Table 2.
Hyperparameters of best RNN, LSTM and GRU models along with their AUPRC score on validation and test
| Model Type | Hidden Size | LSTM Layers | Bi LSTM | Hidden Layers | Dropout Probability | Batch Size | Epochs | Learning Rate | AUPRC on Validation Set | AUPRC on Test Set |
|---|---|---|---|---|---|---|---|---|---|---|
| RNN | 256 | 2 | TRUE | 0 | 0.4 | 256 | 60 | 0.00100 | 0.7643 | 0.5711 |
| LSTM | 512 | 1 | TRUE | 2 | 0.4 | 64 | 50 | 0.00010 | 0.7403 | 0.7208 |
| GRU | 128 | 2 | TRUE | 0 | 0.1 | 64 | 30 | 0.00050 | 0.7427 | 0.6859 |