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Abstract 
Proteins play an important role in life activities and are the basic units for performing functions. Accurately annotating functions 
to proteins is crucial for understanding the intricate mechanisms of life and developing effective treatments for complex diseases. 
Traditional biological experiments struggle to keep pace with the growing number of known proteins. With the development of high-
throughput sequencing technology, a wide variety of biological data provides the possibility to accurately predict protein functions by 
computational methods. Consequently, many computational methods have been proposed. Due to the diversity of application scenarios, 
it is necessary to conduct a comprehensive evaluation of these computational methods to determine the suitability of each algorithm for 
specific cases. In this study, we present a comprehensive benchmark, BeProf, to process data and evaluate representative computational 
methods. We first collect the latest datasets and analyze the data characteristics. Then, we investigate and summarize 17 state-of-
the-art computational methods. Finally, we propose a novel comprehensive evaluation metric, design eight application scenarios and 
evaluate the performance of existing methods on these scenarios. Based on the evaluation, we provide practical recommendations for 
different scenarios, enabling users to select the most suitable method for their specific needs. All of these servers can be obtained from 
https://csuligroup.com/BEPROF and https://github.com/CSUBioGroup/BEPROF. 

Keywords: protein; protein function; deep learning; benchmark. 

INTRODUCTION 
Proteins, as essential molecules in living organisms, play a pivotal 
role in a wide range of biological processes, including gene regula-
tion, cytoskeletal support and material transport [1, 2]. Accurately 
annotating protein functions is indispensable for understanding 
the nature of biological activities [3], diagnosing the etiology of 
diseases [4] and accelerating the development of new drugs [5]. 
Despite the remarkable progress made by researchers in this field, 
there is still a significant number of proteins whose functions 
remain unclear. To date, less than 1% of proteins in the UniProt [6] 
database have functional annotations, and most of these annota-
tions are obtained through expensive and time-consuming biolog-
ical experiments [7], leading to a large gap between the number 
of proteins with known sequences and those with known func-

tions. Consequently, it is meaningful and necessary to develop 
computational methods for automatic protein function predic-
tion (AFP), which will not only deepen our understanding of living 
cells, but also have the potential to revolutionize medical research 
and treatment. 

In recent years, significant advancements in high-throughput 
sequencing technology and computational methods have facil-
itated extensive access to protein information, leading to the 
development of diverse and valuable databases. For example, 
the UniProt [6] database catalogs protein sequences, the STRING 
[8] database houses protein–protein interactions (PPIs), the MED-
LINE [9] database stores literature information describing proteins 
and the  PDB [10] database provides experimental protein struc-
tures, while the AlphaFold2 [11] database offers predicted protein
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Figure 1. The main processes of existing approaches in AFP (left) and the loosely hierarchical structure of GO Terms (right). The structure of GO terms can 
be visualized as a graph, where each node represents a specific GO term, and the edges connecting the nodes represent the relationships between these 
terms. In AFP, two types of relationships (’is_a’ and ’part_of’) are used. These relationships establish a hierarchy resembling a ”parent-child” relationship, 
allowing the transfer of functions between related terms in a reliable manner. 

structures generated by AlphaFold. By leveraging these compre-
hensive data resources, a wide range of computational methods 
have been proposed to predict protein functions. 

From a computational perspective, AFP can be regarded as a 
large-scale sparse multi-label classification problem. In the past, 
the lack of uniformity in function definitions among biologists 
posed a challenge for researchers in efficiently searching for 
relevant biological information. To address this challenge, several 
databases have been established, the most widely used of which is 
Gene Ontology (GO) [12]. GO comprises three domains to describe 
protein functions: biological process ontology (BPO), molecular 
function ontology (MFO) and cellular composition ontology (CCO). 
Specifically, BPO represents the biological activities in which a 
gene or its product is involved; MFO encompasses the biochem-
ical activities of the gene product, such as binding to a specific 
ligand or structure; and CCO describes the specific location of 
the gene product in the cell. As shown in Figure 1, a GO term 
node represents a specific function, and each domain consists 
of a series of GO terms with different relationships between 
these terms, such as is-a’, part-of’, has-part’ and regulates’. These 
relationships establish a hierarchical structure and connections 
between GO terms. To date, there are approximately 32 857 BPO 
GO terms, 4744 MFO GO terms and 13 681 CCO GO terms. The goal 
of computational methods is to annotate proteins with these GO 
terms accurately. 

Although many computational methods and several reviews 
have been proposed for AFP [7, 13, 14], there remain some chal-
lenges. Firstly, these reviews only summarize existing methods 
and lack a comparison of the performance of these methods 
to provide researchers with choices for their usage. Secondly, 
there is a lack of comprehensive evaluation of these methods 
across diverse application scenarios. Additionally, current evalua-
tion metrics fail to consider the structural relationships between 
protein functions, which prevents them from accurately accessing 
the significance of different functions. As a result, these met-
rics cannot accurately measure the overall performance of AFP 
methods. 

To address these limitations, we propose a comprehensive 
computational benchmark, BeProf, to evaluate the performance 

of existing methods for AFP in various scenarios and provide 
a reference for future research in protein function prediction. 
Specifically, BeProf introduces a novel evaluation metric that 
takes into account both the depth and information content (IC) of 
functions. Additionally, BeProf incorporates the latest database, 
processes data for model input, and analyzes the distributions 
of proteins and functions. Furthermore, this benchmark covers 
17 computational methods and designs 8 specific cases to thor-
oughly test their performance. Finally, we analyze and summarize 
the strengths of these methods, and offer practical guidance for 
users in different application scenarios. 

SURVEY OF CURRENT METHODS 
In the last few decades, a large amount of computational meth-
ods have been developed for AFP. To provide researchers with 
a comprehensive overview of computational methods in this 
field, BeProf covers 2 baseline methods and 15 recently published 
methods that provide accurate predictive results and enhance the 
development of AFP, most of which are based on deep learning 
techniques. Furthermore, these methods are categorized into five 
groups based on the type of biological data they used, as shown 
in Figure 1. The details are presented in Table 1. 

Sequence-based prediction methods 
The secondary and tertiary structures of proteins are formed 
through the folding of protein sequences, which, in turn, deter-
mines their functions [15]. Therefore, there exists a close relation-
ship between sequences and functions, which enables the identi-
fication of potential motifs and the prediction of functions from 
sequences alone. Currently, computational methods extensively 
exploit protein sequence information, and many methods can 
achieve good performance for AFP based on sequence alone. 

In the early days of AFP, BlastKNN was the most widely used 
baseline method for AFP based on sequence similarity. Specifi-
cally, given a target protein, BlastKNN first employs the Blast [16] 
tool to calculate the similarities between the target protein and 
proteins with known functions. Then, as shown in formula (1), 
BlastKNN selects the K most similar proteins and merges their
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functions using a similarity-weighted algorithm to predict the 
functions of the target protein Pi: 

S
(
Gj, Pi

) =
∑

Ps∈N(Pi) bitscore (Pi, Ps) · I (Gj, Ps
)

∑
Ps∈N(Pi) bitscore (Pi, Ps) 

(1) 

where N(Pi) is a protein set including the K selected similar 
proteins for the target protein Pi, Gj is a predicted GO term, and 
I is an identity function that returns 1 if the condition is true and 
0 otherwise. bitscore(Pi, Ps) refers to the similarity score between 
protein Pi and protein Ps. S(Gj, Pi) is the predicted score of GO term 
Gj for protein Pi. 

Compared to Blast [16], Diamond [17] offers faster speed. 
Instead of choosing K proteins, the strategy based on Diamond 
considers all available proteins to annotate target proteins, as 
shown in formula (2): 

S
(
Gj, Pi

) =
∑

Ps∈E DiamondScore (Pi, Ps) · I (Gj, Ps
)

∑
Ps∈E DiamondScore (Pi, Ps) 

(2) 

where E represents the corresponding similar protein set of the 
target protein Pi calculated by Diamond with an e-value of 0.001. 
Furthermore, the Diamond-based method considers the relation-
ships between GO terms when assigning values to each predicted 
GO term. This approach ensures that the predicted value for an 
ancestor GO term is always greater than or equal to its child GO 
terms, which is a common post-process procedure and widely 
used in later studies [18, 19]. 

Recently, deep learning [20] has demonstrated robust capabil-
ities in feature extraction from various types of data modalities 
[21]. Researchers have also begun to utilize deep learning to 
extract features from protein sequences for AFP. 

DeepGOCNN [14] is the first sequence-based model using 
deep learning. It employs one-hot encoding to represent protein 
sequences and then uses a stack of CNN layers with varying 
receptive fields to extract features. Finally, the extracted features 
are concatenated to predict protein functions. However, it is worth 
noting that DeepGOCNN is limited in its ability to predict GO 
terms with more than 50 occurrences in the training set, which 
restricts its applicability to rare GO terms with few samples. To 
overcome this limitation, DeepGOPlus [14] combines the results 
from DeepGOCNN and a homology-based method (Diamond) via 
a weighted fusion approach. It integrates homologous protein 
similarity information, reducing the impact of the limitation on 
rare GO terms, increasing the number of predicted GO terms and 
achieving higher predictive performance. 

To date, self-attention and transformer technology [22] have  
achieved impressive performance in extracting features from 
long sequences. TALE [23] is a transformer-based method that 
combines protein sequences with hierarchical GO labels. First, 
TALE employs an embedding layer to encode protein sequences 
and a transformer block to extract sequence features. It then 
constructs a hierarchical GO label matrix with dimensions of c∗ c, 
where c represents the total number of GO labels. For the ith GO 
label’s feature, both the label itself and its ancestors are assigned 
a value of 1. Additionally, ancestor nodes must always precede 
their child nodes. Therefore, TALE introduces a constrained loss 
function to ensure that the predicted scores for ancestor nodes 
surpass those of their corresponding child nodes. Finally, TALE 
integrates sequence- and label-based features to learn the con-
tribution of each amino acid to individual GO labels. Additionally, 

the weighted fusion of TALE predictions and Diamond predictions 
further improves the model performance. 

The zero-shot technique can predict labels that have not 
appeared in the training data, and thus can be used to predict 
new functions for AFP, which is a limitation of existing methods. 
DeepGOZero [24] is a sequence-based method that can predict 
unseen functions via zero-shot learning. It also uses InterPro 
binary features as input and generates dense features through 
two MLP layers. Most remarkably, DeepGOZero can leverage GO 
formal axioms to predict new functions via zero-shot learning. 
These GO formal axioms, represented by EL Embeddings [25], 
denote classes as n-balls and relationships as vectors to embed 
ontology semantics into geometric models. During the zero-
shot process, DeepGOZero integrates model theory with neural 
networks to predict protein functions. Specifically, it computes the 
binary cross-entropy losses between predicted results and labels, 
and then optimizes them with losses derived from the ontology 
axiom specified by EL Embeddings. Moreover, DeepGOZero 
integrates homologous protein similarity information to further 
enhance prediction performance. 

Recently, large language models have shown significant poten-
tial in various downstream tasks [11, 26]. Inspired by this, ATGO 
[18] has been proposed as a state-of-the-art method for AFP. ATGO 
extracts sequence features from the last three layers of the pre-
trained protein language model ESM-1b [26]. These features from 
different layers are then concatenated to generate a compre-
hensive feature representation through several MLP layers. Sub-
sequently, ATGO designs a triplet network based on contrastive 
learning. Within this architecture, the similarity between proteins 
is measured via the Euclidean distance between their features. 
The primary objective of the triplet network is to drive pro-
teins with similar functions closer together in the latent embed-
ding space, which can further improve performance. Additionally, 
ATGO integrates its results with those of homology-based meth-
ods as the final prediction results. 

Since the motifs and the large language models of protein 
sequences have been demonstrated to be closely related to 
protein functions, as well as the basic and abundance of 
protein sequences, predicting protein functions based on protein 
sequences is of great promise and significance. 

Sequence- and structure-based prediction 
methods 
Protein sequences fold into three-dimensional structures to per-
form their functions. Therefore, protein structures exhibit a closer 
correlation with functions than sequences. However, experimen-
tally obtained protein structures account for only a small fraction 
of known protein sequences, posting a limitation for the devel-
opment of structure-based algorithms. With the advancement 
of deep learning technology, AlphaFold2 [11] has been proposed, 
which can predict protein structures with high reliability based on 
protein sequences. This advancement makes it possible to predict 
protein functions based on structural information. Nowadays, 
more and more structure-based methods have been proposed. 

DeepFRI [27] is a graph convolutional network [28] (GCN)-
based model that combines protein sequences and structures 
to predict protein functions. For protein sequences, it utilizes a 
self-supervised model with recurrent neural networks and long 
short-term memory networks [29], which is trained to predict 
residues in the sequences. Then, residue-level features can be 
obtained from the trained model. For protein structures, DeepFRI 
constructs an alpha carbon (Cα) contact graph from coordinates 
of residues, treating residues as nodes and calculating distances
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between their Cα atoms. Residues with distances less than 10 Å 
are considered in contact. Given the residue-level features and 
corresponding contact graphs, DeepFRI uses several GCN layers 
and a mean-pooling layer to learn the features of the entire 
protein. Finally, these features are fed into two fully connected 
layers, which makes the prediction of protein function. 

Unlike DeepFRI, GAT-GO [30] is a graph attention network 
[31] (GAT)-based method that leverages a pre-trained protein 
sequence language model. GAT-GO takes a protein sequence as 
input and extracts three types of features: sequential features, 
residue-level features and structure features. The sequential 
features are generated by HHBlits, including the one-hot encoded 
residues, corresponding solvent accessibility (SA), secondary 
structure (SS) and position specific scoring matrix (PSSM). The 
residue-level embeddings are derived from the pre-trained 
language model, ESM-1b. Meanwhile, Raptor X [32] predicts the 
Cβ − Cβ distance and generates the contact graphs. When the 
Cβ − Cβ distance is less than 8 Å, an edge between corresponding 
residues is added. Then, the sequential features and residue-
level embeddings serve as node-level features, and several GAT 
layers are applied to learn structural information. This GAT-based 
encoder integrates distant residue interactions and node features 
to produce more informative protein-level representations. The 
final model predicts functions based on the combination of 
protein-level representations and residue-level embeddings. 
Experimental results demonstrate that GAT-GO achieves state-
of-the-art performance. 

In conclusion, the predicted protein structures with high con-
fidence provide a new perspective to predict protein functions, 
and several models have been proposed and get comparable per-
formance. However, the advancements of protein structures have 
still not been highlighted. How to effectively detect the important 
motifs in the structures and generate the corresponding features 
remains the key to improving the performance for AFP. 

Sequence- and PPI network-based prediction 
methods 
Since proteins interact to perform functions together [33–35], PPI 
information also plays an important role in AFP. In a PPI network, 
nodes represent proteins, and edges represent their interactions. 
These data reflect the complex biological processes in which 
proteins are involved, making them widely utilized in AFP [36]. 

DeepGO [13] is the first deep learning-based model for AFP, 
integrating both protein sequences and PPI networks. It first uses 
3-mer to encode protein sequences, and then learns their latent 
embeddings with an embedding layer. Subsequently, the sequen-
tial features are extracted through 1D convolution and max pool-
ing layers. For the PPI network, DeepGO utilizes DeepWalk [37] 
to generate a 256-dimensional network topology feature for each 
protein. After combining the sequential and network features, 
prediction scores for individual GO terms are calculated through a 
fully connected layer. Additionally, DeepGO designs a hierarchical 
classification neural network model to predict functions, ensuring 
that the results satisfy the GO taxonomic structure for is-a’ rela-
tions. Experimental results demonstrate that DeepGO surpasses 
traditional methods that only depend on sequence similarity, 
especially in CCO. Although DeepGO provides valuable insights for 
AFP based on deep learning, it also has limitations. Its hierarchical 
classification neural network requires huge memory resources 
and is difficult to apply to large-scale labels. 

Inspired by DeepGO, DeepGOA [19] extracts sequential features 
more efficiently and robustly. It first uses Word2vec to generate 
residue-level embeddings of sequences, which are then fed into 

Bi-LSTM [38] and multi-scale CNN layers to extract global and 
local features. On the other hand, DeepGOA uses InterProScan 
[39] tool to extract specific protein domains, motifs and family 
information. For the PPI network, DeepGOA also uses the features 
generated by DeepWalk [37]. These three types of features are 
then concatenated to form the final features, which encompass 
comprehensive protein information and facilitate the improve-
ment of AFP. The probabilities for all GO terms are determined 
using a fully connected layer. DeepGOA directly uses MLP layers 
to predict functions, which requires less memory than DeepGO 
and can predict a broad range of functions. Experimental results 
further prove the effectiveness of DeepGOA. 

The success of graph neural networks [40] (GNNs) provides 
more strategies in AFP. DeepGraphGO [41] is an end-to-end model 
that leverages GNNs to extract information from PPI networks 
to predict protein functions. Initially, DeepGraphGO integrates 
PPI networks of 17 species to form a multi-species PPI network. 
Simultaneously, it generates the binary features of InterPro from 
protein sequences. Considering the high dimension and sparsity 
of binary features, DeepGraphGO employs an embedding layer to 
learn the dense features for each property. These dense features 
are then fed into two GCN layers, which process protein networks 
across all species and update each protein node based on its 
connected nodes. This operation is repeated twice to ensure that 
the neighbor information is sufficiently captured, enabling the 
model to extract the higher-order structure of the PPI network. 
Experimental results highlight both the effectiveness of the PPI 
network and the feasibility of the multi-species strategy employed 
by DeepGraphGO. 

NetQuilt [42] introduces a novel approach to seamlessly inte-
grate sequence and network information of multiple species. By 
utilizing IsoRank [43] similarity scores, it constructs comprehen-
sive meta-network maps of proteins across different species, aim-
ing to establish relationships between different species. NetQuilt 
commences by sourcing data from the STRING database using 
specific species IDs. Then, it employs Blast to quantify sequence 
similarity between proteins, both within a single species and 
across different species. Building upon this foundation, NetQuilt 
computes IsoRank alignment scores, producing a weighted adja-
cency matrix and a sequence identity matrix. Various information 
matrices are ultimately combined to form a dense matrix S, which 
includes both intra-species and inter-species information. Finally, 
this matrix S serves as training input for a maxout neural network. 
The results demonstrate that NetQuilt achieves commendable 
performance on new species without the target PPI network. 

These studies have demonstrated that PPIs are closely related 
to function, but such approaches are also facing several limita-
tions. A certain percentage of proteins are lacking in interaction 
relationships, and this phenomenon is particularly common in 
new species [44]. Consequently, it is important to consider how to 
apply the known PPI information to newly sequenced organisms. 

Sequence- and literature-based prediction 
methods 
To date, some relevant literature sources have been published, 
providing descriptions of protein functions and offering insights 
into AFP. However, due to the complexity of the descriptions and 
the challenges with gathering pertinent data, it is difficult to 
predict protein function on large-scale data. Consequently, only 
a limited number of methods have been proposed. 

DeepText2GO [45] is a representative method using biomedical 
literature. In contrast to traditional bag-of-words representations, 
DeepText2GO incorporates deep semantic text representation
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Table 2: The statistical information of datasets generated by different rules 

Dataset Data Split Statistics BP CC MF All 

Dataset1 Time 
stamps 

Training 47,830 42,891 31,756 57,254 
Validation 777 717 684 1432 
Test 1070 898 408 1435 
GO 19,717 2506 6095 28,318 

Dataset2 Sequence 
iden-
tity 

Training 44,827 40,235 29,745 54,302 
Validation 2378 2091 1510 2823 
Test 2472 2180 1593 2996 
GO 19,450 2515 5914 27,879 

with a variety of protein information sources. For instance, it con-
tains sequence homology, protein families, domains and motifs, 
which can be obtained by Blast and InterProScan. For literature-
based data, DeepText2GO extracts PubMed identifiers from 
UniProtKB/SwissProt and retrieves the corresponding abstracts. 
Subsequently, algorithms such as TFIDF, Document2Vec [ 46] 
and D2V-TFIDF are then applied to the literature information to 
generate embeddings. Then, sequence and literature features are 
merged and classified using an LR model. Finally, the predictions 
from the LR model are combined with BlastKNN to generate the 
final predicted scores for GO terms. Experimental results prove 
the superior effectiveness of DeepText2GO. 

Ensemble prediction methods 
Ensemble models can often achieve superior results via integrat-
ing multiple individual predictors, leading to significant advance-
ments in various tasks. Given the multifaceted nature of protein 
data, encompassing sequences, structures and interactions, it is 
necessary to develop methods that effectively integrate these 
diverse data sources to enhance the accuracy of protein function 
prediction. 

GOLabeler [47] is a machine learning method for integrating 
five component classifiers that leverages the learning-to-rank 
(LTR) [48] paradigm to integrate different sequence-based fea-
tures. It selects five distinct sequential information to generate 
corresponding classifiers, including Naive (GO term frequency), 
BlastKNN (K-nearest neighbor based on BLAST results), LR-3mer 
(logistic regression (LR) for 3-mer frequency of sequence), LR-
InterPro (LR for InterPro features) and LR-ProFET (LR for ProFET 
[49] features). Unlike regular classification models that treat pos-
itive examples equally, LTR models penalize lower-ranked positive 
examples more heavily. GOLabeler effectively integrates multi-
ple sequence-based predictions from diverse classifiers, where 
all information is generated from the sequence alone. Overall, 
GOLabeler presents a robust framework for combining various 
sequence-based tools for AFP, with the potential to enhance their 
performance. 

NetGO [50] is an effective ensemble method that integrates 
extensive PPI network information. It covers a large amount of 
PPI data from over 2000 species in the STRING database. For the 
sub-predictors, NetGO covers five existing methods based on the 
sequences and a newly proposed method based on the PPI net-
work, namely Naive, Blast-KNN, LR-3mer, LR-InterPro, LR-ProFET 
and Net-KNN, where the first five methods are used in GOLabeler. 
Net-KNN is a newly proposed method, which is similar to Blast-
KNN and replaces sequence similarities with interaction scores 
in the PPI network. Notably, even unseen proteins not present in 
the PPI network can also be annotated via homology relationships. 

Figure 2. Distribution of protein sequence lengths. Most of protein 
sequence lengths are less than 1000 (89%), while only 0.56% protein 
sequence lengths are larger than 3000. 

Similar to GOLabeler, NetGO also utilizes LTR framework to incor-
porate the outputs from these predictors. The efficacy of NetGO is 
convincingly proved by its significant performance improvements 
over other methods, including GOLabeler. 

Later, NetGO 2.0 [51] is an upgraded version of the original 
NetGO. In comparison to its predecessor, NetGO2.0 replaces the 
LR-ProFET component with two novel components, named LR-
text and Seq-RNN. The procedure of LR-text is the same as Deep-
Text2GO, while Seq-RNN uses a Bi-LSTM network and an MLP 
layer to annotate proteins from their sequences, which is similar 
to the process in DeepGOA. The final results demonstrate that 
NetGO 2.0 surpasses its predecessor, particularly in terms of BPO 
and CCO. Recently, inspired by protein language models (PLMs), 
NetGO 3.0 [52] was proposed. It discards the Seq-RNN compo-
nent and incorporates an LR-ESM model, which uses logistic 
regression to predict protein functions from protein embeddings 
generated by the pre-trained PLM, ESM-1b. Impressively, the per-
formance of LR-ESM achieves comparable performance with the 
top-performing components in NetGO 2.0. 

PROTEIN AND FUNCTION DATA 
Data processing 
Following the Critical Assessment of Function Annotation chal-
lenge [53] (CAFA), protein information and their corresponding 
functions are collected from the UniProt/Swiss-Prot [54] database 
(released on April 2022, published on December 2022). Then, 23 
specials (10090’, 223283’, 273057’, 559292’, 85962’, 10116’, 224308’, 
284812’, 7227’, ’9606’, 160488’, 237561’, 321314’, 7955’, 99287’, 
170187’, 243232’, 3702’, 83333’, 208963’, 243273’, 44689’, 8355’) and 
experimental annotations are considered, including EXP’, IDA’, 
IPI’, IMP’, IGI’, IEP’, TAS’ and IC’. After filtering out proteins without 
GO annotations, the final protein set contains 60 121 proteins.
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Figure 3. Distribution of the number of known functions per protein in three ontologies (top) and distribution of the number of known proteins per GO 
term in three ontologies (bottom). 

Figure 4. Distribution of IC values of GO terms in three ontologies (top) and the depths of GO terms in three ontologies (bottom). 

The hierarchical structure of the GO terms is retrieved from GO 
(released on 4 December 2022). GO establishes three ontologies 
to describe protein functions: BPO, MFO and CCO. Each ontology 
encompasses a set of GO terms and the relationships between 
them. These relationships primarily include is-a’, part-of’, has 
part’ and regulates’, with only the is-a’ and part-of’ relationships 
safely transferable to functions, forming a parent-child hierarchy. 
In other words, if a protein is annotated with GO term A and GO 
term A is-a’ or part-of’ GO term B, it can be deduced that the 
protein is also annotated with GO term B. 

As for PPI networks, they are downloaded from the STRING 
database (full links v11.5). Additionally, orthology relationships 
are extracted from the eggNOG database [55]. Finally, 115 706 292 

PPIs and 1 473 178 orthology relations between 214 050 proteins 
are collected. 

Statistical information of datasets 
In this study, following previous studies [14, 27, 30], we adopt two 
approaches to generate datasets, and the statistical information 
is shown in Table 2: 

• Dataset1: the original data are split into three distinct subsets 
by different time stamps. The first subset serves as the train-
ing set, which contains the proteins in the UniProt202004. The 
second subset forms the validation set, including the proteins 
in the UniProt202104 but not in the UniProt202004. Finally, 
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Table 3: Fmax and Smin performance comparison on the first dataset generated by a time-based split 

Methods Fmax Smin 

MF CC BP MF CC BP 

Single algorithms Diamond 0.589 0.572 0.426 8.303 11.548 31.502 
BlastKNN 0.614 0.595 0.443 7.852 10.182 31.319 
DeepGO 0.352 0.579 0.321 12.442 10.646 36.028 
DeepGOA 0.500 0.621 0.393 10.331 9.829 31.323 
DeepGOCNN 0.367 0.563 0.323 12.070 11.092 34.986 
NetQuilt 0.358 0.438 0.316 12.610 15.536 38.374 
TALE 0.258 0.549 0.256 13.495 11.546 35.548 
DeepGOZero 0.600 0.613 0.443 8.790 10.451 30.330 
ATGO 0.455 0.599 0.395 11.375 10.192 30.893 
DeepGraphGO 0.548 0.633 0.427 9.492 9.295 29.988 

Composite algorithms DeepGOPlus 0.586 0.630 0.437 8.515 10.021 32.419 
TALE+ 0.597 0.607 0.426 8.375 10.019 30.354 
DeepGOZero+ 0.623 0.633 0.463 8.193 10.062 31.687 
ATGO+ 0.619 0.630 0.454 8.048 9.671 29.667 

Note: The best performance values are highlighted in bold and the next best performance are underlining. 

Table 4: AUPR, IC_AUPR and DP_AUPR performance comparison on the first dataset generated by a time-based split 

Methods AUPR IC_AUPR DP_AUPR 

MF CC BP MF CC BP MF CC BP 

Single Diamond 0.384 0.281 0.195 0.360 0.229 0.165 0.345 0.227 0.154 
algorithms BlastKNN 0.482 0.383 0.257 0.457 0.308 0.218 0.436 0.303 0.202 

DeepGO 0.265 0.583 0.251 0.215 0.384 0.185 0.171 0.367 0.154 
DeepGOA 0.444 0.610 0.327 0.376 0.452 0.252 0.323 0.438 0.218 
DeepGOCNN 0.302 0.570 0.251 0.244 0.360 0.175 0.195 0.342 0.144 
NetQuilt 0.245 0.287 0.191 0.212 0.164 0.150 0.183 0.156 0.134 
TALE 0.160 0.476 0.155 0.112 0.287 0.089 0.078 0.268 0.063 
DeepGOZero 0.576 0.572 0.393 0.538 0.392 0.325 0.510 0.384 0.298 
ATGO 0.437 0.596 0.338 0.387 0.423 0.265 0.341 0.409 0.232 
DeepGraphGO 0.515 0.586 0.381 0.458 0.479 0.314 0.412 0.468 0.286 

Composite 
algorithms 

DeepGOPlus 0.548 0.625 0.366 0.508 0.467 0.303 0.478 0.455 0.277 
TALE+ 0.545 0.598 0.327 0.497 0.440 0.261 0.468 0.425 0.234 
DeepGOZero+ 0.618 0.592 0.412 0.581 0.446 0.349 0.554 0.437 0.324 
ATGO+ 0.593 0.634 0.396 0.555 0.478 0.328 0.522 0.466 0.299 

Note: The best performance values are highlighted in bold and the next best performance are underlining. 

Table 5: The statistical information of test dataset extracted from Dataset1 based on protein sequence length 

Protein Type Protein number Percentage Protein sequence length range 

Normal protein set 1301 90.7% <=1000 
Long protein set 134 9.3% >1000 

the last subset, designated as the test set, comprises the 
proteins in the UniProt202204 but not in the UniProt202004 
or UniProt202104. 

• Dataset2: the raw protein data undergo an initial clustering 
step based on sequence similarity. To ensure the distinctive-
ness among the resulting clusters, the sequence similarity 
between any two clusters is restricted to a maximum of 
30%. Subsequently, the training, validation and test sets are 
divided according to a ratio of 18:1:1, respectively. 

Data characteristics of proteins and functions 
To achieve a more comprehensive evaluation of computational 
methods, we perform an analysis of the raw data from several 
aspects, including the distribution of protein sequence length, 

the number of GO terms annotated per protein, the number 
of annotations per GO term and the IC values. These analyses 
shed light on the characteristics of the raw data and provide 
a foundation for evaluating the performance of computational 
methods for AFP. 

As illustrated in Figure 2, approximately 89.16% proteins in the 
dataset have sequence lengths shorter than 1000 amino acids, 
while only 338 proteins (about 0.56%) with sequence lengths 
greater than 3000. According to Table 1, certain methods, such as 
DeepGO and DeepGOA, are incapable of handling proteins with 
sequence lengths greater than 1000, while DeepGOPlus also has 
limitations in protein sequence lengths. Therefore, it is essen-
tial for predictors to consider how to effectively annotate these 
long proteins. Additionally, evaluating the performance of these
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Table 6: Performance comparison of these methods on long proteins 

Methods Fmax Smin AUPR 

MF CC BP MF CC BP MF CC BP 

Single Diamond 0.600 0.567 0.359 9.442 11.720 48.347 0.452 0.359 0.194 
algorithms BlastKNN 0.606 0.586 0.372 9.730 11.001 42.290 0.527 0.458 0.238 

DeepGO 0.378 0.544 0.313 15.331 12.765 38.549 0.291 0.545 0.252 
DeepGOA 0.460 0.573 0.372 13.314 11.971 37.661 0.404 0.563 0.282 
DeepGOCNN 0.339 0.540 0.332 16.374 12.660 45.936 0.283 0.536 0.247 
NetQuilt 0.212 0.390 0.245 18.352 17.093 77.704 0.077 0.198 0.119 
TALE 0.296 0.516 0.282 16.206 13.554 38.100 0.182 0.435 0.156 
DeepGOZero 0.561 0.592 0.374 11.442 12.569 49.218 0.450 0.529 0.323 
ATGO 0.392 0.556 0.358 19.405 12.457 37.290 0.293 0.553 0.284 
DeepGraphGO 0.569 0.615 0.389 11.683 10.771 45.848 0.528 0.587 0.326 

Composite DeepGOPlus 0.617 0.607 0.389 9.642 10.709 46.557 0.557 0.601 0.308 
Algorithms TALE+ 0.613 0.576 0.385 11.018 11.237 40.116 0.534 0.564 0.271 

DeepGOZero+ 0.590 0.618 0.387 11.199 11.877 52.550 0.586 0.573 0.325 
ATGO+ 0.566 0.587 0.414 10.890 11.094 37.796 0.484 0.605 0.330 

Note: The best performance values are highlighted in bold and the next best performance are underlining. 

methods specifically on long proteins is crucial to assess their 
effectiveness. 

Figure 3 represents the correlations between proteins and their 
corresponding functions. It can be obtained that the number of 
known GO terms associated with each protein is significantly 
smaller than the total number of GO terms, indicating a highly 
sparse and unbalanced distribution of labels. Furthermore, it also 
reveals that most GO terms exhibit low frequency. Specifically, a 
majority of GO terms annotate less than 200 proteins for BPO, 
less than 100 proteins for MFO, and less than 250 proteins for 
CCO. Additionally, it is worth noting that some high-frequency GO 
terms are not shown in Figure 3. For instance, only above 1.85% of 
these GO terms for BPO have more than 1000 annotations, 1.82% 
of these GO terms for MFO have more than 500 annotations, while 
2.08% of the GO terms for CCO exceed 1500 annotations. Above 
all, predicting protein functions is an unbalanced multi-label 
classification problem, where each label has a limited number of 
available samples, presenting challenges for AFP. 

IC is a basic metric in information theory, quantifying the 
probability of an event occurring randomly. In AFP, we evaluate 
the IC values of all GO terms, as shown in formula (3): 

IC(c) = − log(Pr(c | P(c)) (3) 

where P(c) is the superclass set of class c, and  Pr(c | P(c)) denotes 
the probability of GO term c appearing simultaneously with its 
ancestors. Figure 4 (top) shows the distribution of IC values across 
three ontologies. It can be seen that most GO terms exhibit low IC 
values. Consequently, it is particularly meaningful to predict GO 
terms with high IC values, since these terms are more informative 
and valuable. 

According to previous studies [14], the structure of GO terms 
exhibits a loosely hierarchical organization. Within this structure, 
functions become more generalized as they approach the root 
node, while functions become more specific as they descend 
to deeper depths. Consequently, it is more practical to predict 
functions located at deeper depths. As shown in Figure 4 (bottom), 
it can be concluded that the number of functions diminishes as 
one traverses to deeper depths, and the majority of functions are 
in the middle region of the whole structure. 

EVALUATION METRICS 
In this study, we evaluate the performance of these models 
using five existing metrics and a novel proposed metrics: Fmax, 
Smin, AUPR, IC weighted AUPR [53], Depth weighted AUPR and 
M-AUPR. 

F1 and Fmax (Protein-centric) are basic metrics used to evaluate 
the performance of binary classification models. F1 considers 
both precision and recall, particularly suitable for evaluating 
models on unbalanced data. For the prediction results, Fmax is the 
maximum F1 score at different thresholds. 

Given the threshold t, corresponding precision and recall can 
be calculated as follows: 
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where Pi is the ith protein and Gj is the jth GO term. pri(t) is 
the precision of protein Pi at threshold t, rci(t) is the correspond-
ing recall value. S(Gj, Pi) represents the predicted probability of 
function Gj for protein Pi. I(S(Gj, Pi) ≥ t) determines whether the 
probability is greater than or equal to the threshold t, which is 
1 if it does, and 0 otherwise. I(Gj, Pi) determines whether pro-
tein Pi is annotated by function Gj, which is 1 if it does, and 0 
otherwise. 

Then, the average precision and recall of all proteins can be 
calculated as follows: 

AvgPr(t) = 
1 

m(t) 
∗ 

m(t)∑
i=1 

pri(t) (6) 

AvgRc(t) = 
1 
n 

∗ 
n∑

i=1 

rci(t) (7) 

where m(t) refers to the number of proteins that contain at least 
one predicted GO term, and n is the number of all proteins in the
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Table 7: Performance comparison of these methods on normal proteins 

Methods Fmax Smin AUPR 

MF CC BP MF CC BP MF CC BP 

Single Diamond 0.588 0.574 0.434 8.228 11.370 30.574 0.379 0.274 0.195 
algorithms BlastKNN 0.616 0.597 0.451 8.120 10.306 30.477 0.478 0.376 0.258 

DeepGO 0.350 0.583 0.322 12.718 10.412 35.217 0.262 0.586 0.251 
DeepGOA 0.504 0.628 0.395 10.071 9.590 30.492 0.447 0.614 0.332 
DeepGOCNN 0.370 0.566 0.321 11.832 10.911 33.959 0.303 0.573 0.251 
NetQuilt 0.370 0.445 0.324 12.188 18.504 41.494 0.255 0.292 0.199 
TALE 0.256 0.554 0.254 13.278 11.338 35.108 0.157 0.480 0.155 
DeepGOZero 0.605 0.616 0.452 8.455 10.239 29.206 0.587 0.576 0.401 
ATGO 0.464 0.604 0.399 11.035 9.955 30.185 0.448 0.600 0.344 
DeepGraphGO 0.547 0.635 0.431 9.314 9.179 29.189 0.514 0.585 0.387 

Composite DeepGOPlus 0.585 0.632 0.442 8.347 9.639 31.266 0.548 0.628 0.373 
algorithms TALE+ 0.597 0.610 0.431 8.188 9.903 29.566 0.545 0.602 0.332 

DeepGOZero+ 0.627 0.635 0.472 7.932 9.874 28.948 0.621 0.594 0.422 
ATGO+ 0.623 0.634 0.459 7.821 9.532 28.959 0.601 0.637 0.404 

Note: The best performance values are highlighted in bold and the next best performance are underlining. 

test set. Finally, we calculate Fmax as follows: 

Fmax = max 
t

{
2 ∗ AvgPr(t) ∗ AvgRc(t) 

AvgPr(t) + AvgRc(t)

}
(8) 

Smin (protein-centered) measures the semantic distance between 
the real and predicted annotations based on their IC values. The 
calculation process is as follows: 
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√
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where Ti is the true labels of protein Pi, Pi(t) is the predicted labels 
of protein Pi with threshold t, ru(t) is the sum of IC values of the 
functions that failed to be predicted, while mi(t) is the sum of IC 
values of false positive labels. 

AUPR (protein-centric) is another common evaluation metric 
based on precision and recall, which is determined by calculat-
ing the area under the precision-recall curve. Above all, for the 
predicted results, higher values of Fmax, AUPR values and smaller 
values of Smin indicate better performance of models. 

To achieve a more comprehensive evaluation of model perfor-
mance, IC-weighted AUPR (IC_AUPR) was first introduced by the 
CAFA challenge [53]. Different from previous precision and recall, 
IC_AUPR considers the weighted of GO terms based on their IC 
values: 
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Inspired by IC_AUPR, we propose a novel metric named depth 
weighted AUPR (DP_AUPR), which can consider both the IC values 

and the depths of GO terms in the whole GO structure. Similar to 
IC_AUPR, DP_AUPR calculates precision and recall as follows: 
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where depth
(
Gj

)
represents the distance of the shortest path from 

GO term Gj to the root node. The further Gj is from the root node 
and the larger its IC value, the more meaningful it is to predict it 
correctly. 

M-AUPR (GO-centric) evaluates the performance of models on 
each label separately and then calculates the average of these 
values: 

M-AUPR = 
AUPR

(
label1

) + · · · +  AUPR
(
labelm

)
M 

(17) 

where M represents the total number of labels, and AUPR
(
labeli

)
represents the value of AUPR calculated on the i-th label. Consis-
tent with AUPR, higher values of IC_AUPR, DP_AUPR and M-AUPR 
indicate better performance of models. 

COMPARISON AND ANALYSIS 
Taking into account the data characteristics, in this sec-
tion, we collect 14 computational methods mentioned before 
(Dimond, BlastKNN, DeepGO, DeepGOA, DeepGOCNN, NetQuilt, 
TALE, DeepGOZero, ATGO, DeepGraphGO, DeepGOPlus, TALE+, 
DeepGOZero+, ATGO+) and design 8 cases to evaluate their 
performance. These cases can be categorized into two groups: 
protein- and GO term-centered. The protein-centered cases 
encompass several aspects, including a comprehensive perfor-
mance comparison based on timestamps, performance evalua-
tion on long or normal proteins, assessment of performance on 
difficult proteins with low sequence similarities, performance
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Figure 5. Predictive performance comparison on difficult proteins (low similarity with training proteins) in terms of Fmax and Smin. 

evaluation on disorder proteins, and examination of generality 
to new species. On the other hand, the GO term-centered cases 
encompass the performance on different depths of GO terms, 
the performance on rare GO terms with limited samples, and 

the performance on GO terms grouped by IC values. Each case 
provides valuable insights into the strengths of different methods, 
thus offering algorithm recommendations tailored to specific 
application scenarios. 
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Table 8: Fmax and Smin performance comparison on the second dataset generated by sequence identity 

Methods Fmax Smin 

MF CC BP MF CC BP 

Single algorithms Diamond 0.467 0.454 0.309 11.600 12.932 49.172 
BlastKNN 0.535 0.550 0.383 11.747 11.951 45.470 
DeepGO 0.436 0.653 0.404 13.242 10.728 44.024 
DeepGOA 0.585 0.696 0.440 10.099 9.903 42.308 
DeepGOCNN 0.386 0.609 0.334 13.263 12.160 49.271 
TALE 0.288 0.587 0.300 13.947 12.856 48.802 
DeepGOZero 0.561 0.618 0.407 10.206 11.690 45.226 
ATGO 0.499 0.663 0.406 11.465 10.932 43.887 
DeepGraphGO 0.579 0.671 0.460 9.956 9.960 41.373 

Composite algorithms DeepGOPlus 0.521 0.626 0.383 11.054 11.868 48.316 
TALE+ 0.501 0.615 0.366 11.051 11.962 45.110 
DeepGOZero+ 0.570 0.624 0.414 11.198 11.506 45.055 
ATGO+ 0.577 0.665 0.435 10.408 10.638 43.556 

Note: The best performance values are highlighted in bold and the next best performance are underlining. 

Table 9: AUPR, IC_AUPR and DP_AUPR performance comparison on the second dataset generated by sequence identity 

Methods AUPR IC_AUPR DP_AUPR 

MF CC BP MF CC BP MF CC BP 

Single Diamond 0.282 0.265 0.147 0.254 0.195 0.115 0.237 0.190 0.104 
algorithms BlastKNN 0.403 0.403 0.242 0.363 0.302 0.189 0.338 0.295 0.170 

DeepGO 0.385 0.693 0.356 0.325 0.505 0.266 0.279 0.492 0.228 
DeepGOA 0.533 0.696 0.392 0.469 0.579 0.297 0.424 0.567 0.256 
DeepGOCNN 0.330 0.620 0.270 0.266 0.418 0.184 0.220 0.403 0.149 
TALE 0.210 0.573 0.191 0.156 0.353 0.109 0.118 0.335 0.078 
DeepGOZero 0.533 0.622 0.357 0.479 0.407 0.270 0.444 0.397 0.239 
ATGO 0.467 0.681 0.357 0.410 0.513 0.268 0.365 0.499 0.232 
DeepGraphGO 0.569 0.727 0.431 0.509 0.564 0.346 0.467 0.552 0.313 

Composite DeepGOPlus 0.463 0.636 0.319 0.404 0.458 0.239 0.366 0.445 0.208 
algorithms TALE+ 0.436 0.600 0.266 0.375 0.424 0.180 0.337 0.408 0.149 

DeepGOZero+ 0.552 0.625 0.364 0.501 0.428 0.280 0.465 0.418 0.250 
ATGO+ 0.554 0.693 0.383 0.500 0.527 0.296 0.460 0.514 0.262 

Note: The best performance values are highlighted in bold and the next best performance are underlining. 

Comprehensive predictive performance 
comparison 
Dataset1 is generated by different timestamps, which serves as a 
fundamental approach to evaluate the performance of methods 
in CAFA. As shown in Table 3, although DeepGOZero+ achieves 
the highest Fmax for all three ontologies, it falls short of the 
best performance in Smin. In contrast, ATGO+ shows comparable 
performance to the top values in both Fmax and Smin for BPO, 
MFO and CCO. Meanwhile, Table 4 shows the performance of 
these methods in terms of AUPR, IC_AUPR and DP_AUPR, which 
are more effective in evaluating the performance of prediction 
results on unbalanced multi-label data. Obviously, DeepGOZero+ 
shows significant improvements for MFO and BPO, while ATGO+ 
consistently outperforms other methods and achieves the best 
AUPR on CCO, substantiating its potential for accurate protein 
function prediction. Notably, in terms of AUPR, DeepGraphGO 
underperforms DeepGOPlus on CCO, while it surpasses DeepGO-
Plus in IC_AUPR and DP_AUPR, which suggests that DeepGraphGO 
exhibits superior performance on specific GO terms with high IC 
values or deep depths. In addition, comparing DeepGOCNN and 
DeepGOPlus, DeepGOZero and DeepGOZero+, TALE  and  TALE+, 
ATGO and ATGO+, it can be found that the performance of these 

methods is significantly enhanced after combining the prediction 
scores based on sequence similarity, indicating the close correla-
tion between sequence similarity and functions. 

Performance comparison on long proteins 
As shown in Table 1, these methods all rely on protein sequence 
information, and several methods ignore or truncate long 
proteins. For example, both DeepGO and DeepGOA ignore 
protein sequences exceeding a length of 1000 amino acids, 
ATGO(+) ignores sequences longer than 1022 amino acids, while 
DeepGOCNN and DeepGOPlus ignore sequences surpassing 
2000 amino acids in length. In this section, we explore the 
performance of these methods on these long proteins and 
other normal proteins. Specifically, as shown in Table 5, we  
split the test data into two subsets based on sequence lengths, 
and the corresponding results are displayed in Table 6 and 7. 
Due to the consideration of the entire sequence information, 
DeepGraphGO achieves the best performance among single 
algorithms. Moreover, it is evident that the performance gap 
between DeepGOA and ATGO for long proteins is significantly 
larger compared to the gap for normal proteins, indicating the 
crucial role of the ignored amino acids. On the other hand, as
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Figure 6. Predictive performance comparison on disorder proteins in 
terms of AUPR. 

Figure 7. Predictive performance comparison on disorder proteins in 
terms of M-AUPR. 

DeepGOPlus covers a maximum protein length of 2000, it achieves 
comparable performance on long proteins, further substantiating 
the significance of ignored amino acids. Furthermore, when 
incorporating the results based on sequence similarity, ATGO+ 
exhibits a substantial improvement, providing a new perspective 
for addressing long proteins. Above all, it is recommended to 
consider sequences that are as long as possible, as it tends to 
yield better performance. 

Performance comparison on difficult proteins 
To mitigate the potential impact of similar proteins present in 
both the training and test data, which could bias the results, 
we create a difficult protein set specifically for evaluating 
model performance on previously unseen proteins. In this set, 
all proteins have a sequence similarity of no more than 60% 
to the proteins in the training data. This challenging test set 
comprises 135, 334 and 295 difficult proteins for MFO, BPO and 
CCO, respectively. As shown in Figure 5, among single algorithms, 
DeepGOA and DeepGraphGO demonstrate superior performance 
for BPO and CCO, indicating the importance of incorporating PPI 
information for BPO and CCO. Notably, BlastKNN, a method based 
on sequence similarity, always achieves comparable performance, 
and most composite algorithms show significant improvements. 
These observations collectively indicate that these individual 
methods cannot capture the sequence similarity effectively 
and integrating sequence-based methods is still a helpful 
strategy. 

To gain a comprehensive understanding of model generaliz-
ability, we test existing models on Dataset2, which is split by 

Figure 8. Predictive performance of existing methods on the functions of 
disorder regions in terms of AUPR. GO terms are sorted from top to bottom 
by their depths, from shallow to deep. 

sequence similarity. The results are shown in Table 8 and Table 9. 
Remarkably, in terms of Fmax, Smin and AUPR, DeepGOA and 
DeepGraphGO consistently achieve the best performance, even 
outperforming the composite algorithms. This demonstrates that 
PPI information between proteins can mitigate the challenges 
posed by low sequence similarity. Furthermore, the advantages 
of DeepGraphGO are even more pronounced for IC_AUPR and 
DP_AUPR, especially for BPO. Specifically, DeepGraphGO improves 
the IC_AUPR by 16% compared to DeepGOA, and even by 20% 
in terms of DP_AUPR. Additionally, due to the lower sequence 
similarities between the test data and training data, it is 
hard for Diamond and BlastKNN to find similar sequences to 
annotate target proteins, significantly reducing their perfor-
mance. Interestingly, it is worth noting that almost all methods 
show good performance for CCO, except for BlastKNN and 
Diamond, proving that the hidden motifs within single sequences 
may be more informative for CCO than similarities between 
proteins. 

Performance comparison on disorder proteins 
Several proteins that lack stable structures are known as disorder 
proteins [56], which perform essential functions, such as display 
site, assembler, effector, and chaperone [57]. Consequently, in this 
section, we extract 16 disorder proteins from the test set and 
use existing methods to predict the functions of their disorder 
regions. As shown in Figure 6, it can be obtained that all of these 
methods get poor performance with low AUPR values for each 
GO term. Additionally, Figure 7 demonstrates that DeepGOA and 
DeepGOZero surpass other methods significantly in terms of M-
AUPR, while other methods fail to predict the functions of disor-
der regions, especially homology-based methods, BlastKNN and 
Diamond. On the other hand, Figure 8 shows that these methods 
can only predict several functions with shallow depths, such as 
molecular function regulator activity (GO:0098772) and binding 
(GO:0005488). With the deeper functions, beginning from cellular 
component disassembly (GO:0022411) in the heat map, there are 
tougher challenges for these methods. Overall, DeepGOA and 
DeepGOZero achieve better performance than other methods. 
And all of these methods have limitations on disorder proteins.
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Figure 9. Generalizability of existing methods to HUMAN species. The blue part indicates that several HUMAN proteins are contained in the training 
set, while the yellow part indicates that these proteins are removed from the training set. 

Generality to new specific species (HUMAN and 
MOUSE) 
To assess the cross-species performance of existing models, we 
select two crucial species, HUMAN and MOUSE, for evaluation. In 
particular, we design two training sets: (1) the original training 
set of Dataset1, including the proteins from the target species. 
(2) an extracted training set of Dataset1, excluding the proteins 
from the target species. The results are shown in Figures 9 and 10. 
An obvious and common finding is that all methods exhibit a 
significant decline in performance when the proteins of the target 
species are removed from the training data. Notably, the effect 
of DeepGraphGO is much slighter than other methods, as it ben-
efits from the cross-species strategy proposed by DeepGraphGO, 
where various species’ PPI networks share the same GCN layers. 
Furthermore, in terms of AUPR, DeepGOZero(+) shows significant 
advantages compared to other methods, except ATGO(+). This 
suggests that the approach of ontology embedding is valuable 
for inferring functions. Additionally, ATGO(+) consistently outper-
forms other methods in most cases, highlighting the effectiveness 
of the protein large language model, which is pre-trained on many 
extra proteins not covered by Dataset1. 

Performance comparison on different depths of 
GO terms 
The function representation of GO terms becomes more spe-
cific as their depth increases, providing researchers with a more 
detailed understanding of protein roles in living cells. However, 
these GO terms tend to have fewer associated samples, result-
ing in a challenge for accurately annotating these GO terms to 
proteins. In this section, taking into account the distribution of 
annotation depths (Figure 4), we classify these GO terms into 
three subgroups based on their depths: 0–3, 4–6 and >6 for  BPO  
and MFO, while 0–2, 3–5 and >5 for CCO. The results are presented 
in the form of box plots in Figure 11. Obviously, the M-AUPR 
values exhibit a gradual downward trend from left to right, as 
expected. Notably, as the depth increases, the size of some boxes 
significantly reduces, and in some cases, certain boxes are even 
missing. For instance, DeepGO, DeepGOA and TALE are absent, 

which can be attributed to the limitations of these methods, like 
not being able to predict GO terms with few samples. 

Performance comparison on GO terms grouped 
by different frequencies 
Learning with limited samples remains a persistent challenge in 
deep learning. This challenge is particularly acute in AFP, where 
many GO terms annotate only a small number of proteins, making 
it difficult for models to accurately annotate these GO terms to 
proteins. In this section, we evaluate the performance of these 
methods on rare GO terms with different frequencies (samples). 
Based on the frequency distribution of GO terms (Figure 3), we 
divide rare GO terms into three groups via their frequencies: 0– 
30, 30–60 and 60–100. As shown in Figure 12, consistent with 
our expectations, all methods perform poorly on GO terms with 
small sample sizes (frequencies < 30). Among these methods, 
DeepGOZero+ stands out from the rest, due to its utilization of 
zero-shot learning, which can learn from zero or a few samples. 
In contrast, methods that solely rely on learning the relationships 
between sequence motifs and functions, such as DeepGO and 
DeepGOCNN, both perform poorly on rare GO terms, due to the 
lack of learning samples, which is also a common challenge faced 
by traditional deep learning-based methods. 

Performance comparison on GO terms grouped 
by IC 
Accurately predicting informative and valuable functions has 
always been a crucial criterion for evaluating the practical appli-
cability of AFP methods. Since IC values can reflect the infor-
mation contained in GO terms, previous studies [30] have often  
evaluated their methods on GO terms grouped by IC values. 
Following this approach, we divide the GO terms into distinct 
groups based on their IC values and evaluate the performance of 
these methods on each group. As shown in Figure 13, all  methods  
encounter challenges in predicting functions with rich informa-
tion. Specifically, for GO terms with IC values between 4 and 7, 
many single methods can only predict a small portion of the func-
tions, i.e. the corresponding AUPR > 0, except for DeepGOZero, 
ATGO and DeepGraphGO. This observation is more pronounced in
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Figure 10. Generalizability of existing methods to MOUSE species. The blue part indicats that several MOUSE proteins are contained in the training set, 
while the yellow part indicates that these proteins are removed from the training set. 

Figure 11. Distribution of AUPR on different GO terms grouped by different depths, as calculated by existing methods. 

the most difficult groups with IC values exceeding 7. For instance, 
among the single algorithms, only DeepGOZero predicts these 
functions with a small median AUPR for MFO. On the other hand, 
for CCO, DeepGOZero consistently outperforms other methods, 
while ATGO and DeepGraphGO can predict a limited number of 
functions. For BPO, none of these methods can accurately predict 
the target functions, while only sequence similarity-based meth-

ods and composite methods achieve minimal scores. Above all, 
integrating sequence similarity-based methods and considering 
the relationships between functions can facilitate AFP, such as 
DeepGOZero and composite algorithms. Despite these advance-
ments, there are still significant limitations in accurately pre-
dicting rare functions with high IC values, and existing methods 
cannot achieve satisfactory results. 
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Figure 12. Performance comparison of AUPR on different GO terms grouped by different frequencies. 

Figure 13. Distribution of AUPR on different GO terms grouped by different IC values. 

CONCLUSION 
Advances in high-throughput technologies have facilitated the 
prediction of protein functions using computational methods 
based on massive biological data. Many computational methods 
have been proposed to tackle this task. In this study, we first 
collect and analyze the latest protein and function data, demon-
strating that protein function prediction is an unbalanced multi-
label classification problem, where more specific and informa-
tive functions are more challenging to predict. Then, we inves-
tigate existing computational methods and classify them into 
sequence-based methods, sequence- and structure-based meth-
ods, sequence- and PPI network-based methods, sequence- and 
literature-based methods, and ensemble prediction methods. To 
evaluate these methods, we introduce a novel evaluation met-
ric that considers the informativeness and depths of functions. 

Additionally, we also design eight application cases in terms of 
different properties of proteins and functions and evaluated these 
methods in specific cases. Each method shows different strengths 
in different application scenarios. Specifically, for regular cases, 
we recommend ATGO+ and DeepGOZero+,  as they consistently  
demonstrate stable and outstanding performance. In the case of 
long proteins, DeepGOPlus and DeepGraphGO are recommended 
for MFO and CCO, while ATGO+ is advised for BPO. For pro-
teins with low similarity to known proteins, DeepGOA and Deep-
GraphGO are recommended due to their effectiveness in handling 
this challenge. For proteins with disorder regions, DeepGOA and 
DeepGOZero are recommended. When predicting functions for 
proteins of new species, DeepGOZero+ and ATGO+ are suitable 
choices. In conclusion, accurately predicting deep and informative 
protein functions remains a significant challenge for all current
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methods. On the other hand, pre-trained large language models 
have shown great potential in AFP. Additionally, with the advance-
ments in structural biology, leveraging predicted protein structure 
holds substantial potential for future protein function prediction. 

Key Points 
• We survey a comprehensive collection of 17 computa-

tional approaches for protein function prediction, focus-
ing on their input data characteristics. 

• We collect protein information and their function data, 
and analyze the data characters of proteins and func-
tions. 

• We propose a new evaluation metric to consider the per-
formance of existing methods comprehensively, which 
considers both informative values and depths of func-
tions. 

• We provide a comprehensive comparison of these meth-
ods under eight application scenarios, such as the per-
formance on long proteins, the performance on disorder 
proteins and the performance on different GO terms. 
Finally, we provide practical observations and discuss 
the suitability of each method for specific scenarios. 
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