, and discuss relevant issues and future directions.

1 Introduction

Since the invention of computed tomography (CT) in 1970s, it has become an indispensable 

imaging modality for screening, diagnosis, and therapeutic planning. Due to the potential 

damage to healthy tissues, the radiation dose minimization for x-ray CT has been widely 

studied over past two decades. In some major clinical tasks, the radiation dose of a single 

CT scan can be up to 43 milli-Sieverts (mSv) [1], which is an order of magnitude higher 

than the amount of the natural background radiation one receives annually. The radiation 

dose can be reduced by lowering the x-ray flux physically, which is called low-dose CT 

(LDCT). However, LDCT will degrade the signal-to-noise ratio (SNR) and compromise the 

subsequent image quality.
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The conventional tomographic reconstruction algorithm can hardly achieve satisfactory 

LDCT image quality. To meet the clinical requirements, advanced algorithms are required to 

suppress noise and artifacts associated with LDCT. Up to now, promising results have been 

obtained, improving LDCT quality and diagnostic performance in various clinical scenarios. 

Generally speaking, LDCT algorithms can be divided into four categories: sinogram domain 

filtering, image domain post-processing, model-based iterative reconstruction (MBIR), and 

deep learning (DL) methods.

Sinogram domain filtering directly performs denoising in the space of projection data. 

Then, the denoised raw data can be reconstructed into high-quality CT images using 

analytic algorithms. Depending on the noise distribution, appropriate filters can be designed. 

Structural adaptive filtering [2] is a representative algorithm in this category, which 

effectively refines the clarity of LDCT images. The main advantage of sinogram domain 

filtering is that it can suppress noise based on the known distribution. However, any 

model mismatch or inappropriate operations in the projection domain will introduce global 

interference, compromising the accuracy and robustness of sinogram domain filtering 

results.

Image domain post-processing is more flexible and stable than sinogram domain filtering. 

Based on appropriate prior assumptions of CT image, such as sparsity, several popular 

methods were developed [3]. These methods can effectively denoise LDCT images, but 

their prototypes were often developed for natural image processing. In many aspects, the 

properties of LDCT are quite different from natural images. For example, LDCT image 

noise does not follow any known distribution, depends on underlying structures, and is 

difficult to model analytically. The image noise distribution is complex, and so is the 

image content prior. These are responsible for limited performance of image domain post-

processing.

MBIR combines the advantages of the two kinds of methods mentioned above and works 

to minimize an energy-based objective function. The energy model usually consists of two 

parts: the fidelity term with the noise model in the projection domain and the regularization 

term with the prior model in the image domain. Since the noise model for LDCT in 

the projection domain is well-established, research efforts in developing MBIR are more 

focused on the prior model. Utilizing the well-known image sparsity for LDCT, a number 

of methods were proposed [4-6]. The MBIR algorithms usually deliver robust performance 

and achieve clinically satisfactory results after the regularization terms are properly designed 

along with well-tuned balancing parameters. However, these requirements for an MBIR 

algorithm may restrict its applicability. Customizing an MBIR algorithm takes extensive 

experience and skills. Also, MBIR algorithms suffer from expensively computational cost.

Recently, DL was introduced for tomographic imaging. Driven by big data, DL promises 

to overcome the main shortcoming of conventional algorithms which demands the explicit 

design of regularizers and cannot guarantee the optimality and generalizability. The DL 

methods extract information from a large amount of data to ensure the objectivity and 

comprehensiveness of the extracted information. By learning the mapping from LDCT 

scans to normal-dose CT (NDCT) images, a series of studies were performed [7-11]. 
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These methods can be seen as a combination of image domain post-processing and data-

driven methods. They inherit the advantages of the post-processing algorithms and DL 

methods, and have high processing efficiency, excellent performance, and great clinical 

potential. However, they also have drawbacks. These methods usually use the approximate 

or pseudo-inversion of the raw data as the input of the network. The initially reconstructed 

images may miss some structures, which cannot be easily restored by the network if raw 

data are unavailable. On the other hand, noise and artifacts in filtered back-projection 

(FBP) reconstructions could be perceived as meaningful structures by a denoising network. 

Both circumstances will compromise the diagnostic performance, resulting in either false 

positives or false negatives.

Naturally, synergizing physics/model-based methods and data-driven methods will enjoy the 

best of both worlds. While deep image denoising only handles reconstructed images, MBIR 

methods are more robust and safer. In each iteration of MBIR, raw data will be used to 

rectify intermediate results and improve the data consistency. By introducing the CT physics 

or MBIR model, researchers can embed the raw data constraint into the network, which 

avoids the information loss in the process of image reconstruction. Over the past years, a 

number of physics/model-based data-driven methods for LDCT have been proposed [12-14]. 

As shown in Fig. 1, these methods address the short-comings of the physics/model-based 

methods and data-driven networks, and achieve an excellent balance between the improved 

accuracy with learned parameters and the robustness aided by data fidelity.

In this paper, we will review these methods. In the next section, the problem of LDCT 

is described, and the conventional modeling and optimization methods are introduced. In 

the third section, different kinds of methods are summarized to incorporate physics/model 

into deep learning framework. In the fourth section, several experiments are conducted to 

compare different hybrid methods for LDCT. In the fifth section, we discuss relevant issues. 

Finally, we will conclude the paper in the last section.

2 Physics/Model-based LDCT Methods

2.1 CT Physics

Assuming that an x-ray tube has an incident flux I0 which can be measured in an air scan, 

the number of photons received by a detector, I, can be formulated as I = I0 exp −∫lμ dl , 

where μ is the linear attenuation coefficient, and l represents the x-ray path. After a 

logarithmic transformation, the line integral can be obtained as

− log I
I0

= ∫
l

μ dl .

(1)

Such line integrals are typically organized into projections and stored as a sinogram. The 

line integrals in the form of Eq. (1) can be discretized into a linear system y = Ax, where 

x ∈ ℝN denotes the attenuation coefficient distribution to be solved, y ∈ ℝM represents the 

projection data, and A ∈ ℝM × N is the system matrix for a pre-specified scanning geometry.
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2.2 CT Noise

The noise in CT data mainly consists of the following two components [15]:

1. Statistical noise: Statistical noise, also known as quantum noise, is the main 

noise component in LDCT and originates from statistical fluctuations in the 

emission of x-ray photons.

2. Electronic noise: Electronic noise occurs when analog signals are converted into 

digital signals.

2.3 Simulation

In clinical practice, it is difficult to obtain paired LDCT and NDCT datasets from two 

separate scans due to uncontrollable organ movement and radiation dose limitation. As a 

result, numerical simulation is important to produce LDCT data from an NDCT scan.

In [16], a noise simulation method was proposed for LDCT research, and applied to 

generate the public dataset “the 2016 NIH-AAPM-Mayo Clinic Low-Dose CT Grand 
Challenge”. The number of detected x-ray photons can be approximately considered 

as normally distributed, and formulated as: y = y + 1 − a
a ⋅ exp(y)

I0
⋅ 1 + 1 + a

a ⋅ σe
2 ⋅ exp(y)

I0
⋅ ξ, 

where ξ ∼ N(0, 1), σe
2 represents the variance of electronic noise, and a denotes the dose 

factor.

2.4 Conventional CT Reconstruction Methods

Conventional CT image reconstruction takes both measurement data and prior knowledge 

into account, and is performed by minimizing an energy model iteratively. The general 

energy model for LDCT reconstruction can be formulated as

min
x

Φ(x) + λR(x),

(2)

which has two parts: a fidelity term Φ(x) and a regularization term R(x), with λ being the 

penalty parameter.

The fidelity term is a metric of the reconstruction result measuring the consistence to the 

measurement data. The weighted least-squares (WLS) function is usually adopted as the 

fidelity term: Φ(x) = 1
2 ‖y − Ax‖Σ−1

2 = 1
2(y − Ax)TΣ−1(y − Ax), where Σ is a diagonal matrix 

with its elements on the main diagonal Σii = σi
2 being the estimated variances of data. Since 

the ideal flux is unknown, the variance is usually estimated as σi
2 = (I i + σe

2) ∕ I i
2
 where 

I i = aI0 exp( − y i) [6].

Dedicated regularization terms were designed for different types of images, depending on 

the nature of images and researchers’ expertise. Over the past years, various regularization 

terms were proposed along with the improved understanding of CT image properties. 

Importantly, the well-known sparsity can be expressed as R(x) = ‖W x‖1, where ‖ ⋅ ‖1 is the 
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ℓ1 norm, and W  is a sparsifying transform matrix. Commonly used sparsifying transforms 

include the gradient transform (total variation) [4], learned sparsifying transform [5, 6, 17], 

etc. Subsequently, further leveraging the two-dimensional structure of an image, low-rank 

became popular for LDCT reconstruction [18-21]. The low-rank constraint can be relaxed 

to minimization of the nuclear norm R(x) = ‖x‖∗ = ∑i σi(x), where σi(x) is the i-th largest 

singular value of x.

Generally, these models in Eq. (2) do not have closed solutions and need to be 

iteratively optimized. Sometimes, auxiliary and dual variables are introduced to simplify 

the calculation and facilitate the convergence. The idea of introducing auxiliary variables is 

in the same spirit of plug-and-play (PnP) [22, 23], which can decouple the primal problem 

and inverse conveniently. For example, based on the PnP scheme with the WLS fidelity, Eq. 

(2) can be rewritten as

min
x, v

1
2(y − Ax)TΣ−1(y − Ax) + λR(v), s.t. x = v .

(3)

Then, the primal variable x and auxiliary variable v can be alternately optimized. Two 

representative alternating optimization algorithms are ADMM and Split-Bregman, which 

divide the model into sub-problems and solve them accordingly.

3 Physics/Model-based Data-driven Methods

The popular approach for LDCT denoising with DL employs convolution layers and 

activation functions to build a neural network, whose input and output are both images. 

These methods are simple to implement and deliver impressive denoising performance, but 

they can hardly recover details lost in the input image. On the other hand, the MBIR 

algorithm is safer. In each iteration of MBIR, it uses the measurement to correct an 

intermediate result. Constrained by the measurement, the MBIR result respects the data 

consistency and restores missing structures well in the reconstructed image. Following the 

idea of the DL-based post-processing method, it is natural to synergize the physics/model-

based and data-driven methods. Such hybrid methods would not only have data-driven 

benefits but also have better robustness and interpretability out of the physics/model-based 

formulation. Table 1 summarizes these methods. The rest of this section introduces this kind 

of method.

3.1 Physics-based Data-driven Methods

As shown in Fig. 2, the physics-based data-driven methods include a differentiable domain 

transform based on the CT physics between the projection and image domains in the 

network. The input and output of the network are usually projection data and image data, 

respectively. In the beginning, the network used a conventional domain transform from the 

projection domain to the image domain. Then, inspired by the work on learned domain 

transformation, researchers built networks with fully connected (FC) layers to replace the 

conventional domain transform and learn the inverse Radon transform directly [24].
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Conventional transform—The architecture of this kind of network is often featured 

by two sub-networks: one in the projection domain and the other in the image domain, 

both of which are usually implemented with convolutional neural networks (CNNs). The 

projection data is fed into the first subnetwork, in which the measurement data can be 

denoised. The denoised projection is then converted into an image using a differentiable 

conventional transformation. Finally, the image is processed by the second sub-network 

to improve the reconstruction quality. Many network architectures widely used for image 

processing in the literature can be adapted into the sub-networks in both domains. Since the 

statistical distributions of CT noise in the projection and image domains are quite different, 

the combination of the denoising processes in the two domains can be complementary, 

making the denoising process more effective and more stable. The differentiable domain 

transform allows the information exchange between the two sub-networks. The simplest 

domain transform is back-projection, which is a differentiable linear transform [25]. A more 

reasonable yet very efficient transform is filtered back-projection (FBP) [26, 28]. A main 

advantage of FBP lies in that the projection data can be directly transformed into a suitable 

numerical range, which is more friendly to the subsequent image domain processing. 

Another interesting domain transform is the FBP view-by-view [27]. This transform back-

projects the projection data into multichannels in the image space, each of which is the 

back-projection from one projection view. It decouples the data from multi-views to obtain 

more information. These domain transforms are limited by the understanding and modeling 

of CT physics. With deep learning, it is feasible to learn the involved kernels and perform 

the domain transform.

Algorithm 1 Training a denoiser-based method in an iteration-independent/dependent fashion.

Input: Training set {y i, xi}i = 1
Ns , Denoiser Dθ

Initialize: xi
0 = FBP(y i), i = 1, 2, …, Ns

Iteration‐independent denoiser:

Train Dθ: θ = arg minθ
1

Ns
∑i = 1

Ns ‖Dθ(xi
0) − xi‖2

2

for t = 0, 1, …, Nt − 1 do
Obtain xt + 1 from Dθ(xt)

end for
return xNt

Iteration‐dependent denoiser:
for t = 0, 1, …, Nt − 1 do

Train Dθ: θt = arg minθ
1

Ns
∑i = 1

Ns ‖Dθ(xi
t) − xi‖2

2

Obtain xt + 1 from Dθt(xt)
end for
return xNt

Learned transform—The learned transform can use FC layers to learn the physics-based 

transform from the projection domain to the image space. AUTOMAP is a representative 
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network, which maps tomographic data to a reconstructed image through FC layers [29]. 

However, such an architecture would be unaffordable in most cases of medical images 

because of the expensive computational and memory costs. As a result, major efforts 

were made to improve the learned transforms by reducing the computational overhead 

[24, 30, 31]. Since each pixel traces a sinusoidal curve in the projection domain, [24] 

proposed to sum linearly along the trajectory so that the weights of FC layers are sparse. 

In an improved version of this work, the geometry and volume were down-sampled to 

further reduce the computational cost [30]. Another effective way to reduce the cost is 

to use shared parameters. In [31], the measurements of different views are processed 

with shared parameters for the domain transform. And in [32], authors proposed a 

hierarchical architecture, where the shared parameters are gradually localized to the pixel 

level. Compared with the conventional transform, the learned transform has the potential to 

achieve better performance.

By incorporating the CT physics into the denoising process and working in both projection 

and image domains, image denoising can be effectively performed. However, the issue of 

generalizability is important for clinical applications. The learned transform has limited 

generalizability because it can only be applied for a fixed imaging geometry. When the 

geometry and volume differ from what is assumed in the training setup, the trained network 

will be inapplicable. In contrast, the traditional transform is more stable and only needs 

to adjust the corresponding parameters for different geometries and volumes. Therefore, 

the further development of learned transforms needs to make them more flexible and more 

generalizable.

3.2 Model-based Data-driven Methods

Given the generalizability, stability and interpretability of the MBIR algorithm, it is 

desirable to combine MBIR and DL for LDCT denoising. Deep learning is effective 

in solving complicated problems with big data. MBIR-based reconstruction has a fixed 

fidelity term and needs efforts to find a good regularizer. For model-based data-driven 

reconstruction, researchers replaced the handcrafted regularization terms with neural 

networks and produced results often superior to the traditional MBIR counterparts. By the 

way of embedding a neural network into the MBIR scheme, we can divide the model-based 

data-driven methods into two categories: denoiser and unrolling.

Denoiser—This approach follows the conventional iterative optimization scheme. In its 

iterative process, a neural network is introduced with the idea of PnP [23]. Drawing on 

the framework of PnP, a regularization by denoising (RED) was proposed [40]. With this 

regularization, the CT optimization model can be formulated as

min
x

1
2(y − Ax)TΣ−1(y − Ax) + λ

2 xT(x − D(x)),

(4)

where D( ⋅ ) is a denoiser implemented by the neural network. The optimization process can 

be expressed as
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xt + 1
2 = argmin

x
1
2(y − Ax)TΣ−1(y − Ax) + α

2‖x − xt‖2
2
,

xt = argmin
x

β
2‖x − xt + 1

2‖2

2

+ λ
2 xT(x − D(xt + 1

2)) .

(5)

The optimization of xt + 1
2  can be done using a method for solving the quadratic problem. 

The solution of xt can be obtained either directly from the denoiser

xt = D(xt + 1
2),

(6)

or as a semi-denoised result

xt = 1 − λ
β + λ xt + 1

2 + λ
β + λD(xt + 1

2) .

(7)

Of course, there are other solutions and combinations [34, 36].

There are two ways to train the denoiser. The first is to train a general denoiser for all 

iterations [12, 33, 34]. In this option, the denoiser can be obtained with noisy images and 

the corresponding labels as training pairs. However, it is difficult for the denoiser to achieve 

optimal denoising performance in each iteration. The second option can partially solve this 

problem by training an iteration-dependent denoiser dynamically [35, 36]. In each iteration, 

the denoiser will denoise an intermediate image with different parameters to optimize 

denoising performance. Of course, training model parameters for each iteration will demand 

a much higher computational cost. Algorithm 1 supports either iteration-independent or 

iteration-dependent denoisers, where y  denotes projection data, x represents a noise-free 

image, and the mean square error (MSE) is assumed as the loss function.

Unrolling—Unrolling is to expand the iterative optimization process into a finite number of 

stages and map them to a neural network [13,14,37-39,41]. As a general objective function, 

Eq. (3) can be extended using augmented Lagrangian method (ALM) as follows:

min
x, v, u

L(x, v, u) = 1
2(y − Ax)TΣ−1(y − Ax) + λR(v) + uT(x − v) + ρ

2‖x − v‖2
2 .

(8)

A general iterative optimization method ADMM can be formulated as
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xt + 1 = argmin
x

L(x, vt, ut)

vt + 1 = argmin
v

L(xt + 1, v, ut),

ut + 1 = ut + ρ(xt + 1 − vt + 1) .

(9)

Each of these variables can be optimized using a corresponding algorithm. In an unrolling-

based data-driven method, each optimization problem can be solved using a sub-network. 

When the total number of iterations is fixed, Eq. (9) can be realized as a neural network:

xt + 1 = ℱ(xt, vt, ut; θt),
vt + 1 = G(xt + 1, vt, ut; θt),
ut + 1 = ℋ(xt + 1, vt + 1, ut; θt),

(10)

where ℱ, G and ℋ denote the three sub-networks, respectively. Fig. 3 shows a top-level of 

the workflow.

With different energy models and optimization algorithms, various network architectures 

were developed for unrolled data-driven image reconstruction. In [13], the simplest gradient 

descent algorithm was unrolled into a neural network. In [14], the primal-dual hybrid 

gradient (PDHG) algorithm was designed as a generalized unrolling technique. In [39], 

the momentum method commonly used for traditional optimization was adapted into a 

reconstruction network for better performance with a limited number of iterations. However, 

it is difficult to directly judge the performance of the network based on the performance 

of the unrolled optimization scheme, and it remains an important topic how to unroll an 

optimization scheme and train it optimally.

The denoiser-based method is based on the traditional iterative algorithm, where the training 

and optimization are separated. On the other hand, the unrolling-based method is an end-to-

end procedure, where the optimization is incorporated into the training. Fig. 4 shows the 

forward and backward processes for denoiser-based and unrolling-based methods, where the 

green and red arrows represent forward and backward directions respectively. As shown in 

Fig. 4, the forward data streams for the two methods are similar, but the backward data 

stream is end-to-end for the unrolling-based method; i.e., the complete backward data stream 

is a back-projection of error signals from the output to the input. While the denoiser-based 

method adopts a separate training strategy, the unrolling-based method can be trained in 

a unified fashion, where all parameters, including the regularization parameters, can be 

obtained from training. However, it is unavoidable that the model requires larger memory 

and thus limits the number of iterations for unrolling. In many cases, the model performance 

is closely related to the number of iterations. In contrast, the denoiser-based method allows 

for more iterations and the trained denoiser can be embedded in different optimization 

schemes, making the denoiser-based method more flexible. Nevertheless, the denoiser-based 

method still needs to set the parameters manually, which have a significant impact on the 
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performance. Hence, it is more important for the denoiser-based method to appropriately set 

parameters and be coupled with a method for adaptive parameter adjustment.

3.3 Loss Functions

The commonly used loss functions for LDCT imaging are mean square error (MSE) and 

mean absolute error (MAE). To better remove noise and artifacts, total variation (TV) 

regularization, which performs well in compressed sensing methods for image denoising, is 

often used as an auxiliary loss [42]. In [8], the discriminator was used to make the denoised 

image have the same data distribution as that of clinical images. Additionally, a model 

pre-trained for the classification task was used to extract features, and the perceptual loss 

was computed in the feature space. The adversarial loss and perceptual loss can improve 

the visual performance and suppress the over-smoothness. However, the adversarial loss 

for generative adversarial networks may introduce erroneous structures [43]. Similarly, the 

perceptual loss could generate checkerboard artifacts [44], when the constraint is imposed 

on the feature space downsampled with maxpooling. In [42], the structural similarity index 

metric (SSIM) was introduced to promote structures closer to the ground truth. Similarly, to 

protect edgeness in denoised images, the Sobel operator was applied to extract edges and 

keep the edge coherence [10]. The identity loss is also relevant for image denoising tasks, 

which means that if a noise-free image is fed to the network then it should be dormant, 

i.e., the network output should be close to the clean input [9]. To maintain the measurement 

consistency, the result of the network needs to be transformed into the projection domain 

to compute the MSE or MAE loss [42]. Table 2 summarizes these commonly used loss 

functions.

4 Experimental Comparison

In this section, we report our comparative study on the performance of some popular 

physics/model-based data-driven methods and different loss functions. This evaluation was 

performed with a unified code framework to ensure fairness as much as possible. All codes 

have been succinctly documented to help readers understand the models1. For simplicity and 

fairness, the MSE loss function and AdamW optimizer were employed for all the methods 

when evaluating the models. And LPD was adopted as the backbone for the evaluation of 

different loss functions. Training was performed in a naive way, without any trick. For fair 

comparison, all the models have been trained within 200 epochs, which is sufficient for 

convergence of all the methods. The penalty/regularization parameters of the models have 

been carefully tuned in our experiments to guarantee the optimal performance of each model 

on the relevant dataset. After training, the optimal model for validation was taken as the final 

model and used for testing. Of course, there are many factors that affect the performance of 

the neural network. Therefore, the results in this paper are for reference only, which may not 

perfectly reflect the performance of these methods.

1Codes are released at https://github.com/Deep-Imaging-Group/Physics-Model-Data-Driven-Review, related datasets and checkpoints 
can also be found on that page.
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4.1 Dataset

The dataset used for our experiments is the public LDCT data from “the 2016 NIH-AAPM-
Mayo Clinic Low-Dose CT Grand Challenge”. The dataset contains 2378 slices of 3 mm 

full-dose CT images from 10 patients. In this study, 600 images from seven patients were 

randomly chosen as the training set, 100 images from one patient were used as the validation 

set, and 200 images from the remaining two patients were the testing set. The projection data 

were simulated with distance-driven method. The geometry and volume were set according 

to the scanning parameters associated with the dataset. The noise simulation was done using 

the algorithm in [16]. The incident photon number for NDCT is the same as that provided 

in the dataset. The incident photon number of LDCT was set to 20% of that for NDCT. The 

variance of the electronic noise was assumed to be 8.2 according to the recommendation in 

[16].

4.2 Model Study

The training process for model evaluation was to minimize the MSE loss function with 

different kinds of the methods. The commonly used PSNR and SSIM metrics were 

adopted to quantify the performance of different denoising methods. To evaluate the visual 

effect of the results, we introduced the Frechet inception distance (FID) score [45]. A 

smaller FID score means a visual impression closer to the ground truth. Fig. 5 shows 

the means of PSNR, SSIM, and FID scores on the whole testing set. In Fig. 5, the 2D 

positions of the different methods are specified by the horizontal and vertical coordinates 

representing PSNR and SSIM of the results respectively, and the radii of the circles indicate 

the FID values of different methods. It can be seen that the unrolling-based methods 

have more robust performance. FistaNet and LPD are in favorable spots. The denoiser-

based methods also have outstanding performance, especially MomentumNet based on 

an iteration-dependent denoiser. The comparison between MomentumNet and CNNRPGD 

shows that iteration-dependent denoiser has clearly better performance. However, the 

training of an iteration-dependent denoiser is more complicated and time-consuming. The 

training time of MomentumNet for 200 epochs is more than 5 days, which is much longer 

than that needed by CNNRPGD. Additionally, the denoiser-based methods need manually 

setting regularization parameters, which often has a greater impact on the performance 

than the network architecture and requires a major fine-tuning effort. HDNet delivers the 

best performance among the physics-based methods, which proves that the simple FBP 

transform is effective for dual-domain-based reconstruction. For the learned transform-based 

method, since the FC layers is of a large scale, the training process is relatively difficult, 

compromising the stability of reconstruction results.

Table 3 shows the computational time of the compared methods. It can be seen that most 

methods can complete the reconstruction in a short time, which is beneficial for clinical 

applications. Given a large number of iterations, the computational time of the denoiser-

based iterative methods are much greater than that of other methods.

Unlike the unrolling-based methods which are end-to-end networks, the denoiser-based 

methods are implemented in the iterative framework. Therefore, it is important to study 

their convergence properties. In [12] and [35], the authors proved that the denoiser-based 
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iterative methods can converge. Furthermore, even if the denoiser is applied to other iterative 

optimization schemes with a good convergence property, they should converge similarly, 

which demand a more rigorous justification in the future.

4.3 Loss Function Study

To evaluate the effects of loss functions, we have combined the loss functions in various 

ways and applied each representative combination to a unified LPD model. Table 4 shows 

these combinations of the loss functions. The corresponding reconstructions of an abdominal 

slice are shown in Fig. 6. Note that the weights of combinations have been fine-tuned 

experimentally for optimal visibility. In Fig. 6, the LPDs trained with different loss functions 

can all keep the key information on the metastases indicated by the red arrows. The area 

indicated by the blue arrows is enlarged for better visualization. Based on the same network 

architecture, while the restored information of different results is basically the same, the 

main difference among them can be still visually appreciated. MSE and MAE have evident 

an over-smoothing effect. The adversarial and perceptual losses can effectively improve 

the visual impression, giving the reconstructed textures similar to the ground truth. With 

the help of the adversarial and TV losses, the network can achieve satisfactory results via 

unsupervised learning.

5 Discussions

Physics/model-based data-driven methods have received increasing attention in the 

tomographic imaging field because they incorporate the CT physics or models into the 

neural networks synergistically, resulting in superior imaging performance. With rapid 

development over the past years, researchers have proposed a number of models based on 

physics/models from different angles. Although they are promising, these models still need 

further improvements. We believe that the following issues are worth further investigation. 

The first issue is the generalizability of learned transform-based data-driven methods. 

Training the networks separately for each imaging geometry is an unaffordable cost in 

clinical applications. Therefore, a major problem with these methods is to make a trained 

model applicable to multiple geometries and volumes. Interpolation can help match sizes of 

input data, required by a reconstruction network. Furthermore, a deep learning method can 

be a good solution to convert projection data from a source geometry to a target geometry. 

The second topic is the parametric setting for the denoiser-based data-driven methods. 

Currently, this kind of method requires handcrafted setting, which limits its generalization 

to different datasets. The introduction of adaptive parameters or learned parameters is 

worthy of attention. Reinforcement learning could be another option to automatically select 

hyper-parameters. The above are of our specific interest for physics/model-based data-driven 

methods for LDCT. From a larger perspective, the tomographic imaging field has other open 

topics and challenges, which are also closely related to LDCT.

Transformer

Transformer is an emerging technology of deep learning. It has shown great potential in 

various areas [46]. In the denoising task, a transformer directs attention to various important 

features, resulting in adaptive denoising based on image content and features. Coupled with 
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the transformer, physics/model-based data-driven methods will have more design routes. It is 

predictable that transformers will further improve the performance of physics/model-based 

data-driven methods.

Self-supervised learning

Paired training data has always been a conundrum plaguing data-driven tomography. The 

mainstream method is now unsupervised [9] and self-supervised learning [47], which does 

not require paired/labeled data. Self-supervised training treats the input as the target in 

appropriate ways to calculate losses, and performs denoising according to the statistical 

characteristics of underlying data. Clearly, a combination of self-supervised training and 

physics/model-based data-driven methods can help us meet the challenge of LDCT in 

clinical applications.

Task-driven tomography

Tomographic imaging is always a service for diagnosis and intervention. Thus, reconstructed 

images are often processed or analyzed before being clinically useful. To optimize the whole 

workflow, we can take the downstream image analysis tasks into account to improve the 

performance of reconstruction network in a task-specific fashion. The physics/model-based 

task/data-driven method can be designed with shared feature layers linked to task loss 

functions. A deep tomographic imaging network incorporated with a task-driven technique 

can reconstruct results that are more suitable for the intended task in terms of diagnostic 

performance.

Domain generalization

Deep learning-based tomographic imaging may suffer from a domain heterogeneity problem 

from different distributions of training data, which originate from different scanners, 

populations, tasks, settings, and so on [48]. Existing tomographic imaging methods 

could generalize poorly on datasets in shifted domains, especially unseen ones. Domain 

generalization is to learn a model from one or several different but related domains, which 

has attracted increasing attention [49]. This is a promising direction to address the data 

domain heterogeneity and advance the clinical translation of deep tomographic imaging 

methods.

Image quality assessment

At present, the main means to evaluate reconstructed image quality is still mostly the 

popular quantitative metrics. But in many cases the classic quantitative evaluation is not 

consistent with the visual effects and clinical utilities. Especially, the way to evaluate 

medical images is very different from that of natural images. Therefore, it is currently an 

open problem to have a set of metrics suitable to evaluate the diagnostic performance of 

tomographic imaging. For natural image processing, there are neural networks reported 

for image quality assessment (IQA) [50], which suggest new solutions for medical image 

quality evaluation. Ideally, DL-based IQA should not only judge the reconstruction quality 

and diagnostic performance but also help tomographic imaging in the form of loss functions. 

It is expected that more DL-based IQA methods will be developed for medical imaging, 
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and eventually can perform advanced numerical observer studies as well as human reader 

studies.

6 Conclusion

In this paper, we have systematically reviewed the physics/model-based data-driven methods 

for LDCT. In important clinical applications of LDCT imaging, DL-based methods bring 

major gains in image quality and diagnostic performance and are undoubtedly becoming 

the mainstream of LDCT imaging research and translation. In the next few years, our 

efforts would cover dataset enrichment, network adaption, and clinical evaluation, as well 

as methodological innovation and theoretical investigation. From a larger perspective, DL-

based tomographic imaging is only in its infancy. It offers many problems to solve for 

numerous healthcare benefits and opens a new era of AI-empowered medicine.
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Figure 1: 
Advantages of synergizing physics/model-based methods and data-driven methods.
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Figure 2: 
General workflow for the physics-based data-driven LDCT denoising.
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Figure 3: 
Workflow of an unrolled data-driven reconstruction process.
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Figure 4: 
Forward and backward processes for of denoiser-based (top) and unrolling-based methods 

(bottom) respectively.
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Figure 5: 
Quantitative results obtained using different methods on the whole testing set.
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Figure 6: 
Results obtained using LPD with different combinations of loss functions. (a) Normal-dose, 

(b) Low-dose, (c)-(l) the reconstructions with the combinations of loss functions shown in 

Table 4. The display window is [−160, 240] HU.
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Table 1:

Representative physics/model-based data-driven methods

Reference Highlight

- Würfl et al. [25] Learned filters of FBP

HDNet Hu et al. [26] Dual domain processing with FBP

VVBPTensorNet Tao et al. [27] Filtered back-projection view-by-view

CLEAR Zhang et al. [28] Multi-level consistency loss

AUTOMAP Zhu et al. [29] Learned transform with FC

iRadonMap He et al. [24] Transform based on scan trajectory

DSigNet He et al. [30] Downsampling of geometry and volume

iCTNet Li et al. [31] Shared parameters for different views

- Fu et al. [32] Hierarchical architecture

KSAE Wu et al. [33] Learned sparsifying transform

CNNRPGD Gupta et al. [12] Learned projection operation

REDAEP Zhang et al. [34] Learned denoising autoencoding prior

MomentumNet Chun et al. [35] Momentum-based extrapolation

SUPER Ye et al. [36] Combination of learned regularizations

LEARN Chen et al. [13] Unrolled gradient descent algorithm

LPD Adler et al. [14] Unrolled PDHG algorithm

AHP-Net Ding et al. [37] Learned hyperparameters with FC

MetaInvNet Zhang et al. [38] Learned initializer for conjugate gradient

FistaNet Xiang et al. [39] Unrolled FISTA algorithm
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Table 2:

Representative loss functions.

Reference Pros Cons

MSE Good denoising performance Oversmoothing

MAE Good denoising performance Oversmoothing

TV loss [42] Good denoising performance Oversmoothing

Adversarial loss [8] Good visual effect Erroneous structures

Perceptual loss [8] Good visual effect Erroneous structures

SSIM loss [38] Better structural protection -

Edge incoherence [10] Better structural protection -

Identity loss [9] More robust network -

Projection loss [42] Higher measurement consistency Worse denoising performance
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Table 3:

Computational costs of the compared methods.

Method Training time Testing time Number of Parameters

HDNet 11.67 h 0.16 s 75.3 M

VVBPTensorNet 9.77 h 0.19 s 0.47 M

iRadonMap 11.30 h 0.12 s 270 M

DSigNet 9.58 h 0.27 s 19.2 M

CNNRPGD 3.10 h 3.22 s 34.6 M

MomentumNet 122.50 h 1.16 s 7.5 M

LPD 7.95 h 0.20 s 0.25 M

FistaNet 7.83 h 0.21 s 0.78 M
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Table 4:

Loss functions used for experimental comparison.

c d e f g h i j k l

MSE ✓ ✓ ✓ ✓ ✓ ✓

MAE ✓

TV loss ✓

Adversarial loss ✓ ✓ ✓ ✓

Perceptual loss ✓ ✓

SSIM loss ✓

Edge incoherence ✓ ✓

Identity loss ✓

Projection loss ✓

supervised learning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

unsupervised learning ✓ ✓
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