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Abstract

Drug discovery and development constitute a laborious and costly undertaking. The success of a drug hinges not only good efficacy
but also acceptable absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Overall, up to 50% of drug
development failures have been contributed from undesirable ADMET profiles. As a multiple parameter objective, the optimization
of the ADMET properties is extremely challenging owing to the vast chemical space and limited human expert knowledge. In this
study, a freely available platform called Chemical Molecular Optimization, Representation and Translation (ChemMORT) is developed
for the optimization of multiple ADMET endpoints without the loss of potency (https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT
contains three modules: Simplified Molecular Input Line Entry System (SMILES) Encoder, Descriptor Decoder and Molecular Optimizer.
The SMILES Encoder can generate the molecular representation with a 512-dimensional vector, and the Descriptor Decoder is able
to translate the above representation to the corresponding molecular structure with high accuracy. Based on reversible molecular
representation and particle swarm optimization strategy, the Molecular Optimizer can be used to effectively optimize undesirable
ADMET properties without the loss of bioactivity, which essentially accomplishes the design of inverse QSAR. The constrained multi-
objective optimization of the poly (ADP-ribose) polymerase-1 inhibitor is provided as the case to explore the utility of ChemMORT.

Keywords: ADMET evaluation; lead optimization; substructure modification; deep learning; inverse QSAR; reversible molecular repre-
sentation; particle swarm optimization

INTRODUCTION
The journey of discovering a new drug candidate and shepherding
it through clinical trials and onto the market is time-consuming,
fraught with difficulties, inordinately expensive, and prone to
failure, which typically costs 15 years and $12–15 million for
successfully developing a clinical candidate [1]. Since the key
to improving pharmaceutical productivity is to boost the effi-
ciency of discovering drug candidates entering clinical trials, sev-
eral revolutionary technologies have been used for accelerating
drug candidate development, such as combinatorial chemistry,

X-ray crystallography, high-throughput screening (HTS) and vir-
tual screening (VS) [2–4]. However, despite the inventiveness and
rapid advances witnessed in HTS and VS [5–7], the attrition rate
during the early drug candidate discovery is still as high as 75%,
even for those experienced global pharmaceutical companies [8,
9]. It is estimated that up to 50% of failures are contributed
from the deficiency in absorption, distribution, metabolism, elim-
ination, and toxicity (ADMET) properties, which reaffirms the
importance of optimizing ADMET properties during drug discov-
ery campaigns [10]. The ADMET optimization could be viewed
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as an extremely challenging multi-parameter optimization task,
which aims to improve multiple ADMET properties while avoid
the reduction of biological potency [11, 12].

With large-scale investigations of deep learning (DL) in
molecular representations [13, 14], it is found that the chemical
space learned by deep neural networks represents several advan-
tages: smooth, continuous, unique and expressive, which could
efficiently benefit molecular optimization [15]. Recently, a method
proposed by Gomez-Bombarelli et al. [16] further illustrates
the above advantages through the application of variational
autoencoder, with the additional feature of reversibility. This
autoencoder comprises two neural networks: an encoder and
a decoder. The encoder network transforms input Simplified
Molecular Input Line Entry System (SMILES) strings into a
lower-dimensional representation, commonly referred to as
the latent space. Conversely, the decoder network maps the
points from this latent space back to SMILES sequences.
To achieve the encoding of higher-level molecular features
rather than the syntactic concepts or repetitive patterns of
the sequence, the reconstruction task is transformed into a
translation task, by translating one molecular representation to
another syntactically different one [17, 18]. Several researches
have shown that the models trained with enumerated SMILES
sequences own more advantages in data augmentation and
important molecular feature learning than those only trained
with one variant (e.g. canonical SMILES) [17, 19]. In addition, it
has been observed that latent space vectors showed superior
performance in molecular similarity analysis and Quanti-
tative Structure–Activity Relationship (QSAR) modeling than
autoencoder-derived vectors and the models built using the
Extended Connectivity Fingerprints (ECFP4) fingerprints, sug-
gesting that they have increased relevant to biological activities
and physicochemical properties [17]. Due to high reversibility
and information enrichment, latent space vectors are highly
recommended for inverse QSAR problems. For the navigation
of the optimization tasks for multiple molecular properties,
the application of latent space vectors needs to be combined
with efficient optimization strategy and necessary structural
constraint, thus effectively avoiding the drop of target potency
[20].

Considering the importance of ADMET optimization in drug
discovery, here, a freely available platform called Chemical Molec-
ular Optimization, Representation and Translation (ChemMORT)
is developed for the optimization of multiple ADMET endpoints
(https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT con-
tains three basic modules: SMILES Encoder, Descriptor Decoder
and Molecular Optimizer, which provide the representation,
translation and optimization functions, respectively. Based on
the training of 17 million enumerated SMILES strings, SMILES
Encoder can generate the 512-dimensional molecular represen-
tation, and Descriptor Decoder is able to translate the above
representation to the corresponding molecular structure with
high accuracy. Based on the reversible molecular representation
and particle swarm optimization (PSO) strategy, Molecular
Optimizer can effectively accomplish ADMET optimization
tasks while preserving the potency of the optimized molecules
through necessary similarity and substructure constraint. To
evaluate the utility of ChemMORT, the constrained multi-
objective optimization of the poly (ADP-ribose) polymerase-1
(PARP-1) inhibitor was provided as the case. It is believed that
through the rational application of ChemMORT, researchers
can discover potent drug candidates with improved ADMET
profiles.

MATERIALS AND METHODS
Neural translation model
In this study, inspired by human language neural network transla-
tion models, a sequence-to-sequence (seq2seq) model was trained
based on the SMILES notation for chemical space exploration.
It turns enumerated SMILES notation into a fixed-length vector
representation in the encoder and turns this fixed-length vector
into the Canonical SMILES of the molecule in the decoder, where
the fixed-length vector will be used as the connection between
structure modification and property optimization [18]. Generally,
recurrent neural networks are used as the backend of the seq2seq
model, which often bring the vanishing or exploding gradient
problems. To avoid it, three stacked Gate Recurrent Unit (GRU) layers
were used in both the encoder and decoder networks. In addition,
a fully connected layer (information bottleneck) with 512 units and
hyperbolic tangent activation function is used as the final layer of
the encoder to generate a 512-dimensional latent representation.
Through information bottleneck, it can capture the most statisti-
cally salient features about molecular structures, which ensures
the accuracy of translation and the efficiency for property predic-
tion. The decoder takes the latent representation as an input and
feeds it into a similar three stacked aforementioned GRU layers
with 1024, 512 and 256 units. The input of the decoder to each time
step is the output of the preceding time step and the embedding of
the ground truth. In the training phase, the output of the decoder
transfers to the ground truth to calculate the cross-entropy loss
and conduct the gradient update. In the prediction phase, the
beam search algorithm [21], a heuristic search algorithm that
explores the best combination of words by expanding the most
promising node in a limited set, is used in the model to iteratively
predict each character until a complete sequence is generated.
An internal database with 1.7 million accessible molecules was
used to validate the reliability and generalization ability of the
model. All the molecules were randomly divided into a training
set (1.53 million molecules) and a test set (0.17 million molecules)
with a ratio of 9:1. Every molecule was represented by 10 different
enumerated SMILES strings for encoding. A previous study has
already proved that training the encoder with enumerated SMILES
strings and the decoder with Canonical SMILES is able to achieve a
better balance between translation correction rate and chemical
space breadth [17].

ADMET prediction model
In order to construct credible ADMET-related prediction models
for molecular optimization, a large and high quality ADMET
dataset containing basic information and experimental values
were collected from the ChEMBL, EPA and DrugBank databases,
and all the molecules in the dataset were prepared by molec-
ular operating environment (MOE, version 2016) [22–25]. Finally,
around 30 000 entries, covering logD7.4, LogS, Caco-2, MDCK cells,
Plasma protein binding rate (PPB), AMES toxicity, human ether-a-
go-go-related gene (hERG) toxicity, hepotoxicity and median lethal
dose (LD50), were obtained for ADMET evaluation [23, 24, 26–
29]. The source and information about the ADMET dataset are
summarized in Table S1, see Supplementary Data available online
at http://bib.oxfordjournals.org/. Based on the combination of the
calculated 512-dimensional vectors and XGBoost algorithm, nine
high-quality ADMET prediction models were constructed for the
evaluation and guidance of molecular optimization. In addition,
three calculated properties, including SlogP, quantitative estimate
of drug-likeness (QED) score and synthetic accessibility (SA) score,
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were also included in ChemMORT for more comprehensive eval-
uation of molecular suitability [30–32].

Scoring scheme
To provide a comprehensive perspective of multi-parameter opti-
mization task, the scoring scheme was applied for a qualitative
evaluation of the desirability of the optimized molecule. Based on
the recommended value range (Table S2, see Supplementary Data
available online at http://bib.oxfordjournals.org/), the customized
aim range and the actual property value for individual scores will
be: 1 for the value in the optimal range, (0, 1) for the value out
of the optimal range but in the recommended value range, and 0
for the value out of the recommended value range. Considering
the different requirements in different optimization tasks, the
individual scaled score components with customized weights will
be combined according to the importance of different features
in the whole task. The Final Score (eq 2) will be presented as
the weighted average score of all scaled scores, where a low
value corresponds to undesirable optimization and a high value
indicates an acceptable optimization.

F =
∑j

i=1 (Si· Wi)∑j
i=1 Wi

(1)

where j is the number of the objective functions used for opti-
mization, Si represents the desirability of the objective function i
of the optimized molecule, and Wi corresponds to the priority of
the objective function i in this task.

Particle swarm optimization
Based on the continuous presentation and scoring scheme, the
PSO [33], a stochastic optimization method that mimics swarm
intelligence to find an optimal point in a search space, was applied
to explore the optimized molecules with desirable properties [34–
37]. Inspired by social behavior of bird flocking or fish schooling,
the PSO consists of individuals for space searching, which utilizes
and communicates the information gained during their search.
During this process, each particle in the swarm is defined by their
position x and velocity v, where the scoring scheme f is applied
for the detection of the potential surface of the search space. The
movement of the i-th particle at iteration step k is influenced by
the historical best point of itself:

xbest
i = argmaxf

(
xk

i

)
(2)

as well as the overall historical best point of the swarm:

xbest = argmaxf
(
xbest

i

)
(3)

After each iteration, each particle will update its velocity and
position based on the collected information and its status:

vk+1
i = wvk

i + c1r1

(
xbest

i − xk
i

)
+ c2r2

(
xbest − xk

i

)
(4)

xk+1
i = xk

i + vk+1
i (5)

where c1 and c2 are the constants that weight the contribution
of the individual experience versus the swarm experience; r1 and
r2 are the random numbers drawn from independent uniform
distributions between 0 and 1; the inertia weight w is a constant
that controls the momentum of the particle from the previous
iteration. In this work, the position of the particle is initialized by
the output of the encoder.

Webserver development
ChemMORT was developed by using Python 3.7, Django 2.2, Ten-
sorflow 1.14.0, SQLite 3, celery 4.4.7, RabbitMQ 3.6.10 and RDKit
2019.03.1. It was a Django task, which is deployed on a high-
performance Nginx Web server of Ubuntu 18.04.4 LTS via the
application of uWSGI. ChemMORT applied the MVT (model, view
and template)design pattern, including three layers: model layer,
view layer and template layer. The model layer interfaces to
the SQLite3 database which was applied for model construction,
upload file storing and property prediction. The view layer con-
tains the main logic code, which was used for providing access
to the prediction models, handling file upload and download,
and manipulating multi-prediction tasks. The template layer was
applied for the presentation of the front-end pages, including
result visualization, page rendering, document integration, etc.
The browser compatibility testing is shown in Table S6, see Sup-
plementary Data available online at http://bib.oxfordjournals.
org/.

RESULTS AND DISCUSSION
ChemMORT workflow
The ChemMORT protocol is presented as a workflow in Figure 1.
As shown in Figure 1, there are three main modules in Chem-
MORT: SMILES Encoder, Descriptor Decoder and Molecular Opti-
mizer, which refer to the functions of descriptor calculation,
molecular translation and ADMET optimization, respectively.

SMILES Encoder: Three molecular input types are supported by
the SMILES Encoder module: inputting SMILES strings, drawing
molecules from the editor, and uploading file (∗.sdf/∗.csv/∗.txt).
After the molecular preparation process, the corresponding 512-
dimension vectors will be calculated based on the well-trained
encoder network. In the following page, the Summary and Result
block will present the overview of the results and the detailed
information about the SMILES strings, molecular graphs and 512-
dimension vectors. The calculated descriptors and related SMILES
strings can be saved as .csv file.

Descriptor Decoder: In this function, users can upload a 512-
dimensional vector (between −1 and 1), which latter will be
back-engineered to the corresponding uniform canonical SMILES
string through the application of decoder network. It should be
noted that owing to the character-by-character nature of the
SMILES representation and the fragility of its internal syntax,
an arbitrary combination may lead to the output of invalid or
failed molecules. After calculation, the summary and result block
are provided for the overview of the translated SMILES infor-
mation, where the results can also be downloaded as .csv file.
Owing to the advantage of reversibility, the combination of SMILES
Encoder and Descriptor Decoder possesses the ability to deal
with the inverse design problem, which is the key point of lead
optimization.

Molecular Optimizer: Molecular optimization is a complex and
multi-objective task, which needs to balance bioactivity, phar-
macokinetic profile and therapeutic safety. To achieve this goal,
the Molecular Optimizer module is provided with the integration
of reversible molecular representation, credible QSAR models,
necessary structural constraint and multi-objective PSO strat-
egy, which follows the principle of inverse QSAR methodology.
Firstly, users are required to input the job information and the
SMILES string of the molecule that needs to be optimized. Twelve
credible objective functions covering basic molecular properties,
synesthetic accessibility, drug-likeness, absorption, distribution
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Figure 1. The workflow of ChemMORT.

and toxicity were provided for property optimization. To retain
the efficacy and novelty of initial optimized molecule, the Simi-
larity Constrain and Substructure Constrain functions were applied
for the definition of the starting point and the annotation of
important active motif, respectively [38]. The application of the
Similarity Constrain function enables the setting of the distance
limitation between the generated molecule and the reference
molecule based on the ECFP4 fingerprint and Tanimoto simi-
larity metric, while the application of the Substructure Constrain
function highlights the importance of bioactivity motif. All the
above functions are allowed to set the weights according to their
importance, which later will be applied to the scaled score for
optimization navigation and comprehensive evaluation. Owing
to the different requirements for optimal molecules, users can
adjust the iteration steps and the number of the top desirable
compounds in each iteration step. After submission, the optimiza-
tion job will be calculated in the background. Users can obtain the
optimized result from the email or the access of Queue page with
the input of job token. The final result includes the information
about the starting molecule and optimized molecules, of which
the latter one provides the detailed table about the SMILES, the
structural graph, selected optimized property values and the
final score. Based on the combination of user-defined property
value range, specific function weights and the optimized property
value, the final score is a comprehensive desirability index of
the optimized molecules, and it can quantitatively indicate the
desirability and quality of the optimized molecule in the specified
optimization task.

Neural translation model training
A multi-layer gate recurrent unit network, including input
dropout, bottleneck layer and Gaussian noise term, was employed
for training and application. The model was trained until
convergence, using a batch size of 64, dropout ratio of 0.15 and
embedding noise of 0.05. As shown in Figure 2, the translation
accuracy for the training set and test set first increased rapidly,
but after a point, it became stable and almost unchanged. The
final average single character accuracy values for both the
training and test sets reached 99.8%, indicating the proportion of
correctly predicted characters to the total predicted length. This
achievement underscores the reliability and credibility of this
seq2seq model. It also indicated that the important feature of the
molecule has already been encoded in the latent space, resulting
in a potentially powerful molecular descriptor for further ADMET
prediction and optimization task.

ADMET predictive model validation
Based on the 512-dimensional descriptors calculated by the
encoder network, 9 ADMET-related prediction models, including
logD7.4, AMES, Caco-2, MDCK, PPB, LogS, hERG, hepatoxicity and
LD50, were constructed with the XGBoost algorithm. All the
datasets were divided into the training set and test set according
to the chemical space distribution computed by the ‘Diverse
training set split’ module in ChemSAR, where 75% compounds
were used as the training set and the remaining 25% as the test
set [39]. The prediction performance of the ADMET prediction
models and related parameters are summarized in Table 1 and
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Figure 2. The translation accuracy for the training set and test set during
the 160 k training steps.

Table S3, see Supplementary Data available online at http://bib.
oxfordjournals.org/, respectively.

As shown in Table 1, it can be observed that most models have
high and stable performance in both the 5-fold cross validation
and the test set prediction. For the regression models, the aver-
age values of RMSE and R2 are 0.442 and 0.747 for the 5-fold
cross validation, respectively, and 0.437 and 0.752 for the test set,
respectively. For the classification models, the average values of
accuracy and AUC are 0.763 and 0.836 for the 5-fold cross valida-
tion, respectively, and 0.780 and 0.846 for the test set, respectively.
Such results not only proved the credibility of the ADMET pre-
diction models, but also indicated the effectiveness and utility of
the latent representations calculated by ChemMORT. In addition,
the combination of the encoding and decoding networks ensures
the reversibility of the latent representations, which enables the
ADMET prediction models to navigate molecular optimization.

Constrained multi-objective optimization
PARP-1 is a critical DNA repair enzyme in the base excision
repair pathway. Inhibitors of PARP-1 provide a new type of anti-
cancer drugs that selectively kill cancer cells by targeting homol-
ogous recombination repair defects [40, 41]. However, most PARP-
1 inhibitors suffer from the deficiency of poor aqueous solubility,
which has severely disrupted the applicability value [42]. There-
fore, the optimization of more hydrophilic but still potent PARP-1
inhibitors for cancer therapy is quite necessary.

The approved drug Olaparib is selected as the initial molecule
for further optimization, which is an efficient PARP-1 inhibitor
possessing IC50 of 0.9 nmol but solubility of only 0.0601 mg/mL
(logS of −3.8). During this multi-parameter optimization task,
the solubility, QED and SA of the molecule are selected as the
aim properties. In addition, to ensure the potency of the PARP-1
inhibitor, the bioactivity motif and similarity constraint are also
used (Figure 3A). This optimization task is repeated 100 times
and 50 iterations are conducted for the PSO optimization each
time. The detailed information about the privilege function sec-
tion and corresponding weight, the different properties over the
course of the optimization, and the final representative optimized
molecules are depicted in Figure 3.

As shown in Figure 3B, ChemMORT is consistently able
to optimize the initial molecule with respect to the defined
multi-parameter properties. Clearly, the LogS value and the
final score first increased rapidly, but after a point, it became
stable and almost unchanged. For QED and SA, according to
the dense interval settings, they tend to fluctuate between 0.70

and 0.72, and between 2.5 and 2.7, respectively. For similarity,
the tendency is totally converse, with a stable value of 0.40
for the later optimized molecules. It is not surprising since it
is a process for molecular optimization. Besides, according to
the constraint of bioactivity motif, the optimized molecule is
not far from the initial molecule, indicating the importance of
structural constraints. Finally, 171 unique optimized molecules
with higher bioactivity and better water-solubility than the
initial molecule are generated after 100 optimization cycles
(Table S4, see Supplementary Data available online at http://
bib.oxfordjournals.org/). As shown in Figure 3C, the solubility
and final desirable score of the optimized molecules are much
higher than those of the initial molecule. One of the main
reasons is the substitution of 1,2-dihydrophthalazine to a more
polar function group, such as 1H-1,2,4-triazole, piperazine and
imidazolidine with N,N-dimethylacetamide, thus strengthening
the hydration of compounds and promoting the thermodynamic
process of dissolution [43]. Though the ability to optimize
molecular pharmacokinetic properties often comes at the price of
limited bioactivity to target, but with the application of molecular
docking, it is found that most optimized molecules have rather
high docking scores, which indicated preliminary guarantee of
their potency (Table S4, see Supplementary Data available online
at http://bib.oxfordjournals.org/). Such privileged results have a
close relationship with the implementation of the constraints
of the essential bioactivity motif and the similarity threshold
to the initial molecule. Five representative optimized molecules
with their property information are provided in Figure 3D. All of
them possess high structural similarity to Olaparib and other
approved PARP1 drugs, which successfully replicated the ideation
of medicinal chemists during lead optimization.

We then investigated the detailed interactions between the
optimized molecules and the PARP-1 target (PDB ID: 4L6S). The
predicted binding modes of Olaparib and the optimized molecules
are presented in Figure 4. As shown in Figure 4, most of the
optimized molecules have several key interactions, such as the
H-bonding networks with Gly863 and Ser904 and the π-π stacking
with Tyr907, which are known as the key binding patterns between
PARP-1 inhibitors and PARP-1.

To further ensure the utility and potency of these optimized
molecules, molecular dynamics (MD) simulation was used to
characterize the protein–ligand interactions of the optimized
molecules [44]. Specifically, the AMBER ff19SB force field [45] and
the General AMBER Force Field 2 [46] were used to parameterize
the system. The conformation of the protein–ligand complex
was generated using Vina [47]. Prior to the MD simulation, two-
step minimizations, heating and equilibration were performed.
The minimized system was heated to 298.15 K and increased
to atmospheric pressure. Then, 20 ns production MD simulation
was carried out for each complex in the ensemble with a time
step of 2 fs. The structural root-mean-square-deviations (RMSDs)
of the backbone atoms (C, Ca and N) of the protein relative
to the initial structures were examined as a function of time
(Figure S1). As can be seen in the plot, all the systems were
stable during the 20-ns MD simulations. The RMSDs of PARP-1
in complex with five optimized molecules showed almost the
same RMSDs with Olaparib. Additionally, we uniformly extracted
100 frames from the trajectory of the last 2 nanoseconds.
Subsequently, we performed molecular mechanics generalized
Born surface area (MM/GBSA) calculations and residue energy
decomposition using AmberTools2023 [48]. The predicted binding
free energies listed in Table S5, see Supplementary Data available
online at http://bib.oxfordjournals.org/, also indicate that the
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Figure 3. The information about the initial molecule, optimization process and representative optimized molecules. (A) The introduction of the initial
molecule Olaparib and related optimization task set; (B) The averaged values of the final score, QED, LogS, SA and similarity during the 50-step
optimization; (C) The docking score, final score and LogS value of Olaparib and 171 unique optimized molecules; (D) Five representative optimized
molecules with their property information.

Figure 4. The interactions between the generated active molecules with PARP1. Figures A-F correspond to the binding mode of Olaparib and the optimized
molecules 1 ∼ 5, respectively. The hydrogen-bonding, π-π stacking interactions and charged interactions are indicated by different colors.
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Figure 5. The top 10 residues contributing to the binding free energies of the generated active molecules. Figures A-F correspond to the binding modes
of Olaparib and the optimized molecules 1 ∼ 5, respectively.

optimized molecule 3 (−56.772 kcal/mol), 4 (−58.949 kcal/mol)
and 5 (−58.831 kcal/mol) were almost at the same level of
the binding affinity for Olaparib (−52.130 kcal/mol). To further
identify the key residues related to the binding process, the
free energy contributions of the top 10 residues at the binding
site were estimated. As shown in Figure 5, Tyr896, Tyr907,
Hie862 and Tyr907 are the most important residues for most
optimized molecules, which is in high agreement with the residue
contributions for PARP1 inhibitors (Figure 5A). Such analysis
indicated that the reasonable application of privileged motif
and similarity constraint is necessary to maintain molecular
bioactivity during lead optimization [49]. Although this multi-
parameter optimization task consists of many different and
partially conflicting individual objectives, such as aqueous
solubility, activity, SA and structural constraints, ChemMORT is
consistently able to find some molecules in the vast chemical
space that meets the desirable ranges for all of the defined ADMET
objectives within the guarantee of target bioactivity.

CONCLUSION
The success of a drug is determined not only by good efficacy and
specificity, but also the acceptable ADMET properties. However,
the optimization of the lead molecules is a multiple parameter
optimization problem, covering potency, selectivity, pharmacoki-
netics features and safety, which is extremely challenging owing
to the vast and discrete drug-like chemical space and limited
knowledge from experimental transformation. Therefore, to break
through this bottleneck, ChemMORT is developed for the multiple
ADMET property optimization of drug candidates through the
application of NMT, credible ADMET prediction models and
multi-objective PSO strategy. Three modules are included in
ChemMORT: SMILES Encoder, Descriptor Decoder and Molecular
Optimizer, which provide the representation, translation and
optimization functions, respectively. The constrained multi-
objective optimization of PARP-1 inhibitors has indicated the
successful match of ChemMORT to chemist design, which has
successfully optimized ADMET properties of the initial molecule

with the preservation of target binding affinity. It is anticipated
that the future is bright for ADMET property optimization of lead
molecules with the rational application of ChemMORT.

Key Points

• ChemMORT is a web-based integrated tool that learns
molecular representations based on an encoder-decoder
neural network architecture. It enhances network per-
formance using SMILES enumeration and conducts
multi-objective optimization of molecular properties
through particle swarm optimization algorithms. Chem-
MORT can effectively optimize undesirable ADMET
properties without compromising bioactivity, thereby
achieving reverse QSAR design at its core.

• ChemMORT has been meticulously designed and opti-
mized for its functional modules to enhance user expe-
rience. It supports batch upload and download func-
tionalities. Users can define promising and desirable
molecules based on their own criteria. The optimizer
also provides substructure and similarity constraints,
allowing users to freely adjust the importance of each
property for highly customizable molecular optimiza-
tion.

• The constrained multi-objective optimization of the
PARP-1 inhibitor is provided as the case to explore the
utility of ChemMORT.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.

ACKNOWLEDGEMENTS
This work was supported by National Key Research and Devel-
opment Program of China (2022YFA1004303), Foundation of State

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae008#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib


ChemMORT: an automatic platform for ADMET properties optimization | 9

Key Laboratory of HPCL (2023-KJWHPCL-01), Science Foundation
for Indigenous Innovation of National University of Defense Tech-
nology under Grant (23-ZZCX-JDZ-08), National Science Founda-
tion of China (22173118), Excellent Youth Foundation of Hunan
Province (2021JJ10068), Key scientific research projects in higher
education institutions of Henan Province (24A520036) and HKBU
Strategic Development Fund project (SDF19-0402-P02). The study
was approved by the university’s review board.

DATA AVAILABILITY
The project is available in the GitHub address (https://github.com/
antwiser/ChemMORT).

ABBREVIATIONS
ADMET, absorption, distribution, metabolism, elimination, and
toxicity; QSAR, quantitative structure–activity relationship; DL,
deep learning; SMILES, simplified molecular input line entry
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