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A machine learning driven 
automated system for safety data 
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Safety Data Sheets (SDS) are foundational to chemical management systems and are used in a wide 
variety of applications such as green chemistry, industrial hygiene, and regulatory compliance, 
among others within the Environment, Health, and Safety (EHS) and the Environment, Social, and 
Governance (ESG) domains. Companies usually prefer to have key pieces of information extracted 
from these datasheets and stored in an easy to access structured repository. This process is referred 
to as SDS “indexing”. Historically, SDS indexing has always been done manually, which is labor-
intensive, time-consuming, and costly. In this paper, we present an automated system to index the 
composition information of chemical products from SDS documents using a multi-stage ensemble 
method with a combination of machine learning models and rule-based systems stacked one after 
the other. The system specifically indexes the ingredient names, their corresponding Chemical 
Abstracts Service (CAS) numbers, and weight percentages. It takes the SDS document in PDF format 
as the input and gives the list of ingredient names along with their corresponding CAS numbers and 
weight percentages in a tabular format as the output. The system achieves a precision of 0.93 at the 
document level when evaluated on 20,000 SDS documents annotated for this purpose.

The prominent rise of ESG over the last 3 years has generated a focus on enterprise-wide environmental 
 practices1. The product compliance regulatory landscape has also become increasingly  stringent2, driving chemi-
cal producers, distributors, and users to align their practices more with the principles of industrial hygiene and 
green chemistry. According to the US Environmental Protection Agency (EPA)3, green chemistry is the design 
of chemical products and processes that reduce or eliminate the use or generation of hazardous substances across 
the life cycle of a chemical product. Its goal is to reduce pollution at its source while eliminating hazards from 
products and improving energy efficiency. According to the American Industrial Hygiene  Association4, there 
is also a direct overlap between these goals and those of industrial hygiene. A system to manage and access the 
properties and composition of the chemical products present on site is a crucial step in the practices of green 
chemistry and industrial hygiene.

This information is available in SDSs, and the Hazard Communication Standard (HCS) (29 CFR 
1910.1200(g))5 by the Occupational Safety and Health Administration (OSHA) requires every chemical manu-
facturer, distributor, or importer to provide readily accessible SDSs for each hazardous chemical to their workers. 
Indexing (converting to a structured format) this information is not only essential for an efficient chemical man-
agement system, but also the first step in building compliance, monitoring, and hazard identification systems that 
can lead to better environmental practices and help companies align their goals with those of green chemistry.

Historically, indexing has been done through labor-intensive manual work, which is time-consuming and 
expensive. In this paper, we describe our developed method for automated indexing of the composition infor-
mation of a chemical product from an SDS document, with the results obtained on our datasets. Specifically, we 
focused on indexing the ingredient names, their corresponding Chemical Abstracts Service (CAS) numbers, and 
weight percentages. The solution receives the SDS as a PDF file as input and gives the list of ingredient names, 
along with their corresponding CAS numbers and weight percentages, in a 2D structure as the output, which 
can then be stored in a CSV file or a structured database (Fig. 1).

The rest of the paper is organized as follows—in Section “Related work”, we present a review of some of the 
existing methods for extracting information from documents; Section “Methodology and architecture” describes 
the architecture of the developed system; in Section “Results and discussion”, we present the results of the system 
on our datasets; and Section “Conclusion and future work” concludes the paper. The patent information is avail-
able in the competing interests section.
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Related work
The use of machine learning techniques to extract information from documents has recently become highly 
popular and led to a topic of research called document AI or document understanding. In the last decade, deep 
learning models have become the norm for document understanding  tasks6–8. More recently, Graph Neural 
Networks have also been used for table  detection9, as well as multimodal feature extraction using both text and 
image inputs for richer representation and  contextualization8,10,11. Inspired by the pre-trained language models 
in Natural Language Processing (NLP), multimodal self-supervised pre-training has made rapid progress in 
this field.  LayoutLM12 modified the  BERT13 architecture by adding spatial coordinate embeddings, extending 
the masked language modeling task to masked visual-language modeling.  LayoutLMv214 further improved over 
it by treating the visual features as separate tokens and using two pre-training tasks, text-image matching, and 
text-image alignment, to allow cross-modal interaction.  SelfDoc15 proposed a more coarse-grained contextu-
alization over a block of content instead of individual words, while  StructuralLM16 proposed cell-level position 
embeddings to utilize the interactions of cell and layout information.  StrucTexT17 introduced a unified framework 
for efficiently extracting semantic features from different levels and modalities to handle the entity-labeling and 
entity-linking tasks simultaneously, while  DocFormer18 designed a multimodal self-attention layer allowing the 
sharing of the learned spatial embeddings across both visual and textual modalities.  LayoutLMv319 proposed a 
linear Word-Patch Alignment objective to allow cross-modal interactions, and unified text and image masking 
objectives, achieving state-of-the-art results while reducing the number of parameters generally required for 
such multimodal document AI architectures.

Figure 1.  (a,b) Consecutive pages of an SDS document with the tables identified (outlined) in the composition 
section (split across the pages). (c) Final output for the document.
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Although these models have achieved great results on standard datasets for tasks like key information extrac-
tion, our experiments with one-shot methods for the objective of identifying each entity (name, CAS, and 
weight) individually, did not yield satisfactory results at the document level (although these methods were not 
multimodal). To the best of the authors’ knowledge, this is the first instance of an article describing an automated 
system for extracting composition information from an SDS.

Methodology and architecture
The failure of the one-shot methods (as described above) can be attributed to the variety in the structure and 
format of the SDS documents (across manufacturers, regions, etc.), making the development of a generalized 
automated system with high precision a challenging task. The difficulty of the specific problem of extracting 
composition information from the documents is further exacerbated by the fact that we need to extract multiple 
instances of three pieces of information (name, CAS, and weight) along with their associations with each other 
where the presence of two of them (CAS and weight) is not mandatory and the information can be split across 
multiple pages of the document and arranged row-wise or column-wise. Therefore, we decided to break the 
objective down to multiple simpler tasks. Figure 2 shows the steps of the pipeline used, the details of which are 
described in this section.

Pipeline overview
The SDS documents generally follow the format described in the OSHA Brief DSG BR-351420 where the docu-
ment is divided into 16 sections. The composition information is usually present in Section 3 (or Section 2 in 
some older formats). In some cases where the chemical product is composed of a single ingredient, the composi-
tion section does not contain any additional information, and the product itself has a CAS number mentioned 
in Section 1. For such cases, the system outputs the product name as the ingredient name along with the CAS 
number. The ingredient information is usually arranged in a tabular format, and the system is designed to first 
identify the location of the tables. For the cases where no table is identified, the system contains an additional 
step for identifying the location of the composition section. It consists of the following stages (Fig. 2):

• PDF text extraction (preprocessing step)
• No data filter
• Page selection
• Image generation (preprocessing step)
• Table/Section detection
• Table data extraction
• Ingredient information extraction

Figure 2.  Model pipeline.
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Detailed descriptions of these steps are given below. The entire workflow was implemented in Python.

PDF text extraction
The text from the PDF documents was extracted one page at a time using a combination of three PDF extraction 
tools—Apache  PDFBox21 (executed through Python),  pdfplumber22, and  pdftotext23. The accuracy of each of 
these tools is not 100%, and it was observed that in certain cases, one of them would fail to produce any output 
for a document while another would succeed. It was also observed that Apache PDFBox produced the best 
results in general, and was therefore used first. If no output was produced, pdfplumber was tried next followed 
by pdftotext. A series of preprocessing steps, including removal of endline arguments, removal of trailing and 
leading white space, and conversion to lower case, were then applied to the text. Stop words such as conjunctions 
and prepositions were also removed using the  Gensim24 library’s default set, as they do not add any value in the 
context of the Information extraction.

No data filter
A small but significant percentage of SDS documents (6–8% in our datasets) do not contain any composition 
information. This generally occurs when the product and its ingredients are not hazardous. Although OSHA does 
not require employers to maintain SDSs for such products, many organizations often supply SDSs for liability 
purposes. Experiments showed superior overall performance of the pipeline if a separate filter was used to first 
identify such documents; this filter forms the first step of the pipeline.

A binary classifier, which received the preprocessed concatenated text of all the pages as the input and 
predicted whether the document contained any ingredient information, was trained. The model used for this 
purpose was a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model, fine-tuned 
on a custom dataset (details in Supplementary Table S1). BERT is a transformer-based Large Language Model 
(LLM) designed for NLP applications. Its architecture consists of several transformer encoders stacked together. 
Each encoder consists of two sub-layers, a self-attention layer, and a feed-forward layer, and the model has been 
pre-trained on unlabeled data (about 3300 M words) extracted from BooksCorpus and Wikipedia. Additionally, 
it has been pre-trained in a bidirectional nature, which means that the model learns information from a sequence 
of words, not only from left to right, but also from right to left. The BERT model expects a sequence of tokens 
as an input, and it outputs an embedding vector of size 768 for each of the tokens. We can use these vectors as 
input for different kinds of NLP applications, such as text classification, next sentence prediction, named entity 
recognition, question-answering, etc.

The input text was split into tokens using the WordPiece Tokenizer used by BERT and grouped into chunks 
of size equal to the maximum sequence length used for the model (mentioned in the Supplementary Table S1). 
Each chunk along with its corresponding label was fed as a separate record to the model. For the documents 
with no ingredient information, the label for each of the chunks was the same (defined as the positive class). For 
the other class of documents, the label for each chunk was generated by checking whether the corresponding 
text contained any of the ingredient information or not. The prediction for the whole document was made by 
checking whether any of its chunks contained the ingredient information or not.

Page selection
The purpose of this step was to identify the pages within the PDF file that contain the composition information. 
A combination of rules designed to identify the beginning and end of the composition section in the text, along 
with the presence of the relevant ingredient information within the section, was used. Regular expressions were 
used to identify the section headers. The regular expressions were designed to look for certain combinations of 
words generally present in the section headers. The ingredient information the system looked for at this step 
were the presence of CAS numbers using regular  expressions25, the presence of ingredient labels using regular 
expressions, and the presence of ingredient names using a Named Entity Recognition (NER) model trained for 
this purpose (Fig. 3). NER is a task in NLP to identify key pieces of information (called entities) in a sentence 
or text. An entity can be a word or a group of words belonging to the same category. The model used was a pre-
trained BERT model, finetuned on a custom dataset containing texts extracted from the composition section of 
the SDS documents (details in Supplementary Table S1). The pre-processed text was split into tokens and given 
as input (in chunks of size equal to the maximum sequence length of the model) to the BERT model and the 
output vector of the model was used for NER prediction of the ingredient names.

The model was designed to identify three categories of tokens: (1) the first word of the ingredient name, (2) 
the subsequent words of the ingredient name, and (3) the words not belonging to the ingredient name. In this 
step, the system used the model to look for the presence of any tokens belonging to an ingredient name. The 
following rules were used to identify the right page(s):

• Check if the beginning and end of the composition section is on the same page. If the text between the sec-
tions contains the relevant ingredient information, add the page to the list of correct pages.

• Check if only the beginning of the composition section is found on any page. If the text after this point con-
tains the relevant ingredient information, add the page to the list of correct pages.

• Check if only the end of the ingredient section is found on any page. If the text before this point contains the 
relevant ingredient information, add the page to the list of correct pages.

• If no correct pages are identified, check if a CAS number is present in Section 1 of the document. If it is, then 
page 1 is the correct page.
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The rules were also designed to handle cases where the table was split into multiple pages (Fig. 1), in which 
case, multiple correct pages were identified. This step restricts the search to the pages containing the appropriate 
section and improves the system’s overall precision.

Image generation
To prepare the input for the next step, images of the SDS pages identified in the last step were generated using 
the pdf2  image26 library.

Table/section detection
The purpose of this step was to identify the location of the table(s)/section area(s) containing the ingredient infor-
mation in the image(s) generated in the previous step. Because in most cases, the ingredient information in an 
SDS is arranged in a tabular format, an object detection model was trained to identify the location of such tables 
from images (with and without the ingredient table) of the SDS document. The architecture of the model used 
was inspired by  CascadeTabNet27, which combined the high-quality detective ability of Cascade Mask R-CNN28 
with the high-resolution representations allowed by a pre-trained  HRNet29 backbone network. The model was 
fine-tuned on a custom dataset containing images of SDS documents (details in Supplementary Table S1).

Cascade Mask R-CNN is a combination of the Cascade R-CNN30 architecture and a segmentation branch used 
for instance segmentation. The Cascade R-CNN architecture is a multi-stage extension of R-CNN31 designed to 
improve the quality of the detections using cascading techniques. While training an object detection model, the 
intersection over union threshold (IoU) is generally used to define positives and negatives, and the commonly 
used value for it is 0.5. This value can often lead to noisy detections, while increasing it frequently reduces the 
performance of the model due to overfitting and inference-time quality mismatch. To overcome these issues, 
the Cascade R-CNN architecture uses a sequence of detectors with an increasing IoU, where the output of one 
detector is used to train the next. The network is trained end-to-end, where each stage becomes increasingly bet-
ter at discarding low-quality proposals of the previous stage, producing high quality detections at the final stage.

The output of the model was the coordinates of the table(s) containing the ingredient information in each 
page image. The model was trained to identify both bordered and borderless tables (Fig. 4a). To handle the cases 
where the model did not find a table, either because it failed to or because the information was not arranged in 
a tabular structure (Fig. 4b), a section detection step to identify the coordinates of the composition section was 
designed (to be used in the same way as the table coordinates in the subsequent steps). First, the open-source 
Optical Character Recognition (OCR) engine, Tesseract, was used to obtain the coordinates of every character 
in the right pages(s). Next, a combination of rules, similar to those used to identify the correct page, was used 
to identify the characters marking the beginning and end of the composition section in the recognized text. The 
coordinates of those characters were used as the coordinates of the composition section.

Table data extraction.
Nowadays, SDS documents are easily available in digital form (PDF) and generally text-based, with a very small 
percentage being scanned documents (~ 4% in our dataset). Therefore, we avoided the use of image-based 
machine learning techniques for extracting the text from the identified area(s) of the documents, as they would 
have to rely on OCR, which would add a degree of error to the solution and are not required for a vast majority of 
the documents. We used  Tabula32, a text-based table extraction software, which was able to handle a wide variety 
of table formats (using the Python wrapper tabula-py33). The table/section coordinates, the PDF document, and 

Figure 3.  Cropped area of the composition section of an SDS document. Pieces of information used in the page 
selection and section detection processes of the pipeline are highlighted.
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the relevant page numbers were given as input to the software to extract the text from the area. It returned the 
extracted text output in the form of a 2D data structure (pandas dataframe) retaining the tabular structure of 
the data, which was used in the subsequent step to identify the weight percentages and to obtain the association 
between the names, CAS numbers, and weight percentages.

Ingredient information extraction
The purpose of this step was to remove the noise from the text extracted in the previous step and identify the 
ingredient names along with the corresponding CAS numbers and weight percentages. The first step of the pro-
cess was identifying the ingredient names in the extracted text using the trained BERT NER model. The input 
to the model was the text of the table/area concatenated row-wise and split into tokens. Tokens to represent 
column and row separation—“[cs]” and “[rs]” were also inserted at the respective positions to help the model 
capture the layout information of the table (discussed more in Section “Results and discussion”). The model was 
designed to make a prediction for each token of the text individually (as described in Section “Page selection”) 
and additional post-processing rules were used to acquire the full name of the ingredients and to combine any 
rows wrongly split into multiple rows by the table extraction software. Next, the text of the table was scanned to 
look for these names and to identify the rows and columns containing them. The columns containing the CAS 
numbers and weight percentages were then identified using regular expressions, and the tabular structure of 
the data was used to get the association between the names, CAS numbers, and weight percentages. The regular 
expressions for CAS numbers were also designed to include non-numerical values like Trade Secret, Mixture, 
etc. The final output was a 2D structure with each row corresponding to an ingredient, and the columns corre-
sponding to ingredient names, CAS numbers, and weight percentages. The weight percentages were split into 3 
columns—upper, lower, and operator. Upper and lower represented the upper and lower limits of the range and 
the operator represented the relationship between the upper and lower values (e.g., if weight is “10–20”, upper is 
20, lower is 10 and operator is “-”). Possible values for the operator were “-”, “ > ”, “ < ”, “ = ” (when the weight is 
an exact value), and “NaN”. This output can be stored in a structured database or in a file.

Datasets
VelocityEHS has been performing manual indexing of SDS documents for its clients for decades and has a data-
base of millions of indexed SDS documents. The format of the documents has undergone considerable changes 
over the years, and we decided to use all data available since 2019, consisting of more than 650,000 documents, 
for training and testing our models in this pipeline. In that dataset, we also had a list of documents that did not 
contain any composition/ingredient information; this list was used to train and test the no data classifier. In 
addition, we also used Amazon Web Services’ SageMaker’s Ground Truth tool, collaborating with a third-party 
annotation service provider,  iMerit34, to obtain a number of additional labels needed to train and test our models:

Figure 4.  (a) Example of a borderless table detected (outlined). (b) Example of section detection for an SDS 
document where the composition information is not arranged in a table.
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a. Bounding box annotations for the table containing the ingredient information for about 40,000 documents. 
These annotations were used to train and test the table detection model.

b. Binary classification labels for about 10,000 documents with the labels indicating if a given page in the docu-
ment contains any ingredient information or not. These labels were used to evaluate the rule-based page 
selection model.

c. The manually indexed data had a significant degree of error, which was hindering our ability to accurately 
measure the performance of our pipeline. To overcome this issue, we used the annotation service to obtain 
the ingredient information (ingredient names, CAS numbers, and weight percentages) as text for about 
20,000 documents, which were then used to evaluate the end-to-end pipeline.

Results and discussion
Table 1 shows the performance of the different stages of the pipeline. For the no data classifier, the table shows 
the metrics for the class representing documents with no composition information (absolute numbers for both 
the classes are present in Supplementary Table S2). For the page selection stage, each page number correctly 
identified was counted as a true positive. For the NER model, the table shows the weighted average of three classes 
that the model was trained to identify. The weighted average accounts for the high degree of imbalance across the 
classes with ~ 90% of the tokens in the text not being part of the ingredient name. For the table detection model, 
an IoU threshold of 0.5 (commonly used) was used to define positives and negatives.

For measuring the performance of the end-to-end pipeline, three types of metrics were defined (for docu-
ments containing composition information):

1. Tier 1—For each of the entities, ingredient name, CAS number, upper, lower, and operator, individually.
2. Tier 2—For all values corresponding to an ingredient combined.
3. Tier 3—For all values of all ingredients in an SDS combined.

Table 2 contains the metrics obtained for each tier. It also contains the combined metrics obtained for all 
documents where the results for documents with and without composition information (Table 1) were com-
bined (absolute numbers for calculating the precision and recall values in Table 2 are present in Supplementary 
Table S2). There is a trade-off between precision and recall at each step of the pipeline, and the metrics show the 
results of a version of the system designed to maximize precision at the cost of some loss in recall.

Each stage of the pipeline improved the overall performance of the system by systematically narrowing down 
the region of search. For example, the no data filter removed documents that do not contain any composition 
information but contained pieces of text that may seem like ingredient names to an NER model (for e.g., non-
hazardous chemicals). Although it seems that an alternative to having the filter could be to just use the pipeline to 
determine if the document has any composition information, the issue with that approach is that the pipeline may 
not make any prediction due to failures at any one of the stages, rather than the document simply not containing 
any composition information. It is easier for an ML system to learn whether a document has any composition 
information or not than to actually find it. This is also apparent from the fact that the metrics for the no data 
classifier are higher than the recall of the end-to-end pipeline.

Table 1.  Performance of various stages of the pipeline. *Weighted average.

Test dataset Precision Recall

No data classifier Mentioned in Section “Datasets”.c 0.93 0.84

Page selection Mentioned in Section “Datasets”.b 0.96 0.97

NER model Test split mentioned in Supplementary Table S1 0.99* 0.99*

Table detection Test split mentioned in Supplementary Table S1 (and Section.  “Datasets”.a) 0.94 0.94

Table 2.  Performance of the end-to-end pipeline on the dataset mentioned in Section “Datasets”.c. Significant 
values are in bold.

Precision Recall

Documents with data

 Ingredient 0.991 0.697

 CAS 0.998 0.704

 Operator 0.981 0.734

 Upper 0.989 0.724

 Lower 0.993 0.73

 Tier 2 (ingredient level) 0.974 0.675

 Tier 3 (Document level) 0.93 0.701

 All documents 0.931 0.713
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This concept is also true for each of the other stages of the pipeline. In fact, the intuition behind the effective-
ness of the pipeline is that the problem of extracting the composition information is broken down into smaller 
easier steps. The metrics for each of those steps are high enough (Table 1) to lead to a high end-to-end per-
formance of the system. The page selection step prevented the table detection model from finding other tables 
containing a list of ingredients (without weight percentages) in other sections of the document. The table/area 
detection step not only kept the layout of the information intact, but also reduced the area of search for ingredient 
names. This was validated by experiments where the entire text of the document was used to train and identify 
ingredient names using an NER model, as opposed to just the text of the tables/areas; the metrics for the latter 
were significantly better.

After getting the text of the table/area, the next step of the ingredient information extraction process was to 
find the ingredient names using the BERT NER model. Although this step may benefit from the use of a mul-
timodal technique, the transformer-based architecture of the BERT model seemed to be able capture both the 
textual context and the layout information in the extracted text. For example, CAS numbers, usually present 
next to the ingredient names in the extracted text, provided important textual context to help the model identify 
the ingredient names, and the performance of the model degraded when they were removed from the text. The 
text from the table was concatenated row-wise and fed to the NER model as the input where empty cells were 
represented by “NA”. This meant that in most cases, because the ingredient names were in the same column, 
each ingredient name was present in the extracted text roughly after the same interval of tokens. This ensured 
that the layout information of the table was still retained in the extracted text to some extent. The performance 
of the model degraded when the “NA”s were removed, showing that the model was sensitive to this information. 
The performance of the model also degraded when the text was extracted column-wise instead of row-wise, and 
when the tokens representing column and row separation were not added to the input to the model.

Conclusion and future work
In this paper, we presented an automated system for extracting and indexing composition information from 
SDS documents using machine learning techniques. We illustrated the benefits of an ensemble multi-layered 
technique, which uses the format of an SDS document to narrow down the area of interest at each layer while 
breaking down the problem into simpler steps, and showed the effectiveness of the technique on our datasets. 
This technique can also be extended for extracting other pieces of information from SDS documents. With SDSs 
being essential for numerous practices within the EHS and ESG domains, such a system is highly valuable for 
several industries.

Although the system uses both textual and visual information in various stages of the pipeline separately, each 
of the stages can benefit from the use of multimodal techniques. For example, the table detection step could ben-
efit from textual information about the section headers, as well as the contents of the table. The NER model was 
able to capture some of the layout information while identifying ingredient names, but error analysis of the model 
revealed it failed to do so on several occasions. The table data extraction software failed to identify the structure 
of the table correctly on several occasions, especially when the contents of the cell spanned multiple lines, or the 
columns were too close to each other with no borders between them. A more robust table structure recognition 
model, combined with a high-quality OCR model, can significantly improve the performance of the system.

Data availability
The data used to train and test our models are available from VelocityEHS but restrictions apply to the avail-
ability of these data, which were obtained through labor intensive expensive processes, and are proprietary, and 
so are not publicly available. Data are however available from the authors upon reasonable request and with 
permission of VelocityEHS.

Code availability
The code for reproducing the designed system is available from VelocityEHS but restrictions apply to the avail-
ability of the code, which is proprietary, and so is not publicly available. The code is however available from the 
authors upon reasonable request and with permission of VelocityEHS.
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