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Idiopathic pulmonary fibrosis (IPF) is an age-related lung interstitial disease that occurs predominantly in people over 65 years of
age and for which there is a lack of effective therapeutic agents. It has demonstrated that mesenchymal stem cells (MSCs) including
alveolar epithelial cells (AECs) can perform repair functions. However, MSCs lose their repair functions due to their distinctive
aging characteristics, eventually leading to the progression of IPF. Recent breakthroughs have revealed that the degree of autop-
hagic activity influences the renewal and aging of MSCs and determines the prognosis of IPF. Autophagy is a lysosome-dependent
pathway that mediates the degradation and recycling of intracellular material and is an efficient way to renew the nonnuclear
(cytoplasmic) part of eukaryotic cells, which is essential for maintaining cellular homeostasis and is a potential target for regulating
MSCs function. Therefore, this review focuses on the changes in autophagic activity of MSCs, clarifies the relationship between
autophagy and health status of MSCs and the effect of autophagic activity on MSCs senescence and IPF, providing a theoretical
basis for promoting the clinical application of MSCs.

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive,
irreversible, and fatal lung disease marked by lung scarring,
with an average life expectancy of 3–5 years after diagnosis
[1–4]. IPF primarily affects middle-aged and older adults; the
prevalence of IPF increases with age among the numerous
countries studied, with a high rate over 65 years [5]. The
pathogenesis of IPF hinges on sustained or repetitive lung
epithelial injury, which triggers the activation of fibroblasts
and subsequent myofibroblast differentiation [6]. Two new
approved therapies by the FDA, namely, pirfenidone and
nintedanib, exhibit modest effectiveness in mitigating the
decline in lung function over a 1-year follow-up period
[7–10]. Nonetheless, these groundbreaking antifibrotic ther-
apies are still in their nascent stages and are not frequently
recommended for patients with a milder or stabilized course

of the disease, primarily owing to the substantial incidence of
side effects [10, 11]. Lung cancer frequently arises as a com-
plication of IPF, with one-fifth experiencing acute exacerba-
tions after treatment [12].

Cellular therapy for pulmonary fibrosis (PF) encompasses
the application of mesenchymal stem cells (MSCs) [13]. MSCs
are multipotent cells with the ability to differentiate into
diverse cell types and bestow immunomodulatory, antipro-
liferative, and anti-inflammatory effects [14]. However, a
multitude of internal and external factors have prompted
alterations in the health status of MSCs, thus influencing
their capacity to effectively facilitate the repair and regener-
ation of damaged lung tissue as therapeutic cells [15]. The
regulation of autophagy within MSCs stands as a potential
mechanism that could influence the properties of MSCs and
potentially impact their regenerative and therapeutic poten-
tial [16]. Autophagy serves as the principal cellular process
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for breaking down and recycling intracellular proteins and
organelles in various physiological and pathological con-
texts [17]. Impairment of autophagy fails to efficiently rec-
tify malfunctioning organelles and eliminate detrimental
metabolites within MSCs, ultimately resulting in the senes-
cence of MSCs [18]. Excessive autophagy will lead to apo-
ptosis of MSCs, affect the renewal ability of MSCs, and
ultimately lead to the inability of MSCs to repair damaged
lung tissue, accelerating the occurrence of IPF [19]. There-
fore, the change of autophagy activity is closely related to
the health status of MSCs.

In recent years, more and more researches have been
committed to investigating the regulative network of autop-
hagy in IPF [20, 21]. Autophagy is like a double-edged
sword, indicating that autophagy activity may be a signifi-
cant driving factor for IPF development [22]. Basal autop-
hagy activity maintains pulmonary homeostasis in a cellular
protective manner; it can selectively degrade potentially
detrimental cytoplasmic substances, uneliminated proteins,
and some unfavorable microorganisms, such as damaged
organelles, viruses, protists, and bacteria [23]. In this review,
this paper provides a focused review of the aging character-
istics and functional changes of MSCs in IPF, as well as the
mechanisms of autophagic activity affecting the health status
of MSCs, to promote a more comprehensive application of
MSCs in regenerative medicine.

2. The Emerging Role of Autophagy in IPF

2.1. The Biological Function of Autophagy. Autophagy repre-
sents the predominant cellular mechanism not only respon-
sible for a bulk recycling system but also for targeting specific
organelles, protein complexes, protein aggregates, and invad-
ing pathogens for catabolism [17]. According to the mecha-
nism used to deliver cargo to the lysosome, autophagy can be
classified as microautophagy, chaperone-mediated autop-
hagy, and macroautophagy (MA) [24].

The mammalian target of rapamycin (mTOR) kinase is a
conserved protein kinase involved in a multitude of cellular
processes including nutrient sensing, cell growth, and autop-
hagy, which is a signaling control point downstream of growth
factor receptor signaling, hypoxia, ATP levels, and insulin sig-
naling [25, 26]. mTOR kinase is a downstream effector of the
PI3K/Akt pathway, signaling in the presence of nutrients and
promoting cellular growth by stimulating the expression of
ribosomal proteins and enhancing protein translation [27].
Crucially,mTOR also functions to suppress autophagy in these
growth-favorable circumstances [28]. The activity of mTOR
kinase is inhibited by signals that detect nutrient deficiency,
such as hypoxia [29]. Upstream of mTOR, when cellular ATP
levels are low, the activation of adenosine 5′-monophosphate
(AMP)–activated protein kinase (AMPK) enhances the inhib-
itory function of the Tsc1/Tsc2 tumor suppressor proteins on
Rheb, a small GTPase essential for mTOR function [30].
Consequently, decreased mTOR activity triggers autophagy,
thereby ensuring that the cell adapts to its changing envi-
ronment by slowing down growth and increasing catabolic
processes.

Autophagy occurs constitutively in all eukaryotic cells
and operates at fundamental levels, assuming a homoeostatic
mechanism by regulating the degradation of molecules and
the turnover of organelles [16]. In this context, autophagy is
directed toward the degradation of misfolded protein cargos,
thereby preventing the accumulation of the relevant proteins
and consequent toxicity that may ultimately result in cellular
damage and mortality [31]. Autophagy is rapidly induced
under conditions of glucose or amino acid deprivation, oxi-
dative stress, hypoxia, and exposure to xenobiotics, all of
which may initiate or exacerbate cellular injuries [32]. There-
fore, autophagy is not only a dynamic adaptation pathway but
also safeguarding of proteome integrity and energy metabo-
lism. Paradoxically, excessive autophagy has been observed in
association with cell death; controlled autophagy is protective
by providing essential substrates [33]. However, to aviod con-
fusion, the term “autophagic cell death” has been restated as
“cell death with autophagy” to describe cell death that is sup-
pressed by inhibition of the autophagy pathway and led to a
disruption in the autophagic flux [34]. Autophagic flux refers
to the whole process of autophagy, and there are various
methods to monitor autophagy [35]. An ideal method to
assess autophagic activity is measuring the LC3-II levels, but
it is crucial to complement this with an examination of
substrate degradation (e.g., SQSTM1/p62) [35]. Furthermore,
confirming changes in autophagic flux can be achieved through
genetic modifications (like using short interfering RNA for
ATG genes), using pharmaceutical inhibitors such as 3-methy-
ladenine (3-MA) and chloroquine, or employing inducers like
rapamycin [35].

2.2. The Role of Autophagy in IPF. IPF is a fatal chronic
interstitial lung disease that impacts both lung mechanical
functions and gas exchange. With the emergence of advanced
molecular diagnostics, it is increasingly apparent that the
pathogenesis of IPF is intricate, involving multiple molecular
pathways, and thus is likely to necessitate diverse treatment
strategies [6, 36].

Altered autophagy in fibroblasts has also been documen-
ted as a crucial factor in the pathogenesis of human IPF [37].
Notably, autophagic activity was abnormally low in IPF fibro-
blasts, which was attributed to the low expression of FoxO3a
leading to a reduced level of LC3B transcription, ultimately
causing a decreased autophagic flow in fibroblasts [38, 39].
Defective autophagy is necessary to maintain a cell death-
resistant phenotype in fibroblasts within a collagen-richmatrix
[20, 38]. The potential profibrotic function of autophagy in
IPF fibroblasts necessitates a reevaluation of the utilization of
autophagy activators in the treatment of IPF, with a focus on
context-specific approaches.

Autophagy is also involved in promoting profibrotic
effects in IPF fibroblasts, so the utilization of autophagy acti-
vators for the treatment of IPF requires a context-specific
approach. Recent evidence highlights the pivotal contribu-
tions of disrupted mitochondrial homeostasis in alveolar epi-
thelial type II cells (AECIIs),fibroblasts, and alveolarmacrophages
(AMs) to the pathogenesis of IPF [40] (Figure 1). For instance, the
accumulation of dysmorphic and dysfunctional mitochondria
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within AECIIs has been reported in the pulmonary of IPF
patients [40]. The compromised mitochondria in AECIIs
are linked to reduced PINK1 levels and impaired mitophagy.
PINK1-deficient mice demonstrate disrupted mitochondrial
homeostasis and the onset of PF [40]. The expression of PARK2,
another protein associated withmitophagy, is decreased in the
lung fibroblasts of IPF patients. PARK2 deficiency exacerbates
bleomycin-induced PF in mice by enhancing myofibroblast
differentiation and proliferation through the promotion of the
PDGFR-PI3K-Akt signaling pathway [41]. Pirfenidone, an
FDA-approved therapy and an exciting landmark in the field
of IPF treatment, exerts its antifibrotic effects partially through
the induction of PARK2-mediated mitophagy and the inhibi-
tion of myofibroblast differentiation [42]. Mitophagy, a sub-
type of macroautophagy, is elevated in profibrotic AMs [43].
During the fibrotic process, Akt1-mediated mitochondrial
reactive oxygen species (ROS) induction triggers mitophagy
in AMs, thereby influencing macrophage apoptosis resistance
and the expression of TGF-β1 [43]. The TGF-β1 derived from
AMs is required for PF, which promotes the differentiation of
fibroblasts into myofibroblasts and the development of PF
[43]. Furthermore, AECIIs treated with TGF-β1 were shown
to induce mitophagy but TGF-β1 reduced mitophagy in fibro-
blasts by activating Akt in IPF lungs [43]. Considering the
varying impact of mitophagy on different cell types in the devel-
opment of IPF targeting cell type-specific mitophagy could lead
to more effective therapeutic results in the treatment of IPF.

3. Role of Autophagy in the Therapeutic
Potential of MSCs

Since 1995, first testedMSCs have been gained wide popularity
and extensively studied in preclinical model [44]. MSCs afford
several advantages, such as easy accessibility, low immunoge-
nicity, and therapeutic potential in regenerative medicine [45].
Due to these properties, MSCs have become very promising

tool for therapy in different disease types and ideal cells in the
treatment of IPF [46]. Initially, the beneficial effects of MSC-
based therapies were attributed to the replacement capacity of
MSCs [47]. However, this view has not stood the test of time;
studies have revealed that structure and function of injured
tissues by direct cell replacement are not the primary property
of MSCs [48, 49]. Research to date have demonstrated that
MSCs-derived secretome, which comprises a series of bioactive
molecules and extracellular vesicles (EVs), plays a key role in
immunemodulation and promoting tissue repair [50, 51]. The
keratinocyte growth factor (KGF), hepatocyte growth factor
(HGF), and epidermal growth factor (EGF) derived from
MSCs are helpful in tissue repair promoting effects. MSC-
derived vascular endothelial growth factor (VEGF) has also
been studied extensively for its angiogenic properties, which
promote reepithelialization and angiogenesis [52]. MSCs
reprogram proinflammatory macrophages (M1) toward an
antiinflammatory phenotype (M2) resulting in exerting anti-
fibrotic effects [53]. Furthermore, MSCs exert potent antifi-
brotic effects via modulating the ratio of metalloproteinases/
metalloproteinase tissue inhibitors [54, 55]. Given that IPF is
an age-related disease, recent studies have found that MSCs
exhibit aging under sustained pathological conditions such as
chronic injury and oxidative stress, which affects the thera-
peutic activity of MSCs and leads to PF [56] (Figure 2).

Recently, it has been proposed that autophagy in MSCs is
potentially a new approach for improving therapeutic effects
of MSCs (Table 1). Autophagy plays a dual role in MSCs: (1)
Modulating autophagy in MSCs may control the prolifera-
tion, activation, and effector function of MSC; (2) MSCs are
able to modulate the autophagy of immune and other cells
that play an important role in the pathogenesis of inflamma-
tory lung diseases [67]. Both of these mechanisms eventually
affect the efficency of MSC-based therapy. The initial obser-
vation indicating the crucial involvement of autophagy in
MSC processes was the disparity in autophagosome quantities
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FIGURE 1: Autophagy process in the IPF. Altered autophagy promotes ECMproduction, myofibroblast transformation, epithelial–mesenchymal
transition, epithelial cell dysfunction, and inhibits fibroblast apoptosis.
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FIGURE 2: Aging characteristics of MSCs in IPF.

TABLE 1: Role of autophagy in the therapeutic potential of MSCs.

Disease model Mechanism Autophagy effect Reference

Ischemic stroke
MSCs inhibit autophagy and promote cell survival by
transferring miR-25 to support recovery of neurological
function after stroke

Negative [57]

Liver fibrosis
Autophagy inhibition via Becn1 downregulation improves the
MSCs antifibrotic potential

Negative [58]

Hypoxic-ischemic brain damage
MSCs reduce autophagy in hippocampal neurons partly
through the AMPK/mTOR pathway

Negative [59]

Osteoarthritis
MSCs enhance autophagy in chondrocytes via mTOR inhibition
and protect articular cartilage from damage

Positive [60]

Acute lung injury
MSCs enhance autophagy and ameliorate acute lung injury
partially via delivery of miR-100

Positive [61]

Idiopathic pulmonary fibrosis
Inhibition of miR-199a-5p enhances autophagy by regulating
the Sirt1/AMPK signaling pathway and rejuvenates IPF-MSCs
senescence

Positive [62]

Parkinson’s disease
MSCs enhance autophagy and exert a neuroprotective effect
through the modulation of α-synuclein

Positive [63]

Alzheimer’s disease
MSCs enhance autophagy and increase β-amyloid clearance to
improve neuronal survival against Aβ toxicity

Positive [64]

Inflammatory bowel disease
Enhancement of autophagy in MSCs improves
immunosuppression of MSCs by increasing Pacer levels

Positive [65]

Diabetic kidney disease
MSCs diminish cell death in kidney tissue facing diabetic kidney
disease, culminating in podocyte maintenance, and also
downregulating the over induction of the autophagy pathway

A double-edged sword [66]
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between undifferentiated MSCs and their differentiated coun-
terparts [68]. Furthermore, the hindrance in the fusion between
autophagosomes and lysosomes, resulting in the obstruction of
autophagosome degradation, culminates in the accumulation
of autophagosomes within undifferentiated MSCs [69].

A recent study indicates that inhibiting autophagy enhances
the immune-suppressing abilities of MSCs [70]. The research
reveals that reducing the expression of Becn1 gene in MSCs
(short hairpin Becn1-MSCs) strengthens their therapeutic
and immune-modulating effects [70]. Notably, when treated
with these modified short hairpin Becn1-MSCs, a more pro-
nounced decrease in the populations of CD4+ and CD8+
T cells, as well as a reduced proliferation of MOG (myelin oligo-
dendrocyte glycoprotein)-specific CD4+ T cells, is observed,
all without impacting the polarization of T cells [70]. Similar
results were achieved when these mice receivedMSCs that had
been pretreated with an autophagy inhibitor [70].

Themodulation ofMSC autophagy can significantly influ-
ence their secretion capacity, thereby impacting their overall
functionality [71]. Notably, when MSCs are pretreated with
the autophagy-inducer rapamycin and subsequently subcuta-
neously injected, it results in an augmentation of their wound-
healing potential. This enhancement is closely linked to the
promotion of angiogenesis, driven by the autophagy-induced
secretion of VEGF [71]. Conversely, MSCs in which BECN1 is
silenced, causing an early blockade of the autophagic machin-
ery, exhibit a diminished therapeutic effect [71].

Thus, modulation of autophagy in MSCs seems to be a
potential target to enhance the therapeutic properties ofMSC-
based therapy, but great action needs to be taken, and further
studies should be conducted.

4. Importance of Autophagy in Maintaining
Healthy MSCs

4.1. Excessive Autophagy Promotes Apoptosis of MSCs. MSCs
are a heterogeneous population of multipotent stromal stem
cells that can be easily isolated from a variety of different
sources [72]. MSCs offer diverse benefits that stem from their
and the ability to differentiation into osteoblasts, chondro-
cytes, and adipocytes under appropriate and specific stimuli
[73, 74]. Additionlly, MSCs exert an immunomodulatory
effect on innate and adaptive immune responses via interac-
tion with the inflammatory microenvironment [75, 76].
Therefore, MSCs have been widely used in clinical trials to
treat autoimmune and inflammatory diseases, particularly in
the context of lung injuries [77]. However, there is a lack of
comprehensive understanding regarding the precise impact
of the inflammatory microenvironment on the fate of MSCs.
The inflammatory microenvironment plays a key role in
mediating immunoregulatory capability of MSCs [76, 78].
MSCs exert enhanced immunosuppressive functions after
interaction with inflammatory cytokines, including inter-
feron (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin
(IL)-1α, and IL-β [74, 79] (Figure 3). Related literature has
shown that both fetal and adult MSCs are susceptible to lysis
by IL2-activated natural killer cells [80]. Furthermore, IFN-γ

synergistically amplifies TNFα-induced apoptosis in MSCs,
thus impeding their capacity to repair damaged lung tissue,
indicating that apoptosis of MSCs could be induced in the
inflammatory microenvironment during the development
of PF [81].

Recent research has demonstrated that TNF-α and IFN-γ
inflammatory cytokines such as IFN-γ and TNF-α activate
autophagy in MSCs by upregulating Beclin 1 expression,
which attenuates the immunosuppressive capacity of MSCs
[19]. Although autophagy has been considered a cell survival
mechanism, it can also promote cell death depending on the
specific physiological and pathological conditions; the dual
function of autophagy in prosurvival and prodeath remains
incomplete [82, 83]. Autophagy constitutes major adaptive
(survival) strategy of cells in response to challenges such as
starvation, growth factor withdrawal, and neurodegeneration
but is also a critical contributor to the death of certain types
of cells [84, 85]. There is evidence to support autophagy
promoted TNF-α plus IFN-γ-induced apoptosis of MSCs,
highlighting the varied functions of autophagy under condi-
tions of inflammation and nutrient scarcity [19]. Conse-
quently, it is feasible to consider the manipulation of autophagy
in MSCs as a means to optimize therapeutic effectiveness.

4.2. Impact of Declined Autophagy on MSCs Aging. As MSC
populations with systematic age, they undergo functional
deterioration and less effective in vivo or extended culture
in vitro, limiting their therapeutic applications [86–88]. The
underlying processes that drive MSCs senescence remain
unclear, but significant progress has been made in elucidat-
ing the aspects of age-related MSCs phenotypic changes as
well as possible mechanisms that influence MSCs senes-
cence [89].

Autophagic activity tends to decrease with age across
various model organisms, potentially leading to the buildup
of autophagic structures and constraining the capacity for
maintaining cellular homeostasis in certain contexts [90–92].
Human cell studies have revealed that age-related declines in
the breakdown of lysosomal proteins hinder the autophagic
flux, worsening cellular damage and playing a role in the onset
of age-related diseases [93–96]. Additional evidence has sub-
stantiated that aging is linked to a diminished expression of
several Atg genes, including Atg2 and Atg8a, which play a
crucial role in both the initiation and functionality of autop-
hagy [97]. In normally aged mice, autophagy was significantly
reduced, as indicated by decreased levels of Atg7, LC3-II,
autophagosome, autophagolysosomal fusion, autophagy sub-
strates, and autophagy receptor [98]. Consistent with this,
autophagy was attenuated in both aged rat brain tissue and
aged human fibroblasts, as evidenced by significantly decreased
levels of autophagy-associated proteins, such as Atg5-Atg12 and
Becn1, and significantly increased levels ofmTOR and ferritinH
[99]. In normal older human brain samples, the expression of
key autophagy genes like Atg5 and Atg7 was also reduced
[100]. Additionally, several age-related human pathologies
are closely linked to deficits in autophagy that develop and
progress with age [101–103]. Taken together, compromised
autophagy is a characteristic of organismal aging, as autophagy
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abundance declines with age and cargo is not delivered to the
lysosomes as efficiently.

On the contrary, research on long-lived mutant animals
has revealed that increased autophagy is linked to delayed
aging. Specifically, the prolonged lifespan observed in C. ele-
gans daf-2 loss of functionmutants relies on autophagic genes
like bec-1, lgg-1, atg-7, and atg-12 [92, 104, 105]. Moreover,
the extended longevity in various longevity mutants, includ-
ing daf-2 mutants with reduced insulin/insulin-like signaling,
germline-less glp-1(e2141) mutants, dietary-restricted eat-2
(ad1116) mutants, mitochondrial respiration-defective clk-1
(e2519) mutants, and mRNA translation-impaired rsks-1
(sv31) mutants, necessitates the presence of HLH-30 [106].
Activation of autophagy with rapamycin could restore the
proliferative function of aged MSCs [107]. These findings
align with evidence of reduced induction in autophagosome
formation and lysosomal degradation in the absence of HLH-
30, suggesting that HLH-30 plays a pivotal role in promoting
longevity by regulating the autophagic process downstream of
various lifespan-extending mechanisms [106]. Further, the
formation of long-lived dauer worms, which correspond to
a larval hibernation stage, is correlated with increased autop-
hagy and depends on autophagy genes atg-1, atg-7, lgg-1, and
atg-18, demonstrating the importance of autophagy to organ-
ismal adaptation in challenging conditions [105]. However,

impaired autophagy could increase ROS and lead to MSC
aging [108]. Similarly, high glycemic treatment of MSCs
increased ROS-mediated autophagy, leading to the formation
of Beclin-1, Atg5, Atg7, Atg12, and LC3-II autophagosomes,
which induced MSC aging and local inflammation [109].

Together, collective research suggested that (1) autophagy
is impaired during as MSCs undergo aging, (2) autophagy
dysfunction shortens the lifespan of MSCs, and (3) enhancing
or restoring autophagy prolongs the lifespan and extends the
healthspan ofMSCs (Figure 4). This demonstrates that autop-
hagy regulation is central to the aging of MSCs (Table 2).

5. Targeting Autophagy in IPF

Treatment choices for IPF are quite restricted. While recent
trials have demonstrated the effectiveness of pirfenidone and
nintedanib in slowing the decline of lung function in IPF
patients, no medication can reverse or entirely prevent the
progression of IPF [110, 111]. IPF has emerged as the most
prevalent indication for lung transplantation, with a 5-year
survival rate posttransplant just slightly exceeding 50%
according to the International Society of Heart and Lung
Transplant (ISHLT) registry [112, 113]. However, lung trans-
plants continue to face significant clinical constraints, primar-
ily due to the shortage of available donors [114]. In addition to
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FIGURE 3: Excessive autophagic activity promotes apoptosis of MSCs under inflammatory microenvironment.
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investigating autophagy mechanisms in IPF, multiple drugs
have been introduced to mitigate the progression of the dis-
ease [115]. Furthermore, an array of compounds with thera-
peutic potential in IPF by modulating autophagy are steadily
emerging [116, 117].

6. Current Drugs to Treat IPF

In the past 10 years, researchers have spent a lot of effort on
IPF drug design, but still only two approved drugs, pirfeni-
done (Pirfenidone) and nintedanib (NIT), have been used in
patients with IPF. Pirfenidone and nintedanib have yielded a
discernible elevation in mortality and PF progression among
IPF patients under clinical observation [118]. Pirfenidone

exerts its antifibrotic effects primarily through inhibition of
TGF-β1, a critical mediator involved in IPF development
[119, 120]. Pirfenidone, an oral pyridine, reduces extracellu-
lar matrix (ECM) deposition via interfering with collagen
production and fibrinolytic processes by reducing the pro-
duction of certain tissue necrosis factors and growth factors
[121–123]. Notably, pirfenidone can activate ATG7- and
ATG5-dependent canonical autophagy in lung fibroblasts,
as a decrease in EGFP-LC3 dot formation as well as LC3
conversion from LC3-I to LC3-II was observed when ATG5
and ATG7 were knocked down [42]. Although pirfenidone
induced autophagy has been clearly demonstrated, the precise
mechanism of pirfenidone inhibiting lung fibrosis via autop-
hagy during IPF pathogenesis should be futher examined.

Aging

Activated 
MSC

Promoted
autophagy

Declined 
autophagy

Rich 
secretome

Extracellular 
vesicle

Growth 
factors

Autophagic genes: Atg 7, Atg5, Atg12

Autophagic activity
Reduced autophagic fu
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Self-renewal capacity
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Oxidative damage

Low-metabolic state Strengthening regeneration capacity

FIGURE 4: Autophagy influences MSCs activity and aging. In MSCs, promoted autophagy partially reverses the aging of MSCs, while declined
autophagy attenuates the biological functions of MSCs.

TABLE 2: Autophagy modulation on apoptosis and aging in MSCs.

Experimental model Molecular mechanisms Autophagy effect on MSCs References

Cecal ligation and
puncture mouse model

Inflammatory microenvironment-induced autophagy inhibits the
expression of the prosurvival gene Bcl-2 via suppressing reactive
oxygen species/mitogen-activated protein kinase 1/3 pathway

Promotes apoptosis [19]

Mice model
Activation of autophagy could reduce the adipogenic differentiation
and promote proliferation of aged MSCs

Reverses aging [107]

Mice model
Inhibition of autophagy could turn young MSCs into a relatively aged
state by reducing their osteogenic differentiation and proliferation
capacity and enhancing their adipogenic differentiation capacity

Promotes aging [107]

Mice model
Impaired autophagy led to increased ROS and further induced the
p16INK4a axis

Promotes aging [108]

Cellular experiment
High glycemic treatment of MSCs increased ROS-mediated autophagy,
leading to the formation of Beclin-1, Atg5, Atg7, Atg12, and LC3-II
autophagosomes, which induced MSCs aging and local inflammation

Promotes aging [109]
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Nintedanib is another therapeutic medication possessing
antifibrotic attributes, operating as a multityrosine kinase
inhibitor (MTKI) [124]. Nintedanib can inhibit the fibrosis
process by targeting PDGFRα-β, FGFR1-3, VEGFR1-3, and
SFK [125–129]. Nitidanib has shown antifibrotic and anti-
inflammatory activity in animal models of lung fibrosis,
interfering with fibrotic processes such as fibroblast prolifer-
ation, migration, and differentiation and significantly reduc-
ing the deposition of lung collagen [130, 131]. In addition,
efficacy and safety of nintedanib in patients with IPF have
been demonstrated in phase 3 clinical trials, reducing the
decline in forced vital capacity (FVC) and slowing the pro-
gression of fibrosis [120]. Furthermore, certain studies have
substantiated the ability of nintedanib to restrain the growth
of specific lung vascular cells, including endothelial cells and
pulmonary artery vascular smooth muscle cells [131]. Nota-
bly, the research revealed that nintedanib effectively boosted
autophagy by assessing the LC3-I/II ratio [132]. Another
investigation produced consistent findings, confirming that
nintedanib enhanced autophagic flux in fibroblasts con-
firmed by observing increased LC3-II formation and induced
Beclin-1-dependent, ATG7-independent autophagy in fibro-
blasts [133]. Presently, due to extensive research into autophagy
regulation, several autophagy-targeted pulmonary antifibrotic
treatments have been identified [134, 135].

7. Potential Compounds to IPF

Amounting research mainly to identify the new molecular
targets and therapy choices. Berberine, an important proto-
berberine alkaloid, shows various pharmacological activities
that have been widely used in different therapeutic areas [136].
Berberine is extensively distributed in a variety of herbs and its
synthetic derivatives have gained significant interest in clinical
applications [136]. Importantly, berberine as an autophagy
modulator can be efficient against PF viamodulating autophagy
[137, 138]. Berberine can remarkably enhance the expression of
LC3 and Beclin-1, while significant attenuation of p-mTOR,
Akt, andMAPK signaling pathways, thereby stimulating autop-
hagosome formation and initiating autophagy [139, 140].

Spermidine, an autophagy-inducer, enhances Beclin-1-
dependent autophagy and autophagy modulators in IPF
fibroblasts and bleomycin-induced mouse lungs [141]. Spe-
cifically, spermidine upregulated autophagic flux, leading to
an increase in the LC3B-I/II ratio and the expression of ATG7
and Beclin-1 in IPF fibroblasts and bleomycin-inducedmouse
lungs [141]. In addition, spermidine can reverse autophagy
impairment by decreasing the expression of p-mTOR in
bleomycin-induced lungs [141]. These finding demonstrate
that spermidine enhances autophagy and that this effect
may hold promise in the treatment of IPF.

Immune checkpoint PD-1 play a critical role in control-
ling inflammatory response to injury in the normal lung
tissues. Programed death ligand-1/programmed cell death 1
(PD-L1/PD-1) axis is one of the most essential immune check-
points in regulating immunotherapy. In IPF patients, PD-L1
was found to have overexpression on alveolar macrophages

(AMs) but was negative on fibroblasts and myofibroblast
membranes [142, 143]. Blocking PD-L1 can reverse PF by
increasing phagocytosis of profibrotic fibroblasts in vivo
mouse model of fibrosis [144]. The anti-PD-L1 monoclonal
antibody (anti-PD-L1 mAb) has been discovered to signifi-
cantly inhibit the proliferation and migration of lung fibro-
blasts and reduce the deposition of ECM [145]. It can increase
the expression of the autophagy-related marker protein
SQSTM1 and the accumulation of LC3II, promote the forma-
tion of autophagosomes, and ultimately induce autophagy
activation in PF [145]. These evidences show that anti-PD-
L1 therapy has the potential to alleviate PF, offering a novel
approach to treating IPF.

Bergenin, a compound derived from a variety of medici-
nal plants, is a major component from Bergenia stracheyi
(Saxifragaceae) [146]. Bergenin could attenuate bleomycin-
induced PF in mice by suppressing the myofibroblast activa-
tion and promoting the autophagy and the apoptosis of
myofibroblasts [147]. The study revealed that berberine sig-
nificantly reduced the phosphorylation levels of mTOR,
ULK1, and S6 and decreased the expression levels of typical
fibroblast activation markers α-SMA and ECM protein col-
lagen I, thus promoting autophagy and alleviating PF [147].
Moreover, bergenin has the potential to maintain normal
autophagy and apoptosis balance in IPF fibroblasts by
modulating energy metabolism [147]. Overall, there is a
pressing requirement for additional investigations and ani-
mal model assessments to facilitate the development and
validation of novel therapeutic agents for IPF that specifi-
cally target autophagy.

8. Conclusion

With the developments in regenerative medicine technology,
stem cell therapy has been tested for safety and efficacy in
various lung diseases. However, the abnormal health status
of MSCs can affect their own therapeutic function, especially
in IPF. The new evidence indicates that modulation of autop-
hagy in MSCs plays an important role in the therapeutic
action exerted by MSCs. To either induce or inhibit autop-
hagy activity in lung tissue microenvironment can affect the
ability of MSCs to repair damaged tissues, specially IPF.
Elevating autophagy generally enhances cellular functions
and maintains homeostasis, contributing to prolonged life-
span and improved pulmonary health. However, it is crucial
to recognize that a substantial increase in autophagy may
potentially reduce lifespan and adversely affect lung health.
The therapeutic targeting of autophagy in aging and age-
related lung diseases is contingent upon the specific autop-
hagic defects present in different cell types. From existing
literature, it can be postulated that enhancing autophagic
activity to augment MSCs function in IPF represents a prom-
ising therapeutic strategy to enhance lung function in the
elderly. The sustained health benefits for MSCs are likely
to result from achieving an optimal balance of autophagy
and are influenced by both lung tissue and organismal age.
This review aims to provide more comprehensive insights
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into how autophagy affects the therapeutic properties of
MSCs, thereby broadening the horizon of clinical utilization
of MSCs for the treatment of IPF. The development of novel
MSC therapies targeting the autophagy signaling pathway
may provide an innovative and attractive approach to the
field of regenerative medicine.
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