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Abstract
EEG microstates represent functional brain networks observable in resting EEG recordings that remain stable for 40–120ms 
before rapidly switching into another network. It is assumed that microstate characteristics (i.e., durations, occurrences, 
percentage coverage, and transitions) may serve as neural markers of mental and neurological disorders and psychosocial 
traits. However, robust data on their retest-reliability are needed to provide the basis for this assumption. Furthermore, 
researchers currently use different methodological approaches that need to be compared regarding their consistency and 
suitability to produce reliable results. Based on an extensive dataset largely representative of western societies (2 days with 
two resting EEG measures each; day one: n = 583; day two: n = 542) we found good to excellent short-term retest-reliability 
of microstate durations, occurrences, and coverages (average ICCs = 0.874-0.920). There was good overall long-term retest-
reliability of these microstate characteristics (average ICCs = 0.671-0.852), even when the interval between measures was 
longer than half a year, supporting the longstanding notion that microstate durations, occurrences, and coverages represent 
stable neural traits. Findings were robust across different EEG systems (64 vs. 30 electrodes), recording lengths (3 vs. 2 
min), and cognitive states (before vs. after experiment). However, we found poor retest-reliability of transitions. There was 
good to excellent consistency of microstate characteristics across clustering procedures (except for transitions), and both 
procedures produced reliable results. Grand-mean fitting yielded more reliable results compared to individual fitting. Overall, 
these findings provide robust evidence for the reliability of the microstate approach.
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Introduction

Microstate analysis is a popular method used to investigate 
the temporal dynamics of large-scale brain networks on a 
millisecond scale using data obtained from multichannel 
electroencephalography (EEG; for a review, see Michel 

and Koenig 2018). Microstate networks show a temporal 
stability of approximately 40–120 ms before rapidly transi-
tioning into other network types and can be reliably identi-
fied in resting EEG recordings. Typically, a small number 
of microstate types (often four to seven) explains the bulk 
of variance in the EEG (> 70%; e.g., Koenig et al. 2002). 
Microstate characteristics that are typically analyzed include 
the average duration, the average number of occurrences, 
and the percentage coverage of each microstate type, and 
transition probabilities between microstate types (for details, 
see methods). Even though the phenomenon of short-term 
stable topographic brain maps in the EEG has already been 
described more than 50 years ago by Lehmann (1971), the 
interest in this research field has recently increased signifi-
cantly. E.g., the number of newly published studies per year 
including the term “EEG microstates” in their title, abstract, 
or keywords has increased by 137% within only two years 
(i.e., 2019–2021; see Fig. 1).

The figure shows the number of newly published stud-
ies per year on the online scientific search platform Scopus 
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for the term “EEG microstates” in their title, abstract, or 
keywords for the years 2001 to 2021. Note that there is a 
substantial increase over the years, especially from 2019 
onwards (2019: 35, 2020: 55, 2021: 83).

There are several reasons for this sudden success of the 
microstate approach. Recent publications demonstrate the 
potential of microstate research to contribute to a more 
sophisticated diagnosis, monitoring, prognosis, and preven-
tion of mental disorders in clinical psychology and psychia-
try. Microstate characteristics may serve as biomarkers of 
schizophrenia (da Cruz et al. 2020; de Bock et al. 2020), 
affective disorders (Al Zoubi et al. 2019; Damborská et al. 
2019b; Murphy et al. 2020), anxiety disorders (Al Zoubi 
et al. 2019), ADHD (Férat et al. 2022a), and autism (D’Croz-
Baron et al. 2019; Bochet et al. 2021). Facilitating the usage 
of microstate analysis in clinical settings, EEG systems are 
relatively cheap and easy to use (e.g., compared to fMRI) 
and increasingly mobile and quick to implement (e.g., Gar-
giulo et al. 2008; Askamp and van Putten 2014; Lau-Zhu 
et al. 2019). Moreover, microstates can be reliably identi-
fied in easy to measure, task-free resting EEG recordings 
of only three minutes (Liu et al. 2020), which is useful in 
clinical samples with physical or cognitive limitations, and 
in clinical settings where time is a valuable resource. Simi-
larly, microstate characteristics associated with Parkinson’s 
disease (Chu et al. 2020), Alzheimer’s disease (Nishida et al. 
2013; Tait et al. 2020), dementia (Nishida et al. 2013), stroke 
(Zappasodi et al. 2017), or multiple sclerosis (Gschwind 
et al. 2016) may serve as biomarkers in neurology.

Another issue in neuroscience is how stable human traits 
are represented in the brain (for a review, see DeYoung 
2010). Research has demonstrated associations of microstate 
characteristics with the Big 5 personality traits (Zanesco 
et al. 2020), intelligence (Zappasodi et al. 2019; Liu et al. 
2020), self-control (Kleinert et al. 2022), aggression (Klein-
ert and Nash 2022), religious belief (Nash et al. 2022a), and 

prosocial attitudes (Schiller et al. 2020). Additionally, micro-
state characteristics seem to be heritable as they were found 
to be similar in siblings (da Cruz et al. 2020), further sup-
porting the notion that they may relate to interindividual dif-
ferences. Thus, microstate analysis has emerged as a promis-
ing tool to study trait-related functions of the human brain. 
Another advance in microstate research is the increasing 
number of freely available tools to conduct microstate analy-
ses, including the microstate toolbox for EEGLAB (Koenig 
2017), CARTOOL (Brunet et al. 2011), RAGU (Koenig 
et al. 2011), or the Python library Pycrostates (Férat et al. 
2022b), enabling standardized microstate analyses based on 
both resting state and event-related EEG data (for examples 
of event-related microstate analysis, see Schiller et al. 2016; 
Nash et al. 2022b).

Despite the widespread success of the microstate 
approach, there are two important shortcomings limiting its 
validity, both from a theoretical and methodological per-
spective. First, both clinical and basic research builds on 
the theoretical assumption that individuals show similar 
microstate characteristics over time, i.e., that microstates 
represent neural traits. To date, three studies have shown 
moderate to excellent retest-reliability of microstate char-
acteristics (Khanna et al. 2014; Liu et al. 2020; Antonova 
et al. 2022). However, these studies were characterized by 
relatively small and non-representative samples of young 
participants and demonstrated retest-reliability only across 
short intervals (Antonova et al. 2022: n = 20, age: M = 31.5 
years, SD = 12.5, interval: < 1 h; Khanna et al. 2014: n = 10, 
age: M = 30 years, SD = 10, interval: ≥ 48 h; Liu et al. 2020: 
n = 53, age: M = 23, SD = 2.4, interval: 1 day). During the 
revision stage of the current article, another study on the 
retest-reliability of microstate characteristics was published 
(Popov et al. 2023), showing mostly poor retest-reliability 
in 95 young adults and 93 older adults (interval: 7–9 days), 
calling into question previous results. Thus, robust data on 

Fig. 1   Number of newly 
published studies per year on 
Scopus including the term 
“EEG microstates”
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the long-term retest-reliability of microstate characteristics 
over weeks and months are needed that confirm the theory 
that microstate characteristics represent stable neural traits. 
Second, microstate analyses are often applied differently 
across studies and labs, limiting the comparability of results. 
More specifically, varied clustering and fitting procedures 
(for details, see Methods) are used to obtain microstate char-
acteristics, and there is little evidence that these methods 
produce consistent results.

In the current study, we aim to close these research gaps 
using a large dataset collected in the Dortmund Vital Study 
(DVS; Gajewski et al. 2022). In the DVS, data were collected 
on two days (day one [n = 583] and day two [n = 542]; aver-
age interval of 63 days), with two resting EEG measures on 
each day (i.e., a pre-measure at the beginning of each experi-
mental session, and a post-measure after each session; aver-
age interval of 138 min on day one, and 99 min on day two). 
These data enable us to evaluate the short- and long-term 
retest-reliability of microstate characteristics in a sample that 
is largely representative of western societies (for details, see 
Gajewski et al. 2022). Based on previous studies in smaller 
samples (Khanna et al. 2014; Liu et al. 2020; Antonova et al. 
2022), we derive five hypotheses: First, we expect to find 
at least moderate short-term retest-reliability of microstate 
durations, occurrences, and coverages. Although Popov 
and colleagues (2023) found poor retest-reliability of these 
characteristics, they used a different software for microstate 
analysis, leading to reduced comparability with our own 
study. Second, based on two studies in which transitions 
were analyzed (Liu et al. 2020; Antonova et al. 2022), we 
expect to find lower but still acceptable retest-reliability of 
transitions. Third, we expect at least moderate long-term 
retest-reliability of microstate durations, occurrences, cov-
erages, and transitions, although it might be lower than the 
short-term retest-reliability. Based on considerable vari-
ability of the interval between day one and day two, we 
will also separately analyze the long-term retest-reliability 
of microstate characteristics in five groups with different 
intervals between measures (i.e., 1 week, 1 month, 1 to 3 
months, 3 to 6 months, and more than six months). Khanna 
and colleagues (2014) systematically compared the retest-
reliability of microstate characteristics obtained from dif-
ferent clustering procedures (k-means/AAHC) and fitting 
procedures (grand-mean fitting/individual fitting). Fourth, 
based on their findings, we expect to find equally good 
retest-reliability of microstate characteristics obtained from 
k-means clustering and AAHC, but superior retest-reliabil-
ity of microstate characteristics obtained from grand-mean 
fitting compared to individual fitting (for details on these 
different methodologies, see methods). Relatedly, we will 
analyze the consistency of microstate characteristics across 
different methodologies. We will investigate the consist-
ency of clustering procedures by testing for associations of 

microstatecharacteristics obtained from k-means clustering 
and AAHC. In an analogous fashion, we will investigate 
the consistency of fitting procedures by testing for associa-
tions of microstate characteristics obtained from grand-mean 
fitting and individual fitting. Fifth, based on Khanna and 
colleagues (2014), we expect high consistency of cluster-
ing procedures, but only moderate consistency of fitting 
procedures (due to the lower reliability of individual fit-
ting compared to grand-mean fitting, especially concerning 
microstate coverages).

Materials and Methods

Data and Sample

The data for this study were collected in the context of the 
Dortmund Vital Study (DVS), an interdisciplinary, cross-
sectional, and longitudinal study conducted by the Depart-
ments of Ergonomics, Psychology and Neurosciences, 
Immunology, and Toxicology of the Leibniz Research Cen-
tre for Working Environment and Human Factors (IfADo) in 
Dortmund, Germany (for a detailed description of the study, 
see Gajewski et al. 2022). The dataset of the study is largely 
representative of the German working population (20–70 
years) regarding age, genetics, cognitive abilities, and 
employment (Gajewski et al. 2022). Compared to the popu-
lation, there was a higher percentage of women in the DVS 
(61.5% vs 49.6%), and there were more participants with a 
university degree (41.6% vs 18.5%). The study was approved 
by the local ethics committee of the Leibniz Research Centre 
for Working Environment and Human Factors and conducted 
with the informed written consent of participants according 
to the principles expressed in the Declaration of Helsinki. 
The data and code of this study are freely available in the 
OSF repository (https://​osf.​io/​hy8v7/).

Exclusion criteria of the DVS were neurological, car-
diovascular, and oncological diseases, mental disorders 
(schizophrenia, severe depression, anxiety disorders), head 
injuries, severe eye diseases, accidents that limit physical 
fitness and mobility, usage of psychoactive drugs and medi-
cation, and limited vision and hearing after correction. At 
the time of this study, 609 participants completed the first 
experimental session on day one. For all analyses including 
only measures from day one, 26 participants were excluded 
because of problems during the measurement or bad EEG 
quality (as indicated by more than 50% data loss due to arti-
facts). resulting in a sample size of n = 583 (363 women, 
220 men; age: M = 43.83 years, SD = 14.30). For all analyses 
including only measures from day two, a sample of n = 542 
was available (334 women, 208 men; age: M = 43.85 years, 
SD = 14.30). Dropouts were due to canceled experimental 
sessions, individual changes related to exclusion criteria, 

https://osf.io/hy8v7/
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pregnancy, and public restrictions or worries of partici-
pants related to the Covid 19 pandemic. The shared sample 
for analyses of the long-term retest-reliability of microstate 
characteristics across day one and day two was n = 525 (325 
women, 200 men; age: M = 43.87 years, SD = 14.24).

Procedure

Participants were recruited using online social media, flyers, 
newspaper advertisements, local print and radio media, and 
announcements during public events. Furthermore, several 
companies in the region informed their employees about the 
study. After registering for the DVS with a contact form, 
telephone interviews were conducted to inform participants 
about the study, check potential exclusion criteria, and assess 
demographic data. Prior to the first experimental session, 
participants completed a battery of questionnaires at home 
that are not relevant to this study.

Experimental sessions were run by professional labora-
tory staff members. In the first experimental session (day 
one), participants were seated in an electrically shielded 
EEG cabin, where they were equipped with a 64-electrode 
EEG system (Brain Products, Gilching, Germany). Three 
minutes of resting EEG were recorded with closed eyes, 
followed by three minutes of resting EEG with open eyes. 
Participants then completed a series of computerized tasks 
that are evaluated elsewhere (for details, see Gajewski et al. 
2022). At the end of the experimental session, another, anal-
ogous resting EEG was recorded (average interval between 
measures: 138 min). Day two involved a procedure similar 
to day one (except for the fact that resting measures were 
recorded for two minutes instead of three minutes, and the 
eyes-open measures were conducted first, followed by the 
eyes-closed measures), using a 30-electrode EEG system 
(BioSemi B. V., Amsterdam, Netherlands). In accordance 
with standard procedures (Newson and Thiagarajan 2019) 
only eyes-closed periods were used for further analysis to 
avoid neural activation associated with subjective processing 
of visual cues. The average interval between the first and the 
second resting EEG measure on day two was 99 min. Only 
eyes-closed periods were used for further analyses. In total, 
participants received €160 for their participation (€100 for 
day one and €60 for day two).

EEG Recording and Preprocessing

On each day, resting EEG with closed eyes was recorded 
before and after completion of the test-battery. On day one, 
a 64-channel EEG system with Ag–AgCI active electrodes 
was used (actiCap; Brain Products, Gilching, Germany). The 
online sampling rate was 1000 Hz, the reference electrode 
was placed on position FCz, and the grounding electrode 
on position AFz. On day two, we used a 30-channel EEG 

system with Ag–AgCI active electrodes (BioSemi B. V., 
Amsterdam, Netherlands) with an online sampling rate of 
2048 Hz. For grounding and online referencing, a common 
mode sense active electrode and a driven right leg passive 
electrode were used, together forming a feedback loop that 
drives the average potential. The reason for the usage of a 
different EEG system was to achieve comparability of day 
two measures with an earlier study using the same EEG 
setup. Both EEG systems were arranged on the scalp accord-
ing to the extended 10–20 system, and impedances were 
below 10 kΩ.

EEG preprocessing was conducted in EEGLAB (Delorme 
and Makeig 2004). First, the data was down-sampled to 
500 Hz (512 Hz on day two), and a band-pass filter of 2 
to 20 Hz was applied (a frequency range commonly used 
in microstate research; e.g., Koenig et al. 2002). Second, 
large artifacts were removed automatically based on spec-
trum thresholding (EEGLAB function: pop_rejcont; recom-
mended settings; frequency range: 15–30 Hz). Third, the 
EEG was re-derived to average reference (day one only, as 
this step is not necessary using the BioSemi EEG system). 
Fourth, we used the PrepPipeline to exclude noisy EEG 
channels (Bigdely-Shamlo et al. 2015). Fifth, we applied 
an additional artifact correction method (EEGLAB func-
tion: pop_autorej; recommended settings; threshold limit for 
detection of extremely large artifacts: 500 µV). Finally, an 
independent component analysis (ICA) was used to iden-
tify regular artifacts in the EEG data (EEGLAB function: 
pop_runica; recommended settings), followed by the rejec-
tion of components with a probability of more than 70% to 
reflect eye-movements or muscle artifacts (EEGLAB func-
tion: ICLabel; Pion-Tonachini et al. 2019).

EEG Microstate Analysis

Microstate characteristics were obtained using the micro-
state toolbox for EEGLAB by Koenig (2017; version 1.2). 
First, electric potential field maps were extracted from peaks 
of global field power for optimal signal-to-noise ratio. Sec-
ond, these individual maps were submitted to a clustering 
procedure for the identification of mean individual maps 
using modified k-means clustering (k-means; Pascual-Mar-
qui et al. 1995; Murray et al. 2008) or atomize and agglom-
erate hierarchical clustering (AAHC; Murray et al. 2008). 
In the modified k-means clustering procedure, a pre-defined 
number of k individual maps are randomly picked as cluster 
template maps. These template maps are then optimized to 
fit the data in an iterative process by repeatedly assigning 
all individual maps to the most similar template map, and 
then updating the template maps by the first principal com-
ponent of the assigned individual maps, until a convergence 
criterion has been reached. Another option is the atomize 
and agglomerate hierarchical clustering procedure (AAHC; 
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Murray et al. 2008), which starts with all individual maps 
being separate clusters, and then repeatedly dissolving the 
cluster that contributes least to the global explained vari-
ance, assigning the resulting unassigned individual maps 
to the most similar cluster map, and updating the cluster 
maps by computing the first principal component of their 
members. This process is repeated in an iterative way until 
a pre-defined number of maps has been reached. We used 
both methods to enable a systematic comparison of their 
consistency, and to compare their suitability to produce reli-
able results.

Third, mean individual maps were submitted to a second 
cluster analysis for the identification of the most predomi-
nant grand-mean microstate maps across the whole avail-
able sample in each of the eight conditions (i.e., day one/
pre/k-means, day one/post/k-means, day two/pre/k-means, 
day two/post/k-means, day one/pre/AAHC, day one/post/ 
AAHC, day two/pre/ AAHC, day two/post/ AAHC), with 
the constraint that there is a one-to-one relationship among 
grand-mean microstate maps and mean individual map on 
the subject level. Note that there is an ongoing debate on the 
appropriate number of clusters that should be extracted in 
the second level clustering (e.g., Murray et al. 2008; Michel 
and Koenig 2018). As the focus of the current study was to 
investigate the reliability of microstate characteristics across 
different measures and methodologies, the main criterion 
for choosing a cluster number was the consistency of grand-
mean microstate maps across conditions. We extracted four, 
five, six, and seven clusters in each condition. To assess the 
consistency of grand-means across conditions, we com-
puted grand-grand-mean microstate maps across the eight 
grand-means for each cluster number. Then, we compared 
the average variance that could be explained by grand-mean 
microstates in grand-grand-mean microstates. On average, 
grand-means with five clusters showed the highest explained 
variance compared to four, six, and seven clusters (97.03% 
vs 93.16%, 89.42%, and 91.56%), attesting almost perfect 
consistency across conditions (see Table 1 for grand-mean 
microstate maps, and Table 2 for spatial correlations among 
microstate maps of the same type across conditions). Fur-
thermore, all maps could be clearly assigned to previously 
identified microstate types (e.g., Custo et al. 2017; Zanesco 
et al. 2020; Férat et al. 2022c), which was not the case for 
four, six, and seven clusters (see Table S2, Table S3, and 
Table S4 in the supplementary material). Thus, we decided 
to conduct all further analyses using five microstate maps 
only.

In the fitting procedure, individual maps were assigned to 
a microstate type based on spatial correlations with grand-
mean microstate maps. Time-points between GFP peaks 
were assigned to a microstate type using a nearest neigh-
bor interpolation. We will refer to this procedure as grand-
mean fitting (GM fitting). In an alternative procedure, mean 

individual maps (instead of individual maps) were assigned 
to a microstate type based on spatial correlations with grand-
mean microstate maps. Then, these mean individual maps 
(instead of grand-mean microstate maps) were used to assign 
individual maps to a microstate type. We will refer to this 
procedure as individual fitting (Ind fitting). In both fitting 
procedures, temporal smoothing was performed accord-
ing to the standard parameters of the EEGLAB microstate 
plugin (window size of 20 ms; non-smoothness penalty of 
one; Koenig 2017). Again, we used both methods to enable a 
systematic comparison of their consistency, and to compare 
their suitability to produce reliable results. The fitting proce-
dure results in a continuous sequence of microstate maps for 
each individual. From these sequences, individual microstate 
characteristics were derived. Durations refer to the average 
duration of each microstate type in milliseconds, occur-
rences refer to the average number of occurrences of each 
microstate type per second, coverages refer to the percentage 
of the EEG covered by each microstate type, and transi-
tions refer to transition probabilities from each microstate 
type to each other microstate type, which were computed as 
the percentage of observed transitions from one microstate 
type to another relative to expected transitions (transitions 
= [observed transitions per second − expected transitions 
per second]/expected transitions per second × 100; i.e., a 
value of 10 indicates that transitions from one microstate 
type to another occurred 10% more frequently than expected 
based on a microstate’s occurrence; also see Schiller et al. 
2020). Additionally, type-independent mean microstate char-
acteristics include the percentage of explained variance in 
individual EEG measures by all microstate types combined, 
mean durations across microstate types, mean occurrences 
across microstate types, and the mean global field power 
across microstate types (mean standard deviation of all chan-
nels from zero across the EEG).

Statistical Analyses

As a prerequisite for the following analyses, we tested for 
the consistency of topographic microstate maps of the five 
different types (A, B, C, C′, D) by computing spatial corre-
lations between maps of the same type obtained from eight 
different conditions (i.e., day one/pre/k-means, day one/post/
k-means, day two/pre/k-means, day two/post/k-means, day 
one/pre/AAHC, day one/post/AAHC, day two/pre/AAHC, 
day two/post/AAHC). Furthermore, we analyzed the short- 
and long-term retest-reliability of microstate maps, and their 
methodological consistency across clustering procedures 
(k-means/AAHC). When correlating maps across day one 
and day two with different electrode configurations (see 
Figure S1 in the supplementary material), the 64-channel 
data was spatially resampled to the 30-channel data using 
spherical spline interpolation as implemented in EEGLAB.
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Table 1.   Grand-mean microstate maps

Condition A B C C’ D

Day one/pre/k-means

Day one/post/k-means

Day two/pre/k-means

Day two/post/k-means

Day one/pre/AAHC

Day one/post/AAHC

Day two/pre/AAHC

Day two/post/AAHC

Grand-mean microstate maps (five clusters) for each day (day one/day two),measurement (pre/post), and clustering procedure (k-means/AAHC; 
eightconditions in total).
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In the following analyses, we calculated Intraclass 
Correlation Coefficients (ICCs; Gamer et  al. 2012) to 
test for the retest-reliability and methodological consist-
ency of microstate characteristics. ICCs smaller than .50, 
between .50 and .75, between .75 and .90, and larger than 
.90 were considered to reflect poor, moderate, good, and 

excellent reliability, respectively (Koo and Li 2016). For 
the sake of compactness and understandability, we also 
calculated average ICCs of microstate durations, occur-
rences, and coverages across microstate types, and average 
ICCs of microstate transition across transition types. To 
this end, we z-transformed ICCs using the algorithm by 

Table 2.   Spatial correlations of grand-mean microstate mapswithin each microstate type

Microstate type A
(1) (2) (3) (4) (5) (6) (7) (8)

Day one / pre / k-means (1) 1
Day one / post / k-means (2) .994 1
Day two / pre / k-means (3) .951 .962 1
Day two / post / k-means (4) .757 .793 .915 1
Day one / pre / AAHC (5) .971 .978 .892 .685 1
Day one / post / AAHC (6) .965 .979 .899 .708 .998 1
Day two / pre / AAHC (7) .984 .981 .903 .682 .992 .985 1
Day two / post / AAHC (8) .986 .986 .913 .699 .992 .987 .999 1

Microstate type B
Day one / pre / k-means (1) 1
Day one / post / k-means (2) .992 1
Day two / pre / k-means (3) .946 .933 1
Day two / post / k-means (4) .849 .853 .967 1
Day one / pre / AHHC (5) .968 .968 .992 .953 1
Day one / post / AAHC (6) .952 .962 .985 .963 .996 1
Day two / pre / AAHC (7) .907 .888 .994 .976 .974 .967 1
Day two / post / AAHC (8) .907 .887 .993 .974 .973 .965 .999 1

Microstate type C
Day one / pre / k-means (1) 1
Day one / post / k-means (2) .999 1
Day two / pre / k-means (3) .964 .965 1
Day two / post / k-means (4) .923 .922 .984 1
Day one / pre / AHHC (5) .957 .962 .985 .945 1
Day one / post / AAHC (6) .948 .952 .988 .954 .999 1
Day two / pre / AAHC (7) .953 .957 .991 .958 .996 .997 1
Day two / post / AAHC (8) .930 .935 .983 .950 .992 .995 .997 1

Microstate type C’
Day one / pre / k-means (1) 1
Day one / post / k-means (2) .980 1
Day two / pre / k-means (3) .932 .930 1
Day two / post / k-means (4) .879 .902 .985 1
Day one / pre / AHHC (5) .695 .709 .919 .943 1
Day one / post / AAHC (6) .684 .712 .913 .947 .997 1
Day two / pre / AAHC (7) .774 .758 .935 .934 .983 .970 1
Day two / post / AAHC (8) .760 .742 .926 .925 .980 .967 .999 1 

Microstate type D 
Day one / pre / k-means (1) 1        
Day one / post / k-means (2) .996 1       
Day two / pre / k-means (3) .965 .971 1      
Day two / post / k-means (4) .930 .945 .990 1     
Day one / pre / AHHC (5) .971 .983 .993 .989 1    
Day one / post / AAHC (6) .951 .969 .987 .993 .997 1   
Day two / pre / AAHC (7) .987 .990 .993 .973 .990 .977 1  
Day two / post / AAHC (8) .967 .974 .999 .991 .995 .990 .994 1 

Spatial correlations ofgrand-mean microstate maps within different microstate types (A, B, C, C′, D).Different shades of red indicate strengths of 
correlations (lighter shadesindicate weaker correlations). On average, grand-mean microstate maps of typeA, B, C, C′, and D correlated with r = 
.912, r = .953, r =.967, r = .885, and r = .980, respectively, across days (day one/daytwo), measurements (pre/post), and clustering procedures 
(k-means/AAHC)
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Fisher (1915), averaged the values, and back-transformed 
the z-values to average correlations. This is necessary, as 
correlation coefficients are not normally distributed. We 
then tested for significant differences between average 
ICCs obtained from different measures, clustering-, and 
fitting procedures using one-sided z-tests as described by 
Eid and colleagues (2011; 547–548). Briefly, this proce-
dure z-transforms two correlation coefficients and tests 
their difference against the null hypothesis, also taking 
into account different sample sizes.

To test our hypotheses, we first analyzed the short-term 
retest-reliability of microstate characteristics by computing 
ICCs between microstate characteristics obtained from the 
day one pre-measure and the day one post-measure (aver-
age interval of 138 min) in each condition (i.e., k-means/
GM fitting, k-means/Ind fitting, AAHC/GM fitting, AAHC/
Ind fitting). We repeated this procedure using pre- and 
post-measures from day two (average interval of 99 min). 
Second, we analyzed the long-term retest-reliability of 
microstate characteristics across an average interval of 63 
days by computing ICCs between microstate characteristics 
obtained from the day one pre-measure and the day two pre-
measure in each condition. We repeated this procedure using 
post-measures from day one and day two. Note that we also 
used the results from both the short- and long-term retest-
reliability analyses to assess the suitability of the different 
clustering procedures (k-means/AAHC) and fitting proce-
dures (GM fitting/Ind fitting) to produce reliable results. 
Based on the large variability of intervals between day one 
and day two (1–996 days), we also conducted these analyses 
separately in five different groups (i.e., group 1: interval of 
1–7 days [n = 143], group 2: interval of 8–30 days [n = 129], 
group 3: interval of 31–90 days [n = 142], group 4: inter-
val of 91–180 days [n = 70], group 5: interval of 181 days 
and more [n = 41]). Third, we analyzed the methodological 
consistency of microstate characteristics across clustering 
procedures (k-means/AAHC) in each measurement (day one/
pre, day one/post, day two/pre, day two/post; each for both 
fitting procedures). Fourth, we analyzed the methodological 
consistency of microstate characteristics across fitting proce-
dures (GM fitting/Ind fitting) in each measurement (day one/
pre, day one/post, day two/pre, day two/post; each for both 
clustering procedures). Note that age- and sex-differences 
of microstate characteristics are evaluated in another study.

Results

Descriptive Statistics

We computed EEG microstate characteristics in 16 condi-
tions (all combinations of 2 days [day one/day two], two 
measurements [pre-measure/post-measure], two clustering 

procedures [kmeans/AAHC], and two fitting procedures 
[GM fitting/Ind fitting]). The grand-average of variance 
explained by all microstate types in the EEG across par-
ticipants and conditions was 81.45%, which is closely in 
line with previous literature (e.g., Koenig et al. 2002). The 
grand-average of the total time available for analyses was 
141.62 s on day one and 90.95 s on day two. The grand-aver-
age mean duration, mean occurrence, and mean global field 
power of microstates across microstate types, participants, 
and conditions was 63.25 ms, 16.95 occurrences per sec-
ond, and 4.81 standard deviations, respectively (see Table S1 
in the supplementary material for descriptive statistics of 
microstate characteristics in each condition).

Grand‑Mean Microstate Maps

We computed sets of grand-mean microstate maps with five 
clusters for each day (day one/day two), measurement (pre-
measure/post-measure), and clustering procedure (k-means/
AAHC). All sets of maps included a map with a left occipital 
to right frontal orientation, representing microstate type A 
(exception: left occipital to right temporal orientation in day 
two/post/k-means), a map with a right occipital to left fron-
tal orientation, representing microstate type B, a map with 
an occipital to frontal orientation, representing microstate 
type C, a map with a central occipital to frontal orientation, 
representing microstate type C′, and a map with an occipital 
to frontocentral orientation, representing microstate type D 
(Table 1). Thus, all grand-mean microstate maps could be 
clearly assigned to normative microstate types known from 
the literature (e.g., Koenig et al. 2002; Custo et al. 2017; 
Zanesco et al. 2020; Férat et al. 2022c).

Short‑Term Retest‑Reliability

On day one, the short-term retest-reliability of microstate 
characteristics was calculated across an average interval of 
137.69 min (SD = 8.24, range: 112.98–147.27). Microstate 
maps of all five microstate types showed excellent spatial 
retest-reliability across both clustering procedures (k-means/
AAHC) as indicated by high spatial correlations between 
pre- and post-measures (see Table S5 in the supplemen-
tary material). Regarding temporal microstate characteris-
tics, durations, occurrences, and coverages obtained from 
k-means clustering and GM fitting showed good to excellent 
average ICCs (see Fig. 2, see Table 3 for average ICCs and 
Table S6 in the supplementary material for type-specific 
ICCs). Compared to k-means clustering, AAHC yielded 
highly comparable results (all z-tests: p > .260). However, 
Ind fitting resulted in clearly inferior (poor to good) aver-
age ICCs compared to GM fitting both in k-means cluster-
ing and AAHC (all z-tests: p < .001). Notably, type-specific 
ICCs of coverages across all five microstate types and both 
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Table 3.   Average ICCs of durations, occurrences, coverages, and transitions for all analyses

Durations Occurrences Coverages Transitions
Analyses ICC LB UB ICC LB UB ICC LB UB ICC LB UB
STR / day one / k-means / GM fitting .899 .882 .914 .912 .897 .925 .905 .889 .919 .509 .446 .567
STR / day one / AAHC / GM fitting .906 .890 .920 .914 .900 .926 .905 .889 .919 .460 .393 .522
STR / day two / k-means / GM fitting .874 .853 .893 .899 .882 .914 .887 .868 .904 .399 .326 .468
STR / day two / AAHC / GM fitting .892 .873 .908 .920 .906 .932 .919 .905 .931 .422 .350 .489
STR / day one / k-means / Ind fitting .695 .651 .735 .685 .639 .726 .339 .265 .409 .229 .151 .305
STR / day one / AAHC / Ind fitting .851 .827 .872 .756 .719 .789 .137 .056 .216 .257 .180 .331
STR / day two / k-means / Ind fitting .765 .728 .798 .615 .560 .665 .255 .175 .332 .181 .098 .261
STR / day two / AAHC / Ind fitting .835 .808 .859 .728 .686 .765 .103 .019 .186 .167 .084 .248
LTR / pre / k-means / GM fitting .826 .797 .851 .807 .775 .835 .769 .732 .802 .378 .302 .449
LTR / pre / AAHC / GM fitting .852 .827 .874 .848 .822 .870 .820 .790 .846 .395 .320 .465
LTR / post / k-means / GM fitting .810 .778 .838 .745 .704 .781 .671 .621 .715 .263 .182 .341
LTR / post / AAHC / GM fitting .847 .821 .870 .829 .800 .854 .788 .753 .818 .332 .254 .406
LTR / pre / k-means / Ind fitting .687 .639 .730 .609 .552 .660 .223 .140 .303 .184 .100 .265
LTR / pre / AAHC / Ind fitting .835 .807 .859 .712 .667 .752 -.023 -.108 .063 .157 .072 .239
LTR / post / k-means / Ind fitting .735 .693 .772 .630 .575 .679 .198 .114 .279 .140 .055 .223
LTR / post / AAHC / Ind fitting .851 .826 .873 .756 .717 .790 .100 .015 .184 .140 .055 .223
LTR (1) / pre / k-means / GM fitting .859 .835 .880 .825 .796 .851 .768 .730 .801 .422 .349 .490
LTR (1) / pre / AAHC / GM fitting .869 .846 .889 .840 .813 .864 .809 .777 .837 .415 .342 .483
LTR (1) / post / k-means / GM fitting .833 .805 .857 .769 .732 .802 .684 .636 .727 .319 .240 .394
LTR (1) / post / AAHC / GM fitting .882 .861 .900 .843 .816 .866 .807 .775 .835 .369 .293 .441
LTR (2) / pre / k-means / GM fitting .756 .717 .790 .769 .732 .802 .756 .717 .790 .375 .299 .446
LTR (2) / pre / AAHC / GM fitting .796 .762 .825 .841 .814 .864 .824 .794 .850 .397 .322 .467
LTR (2) / post / k-means / GM fitting .762 .724 .796 .694 .647 .736 .673 .623 .717 .234 .151 .313
LTR (2) / post / AAHC / GM fitting .775 .738 .807 .813 .782 .840 .790 .755 .820 .355 .278 .428
LTR (3) / pre / k-means / GM fitting .810 .778 .838 .800 .767 .829 .764 .726 .797 .337 .259 .411
LTR (3) / pre / AAHC / GM fitting .858 .834 .879 .850 .824 .872 .824 .794 .850 .364 .287 .436
LTR (3) / post / k-means / GM fitting .807 .775 .835 .751 .711 .786 .671 .621 .715 .243 .161 .322
LTR (3) / post / AAHC / GM fitting .865 .842 .885 .836 .808 .860 .801 .768 .830 .294 .214 .370
LTR (4) / pre / k-means / GM fitting .859 .835 .880 .824 .794 .850 .794 .760 .824 .352 .275 .425
LTR (4) / pre / AAHC / GM fitting .867 .844 .887 .858 .834 .879 .820 .790 .846 .411 .337 .480
LTR (4) / post / k-means / GM fitting .810 .778 .838 .750 .710 .785 .649 .597 .696 .242 .160 .321
LTR (4) / post / AAHC / GM fitting .834 .806 .858 .813 .782 .840 .735 .693 .772 .282 .201 .359
LTR (5) / pre / k-means / GM fitting .852 .827 .874 .832 .804 .857 .801 .768 .830 .381 .305 .452
LTR (5) / pre / AAHC / GM fitting .878 .857 .896 .873 .851 .892 .841 .814 .864 .357 .280 .429
LTR (5) / post / k-means / GM fitting .826 .797 .851 .771 .734 .804 .665 .614 .710 .140 .055 .223
LTR (5) / post / AAHC / GM fitting .851 .826 .873 .821 .791 .847 .748 .708 .783 .260 .178 .338
MCC / day one / pre / GM fitting .939 .929 .948 .926 .913 .937 .899 .882 .914 .731 .691 .767
MCC / day one / post / GM fitting .946 .937 .954 .929 .917 .939 .902 .886 .916 .726 .685 .762
MCC / day two / pre / GM fitting .961 .954 .967 .956 .948 .963 .947 .938 .955 .845 .819 .867
MCC / day two / post / GM fitting .931 .919 .941 .927 .914 .938 .903 .886 .917 .689 .642 .731
MCC / day one / pre / Ind fitting .788 .755 .817 .707 .664 .745 .124 .043 .203 .309 .234 .381
MCC / day one / post / Ind fitting .830 .803 .854 .757 .720 .790 .153 .073 .231 .345 .271 .415
MCC / day two / pre / Ind fitting .813 .782 .840 .644 .592 .691 .068 -.016 .151 .333 .256 .406
MCC / day two / post / Ind fitting .823 .794 .848 .665 .615 .709 .076 -.008 .159 .260 .180 .337
MCF / day one / pre / k-means .731 .691 .767 .745 .707 .779 .530 .469 .586 .515 .453 .572
MCF / day one / pre / AAHC .796 .764 .824 .588 .532 .639 .127 .046 .206 .389 .318 .456
MCF / day one / post / k-means .774 .739 .805 .763 .727 .795 .505 .442 .563 .501 .438 .559
MCF / day one / post / AAHC .813 .784 .839 .626 .574 .673 .129 .048 .208 .396 .325 .462
MCF / day two / pre / k-means .773 .737 .805 .639 .586 .686 .388 .314 .457 .422 .350 .489
MCF / day two / pre / AAHC .764 .727 .797 .488 .421 .550 .035 -.049 .119 .379 .304 .449
MCF / day two / post / k-means .807 .775 .835 .705 .660 .745 .454 .384 .518 .476 .408 .539
MCF / day two / post / AAHC .786 .752 .816 .540 .477 .597 .091 .007 .174 .386 .312 .455

STR Short-term retest-reliability (n = 583 for day one; n= 542 for day two), LTR long-term retest-reliability (n = 525), MCC method-
ological consistency of clustering procedures (n = 583 for day one;n = 542 for day two), MCF methodological consistency of fitting 
procedures(n = 583 for day one; n = 542 for day two). k-means = k-meansclustering, AAHC atomize and agglomerate hierarchical cluster-
ing; GM fitting= GM fitting, Ind fitting = Ind fitting. Shown are average intraclasscorrelation coefficients (ICCs; model = two-way, type = 
agreement, alpha = .05;averaging according to Fisher’s (1915) algorithm) of durations, occurrences, and coveragesacross the five microstate 
types (A, B, C, C’, D), and average ICCs oftransitions across the 20 transition types. Red (.00 < ICC < .50)= poor reliability; yellow (.50 < 
ICC < .75) = moderatereliability, light green (.75 < ICC < .90) = good reliability,dark green (ICC > .90) = excellent reliability
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clustering procedures were unacceptable using Ind fit-
ting. Mean microstate characteristics (explained variance, 
mean duration, mean occurrence, mean GFP) showed good 
to excellent average ICCs across all clustering and fitting 
procedures. Microstate transitions showed similar (z-test: 
p = .138), poor to moderate average ICCs in both cluster-
ing procedures when using GM fitting, and similar (z-test: 
p = .306), poor, even lower average ICCs in both clustering 
procedures when using Ind fitting (both z-tests: p < .001).

On day two, the short-term retest-reliability was calcu-
lated across an average interval of 99.10 min (SD = 9.33, 
range: 55.10–136.47). Confirming results from day one, 
microstate maps showed excellent spatial retest-reliability 
(see Table S5 in the supplementary material). Durations, 

occurrences, and coverages obtained from k-means clus-
tering and GM fitting showed good to excellent aver-
age ICCs (see Fig. 2, see Table 3 for average ICCs and 
Table S7 in the supplementary material for type-specific 
ICCs). Using AAHC instead of k-means clustering yielded 
comparable, marginally higher average ICCs compared to 
k-means clustering (z-tests for durations, occurrences, and 
coverages: p = .090, p = .023, and p = .002, respectively), 
whereas Ind fitting instead of GM fitting resulted in clearly 
inferior (poor to good) average ICCs both in k-means clus-
tering and AAHC (all z-tests: p < .001). Mean microstate 
characteristics showed good to excellent retest-reliability 
across all clustering and fitting procedures. Microstate 
transitions showed similar (z-test: p = .325), poor to 

Fig. 2   Average short- and long-term retest-reliability of microstate 
characteristics ***p < .001, **p < .010, *p < .050, †p < .10. y-axis: 
Intraclass correlation coefficient (ICC) scale ranging from zero to 
one. x-axis: Microstate characteristics (Dur durations, Occ occur-
rences, Cov coverages, Trans transitions). Legend: k-means = k-means 
clustering, AAHC atomize and agglomerate hierarchical clustering, 
GM fitting = GM fitting procedure, Ind fitting = Ind fitting procedure. 
Top: Average ICCs of microstate characteristics across microstate 
types (A, B, C, C′, D) showing their short-term retest-reliability on 
day one (top left; N = 583) and day two (top right; N = 542). Bottom: 

Average ICCs of microstate characteristics across microstate types 
(A, B, C, C′, D) showing their long-term retest-reliability using pre-
measures (bottom left; N = 525) and post-measures (bottom right; 
N = 525). Stars (and crosses) indicate significant (and marginally 
significant) differences between average ICCs obtained from differ-
ent methodologies as shown by z-tests. We analyzed differences of 
average ICCs between clustering procedures (k-means/GM fitting 
vs AAHC/GM fitting and k-means/Ind fitting vs AAHC/Ind fitting) 
and fitting procedures (k-means/GM fitting vs k-means/Ind fitting and 
AAHC/GM fitting vs AAHC/Ind fitting)
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moderate retest-reliability in both clustering procedures 
when using GM fitting, and similar (z-test: p = .406), poor, 
even lower average ICCs in both clustering procedures 
when using Ind fitting (both z-tests: p < .001).

Long‑Term Retest‑Reliability

The long-term retest-reliability of microstate characteris-
tics was calculated across an average interval of 62.60 days 
(SD = 105.63, range: 1–996 days). Microstate maps of all 
five microstate types showed excellent spatial long-term 
retest-reliability across both clustering procedures (kmeans/
AAHC) as indicated by high spatial correlations between 
day one and day two pre-measures (see Table S5 in the sup-
plementary material). Regarding temporal microstate char-
acteristics, durations, occurrences, and coverages obtained 
from k-means clustering and GM fitting showed moderate to 
good average ICCs (see Fig. 2, see Table 3 for average ICCs 
and Table S8 in the supplementary material for type-specific 
ICCs). Using AAHC instead of k-means clustering yielded 
somewhat higher, but comparable average ICCs (z-tests for 
durations, occurrences, and coverages: p = .078, p = .017, 
and p = .012, respectively). However, Ind fitting instead of 
GM fitting resulted in clearly inferior (poor to good) average 
ICCs in k-means clustering (all z-tests: p < .001) and AAHC 
(except for durations; z-tests for durations, occurrences, and 
coverages: p = .170, p < .001, and p < .001, respectively). 
Again, the type-specific ICCs of coverages across all five 
microstate types and both clustering procedures were unac-
ceptable using Ind fitting. Mean microstate characteristics 
(explained variance, mean duration, mean occurrence, mean 
GFP) showed good to excellent retest-reliability across all 
clustering and fitting procedures. Microstate transitions 
showed similar (z-test: p = .373), mostly poor average ICCs 
in both clustering procedures when using GM fitting, and 
similar (z-test: p = .327), even lower average ICCs in both 
clustering procedures when using Ind fitting (both z-tests: 
p < .001).

Analogous analyses were calculated using post-measures 
of day one and day two. Supporting results from pre-meas-
ures, microstate maps showed excellent spatial retest-relia-
bility (see Table S5 in the supplementary material). Dura-
tions, occurrences, and coverages obtained from k-means 
clustering and GM fitting showed mostly moderate to good 
average ICCs (see Fig. 2, see Table 3 for average ICCs and 
Table S9 in the supplementary material for type-specific 
ICCs). Using AAHC instead of k-means clustering yielded 
even higher average ICCs (z-tests for durations, occurrences, 
and coverages: p = .028, p < .001, and p < .001, respectively), 
whereas Ind fitting instead of GM fitting resulted in clearly 
inferior (poor to good) average ICCs both in k-means clus-
tering (all z-tests: p ≤ .001) and AAHC (except for durations; 
z-tests of durations, occurrences, and coverages: p = .408, 

p = .001, and p < .001, respectively). Mean microstate char-
acteristics showed good to excellent retest-reliability across 
all clustering and fitting procedures. Again, microstate 
transitions showed similar (z-test: p = .111), mostly poor 
retest-reliability in both clustering procedures when using 
GM fitting, and similar (z-test: p = .500), even lower retest-
reliability in both clustering procedures when using Ind fit-
ting (z-tests for k-means and AAHC: p = .019 and p < .001).

Due to the considerable variability of the interval between 
day one and day two (1-996 days), we assigned participants 
to one out of five groups (group 1: interval of 1–7 days, 
group 2: interval of 8–30 days, group 3: interval of 31–90 
days, group 4: interval of 91–180 days, group 5: interval of 
181 days and more). Then, we separately analyzed the long-
term retest-reliability of microstate characteristics in each of 
these groups (see Table 3 for average ICCs and Table S10, 
Table S11, Table S12, Table S13, and Table S14 in the sup-
plementary material for type-specific ICCs in each group). 
Based on the clearly inferior retest-reliability of microstate 
characteristics obtained from Ind fitting compared to GM 
fitting, we only used GM fitting in these analyses. With just 
a few exceptions (6 out of 300 ICCs with poor reliability), 
ICCs of durations, occurrences, and coverages were moder-
ate (72 out of 300 ICCs), good (210 out of 300 ICCs), or 
excellent (12 out of 320 ICCs) across all conditions (pre/k-
means, post/k-means, pre/AAHC, post/AAHC), even in par-
ticipants with an interval of more than 6 months between 
day one and day two. As in the whole sample, the retest-
reliability of transitions was poor (329 out of 400 ICCs) to 
moderate (71 out of 400 ICCs) across groups and conditions. 
Notably, there was no systematic decrease of the long-term 
retest-reliability with increasing intervals between day one 
and day two (see Fig. 3; see Table S15 in the supplementary 
material for group-differences between average ICCs).

Consistency Across Clustering Procedures

The consistency of microstate characteristics across the 
two clustering procedures (k-means/AAHC) was tested in 
each measurement (day one/pre, day one/post, day two/pre, 
day two/post). Microstate maps of all five microstate types 
showed good overall consistency across clustering pro-
cedures as indicated by high spatial correlations between 
maps obtained from k-means clustering and AAHC (see 
Table S5 in the supplementary material). As mentioned 
before, k-means clustering resulted in central to frontal 
orientations of the microstate type C′ map compared to a 
central occipital to frontal orientation in AAHC. For this 
reason, the C′ map from AAHC showed a stronger associa-
tion with the C map from k-means clustering than the C′ 
map from k-means clustering in the day one/pre-measure 
(r = .695 vs r = .834) and the day one/post-measure (r = .712 
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vs r = .818). Furthermore, the A map of the day two/post-
measure showed a left occipital to right temporal orienta-
tion in k-means clustering compared to a left occipital to 
right frontal orientation in all other measures, which is why 
the A map of this measure obtained from AAHC showed a 
stronger association with the C map from k-means clustering 
(r = .699 vs r = .837). Despite these minor inconsistencies, 
17 out of 20 maps obtained from k-means clustering showed 
the strongest correlations with their counterparts obtained 
from AAHC (all correlations > 0.903).

Regarding temporal microstate characteristics, dura-
tions, occurrences, and coverages obtained from k-means 
clustering and GM fitting showed mostly excellent average 

ICCs compared to AAHC across days and measures (see 
Table 3 for average ICCs and Table S16 and Table S17 
in the supplementary material for type-specific ICCs on 
day one and day two). However, Ind fitting resulted in 
clearly inferior (poor to good) average ICCs of cluster-
ing procedures compared to GM fitting in all measures 
(all z-tests: p < .001). The type-specific ICCs of coverages 
across all five microstate types and both clustering proce-
dures were unacceptable using Ind fitting. Mean microstate 
characteristics (explained variance, mean duration, mean 
occurrence, mean GFP) showed good to excellent average 
ICCs across clustering procedures regardless of the fitting 
procedure used. Microstate transitions showed moderate 
to good average ICCs when using GM fitting and poor, 

Fig. 3   Average long-term retest-reliability of microstate char-
acteristics in groups with different intervals between measures 
n = 525. y-axis: Intraclass correlation coefficient (ICC) scale rang-
ing from zero to one. x-axis: Microstate characteristics (Dur dura-
tions, Occ occurrences, Cov coverages, Trans transitions). pre = pre-
measures, post = post-measures, k-means = k-means clustering, 
AAHC atomize and agglomerate hierarchical clustering; Legend: 
Group 1 = interval of 1–7 days, Group 2: interval of 8–30 days, Group 
3: interval of 31–90 days, Group 4: interval of 91–180 days, Group 
5: interval of 181 days and more. Top: Average ICCs of microstate 

characteristics across types for each group, showing their long-term 
retest-reliability for pre-measures and k-means clustering (top left) 
and post-measures and k-means clustering (top right). Bottom: Aver-
age ICCs of microstate characteristics across types showing their 
long-term retest-reliability for pre-measures and AAHC (top left) and 
post-measures and AAHC (top right; see Table  S15 in the supple-
mentary material for information on group differences between aver-
age ICCs as indicated by z-tests). Notably, there was no systematic 
decrease of the retest-reliability with increasing intervals between day 
one and day two across all four conditions
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significantly lower consistency when using Ind fitting (all 
z-tests: p < .001).

Consistency Across Fitting Procedures

Durations, occurrences, coverages, and transitions obtained 
from GM fitting and Ind fitting after k-means clustering 
showed poor to good average ICCs across days and measures 
(see Table 3 for average ICCs and Table S18 and Table S19 
for type-specific ICCs). Analogous analyses after AAHC 
resulted in comparable average ICCs regarding durations 
(z-tests for the day one/pre-measure, the day one/post-meas-
ure, the day two/pre-measure, and the day two/post-measure: 
p = .004, p = .036, p = .354, and p = .164, respectively), but 
inferior average ICCs regarding occurrences, coverages, and 
transitions (z-tests for occurrences, coverages, and transi-
tions for the day one/pre-measure: p < .001, p < .001, and 
p = .003, respectively; z-tests for occurrences, coverages, and 
transitions for the day one/post-measure: p < .001, p < .001, 
and p = .012, respectively; z-tests for occurrences, cover-
ages, and transitions for the day two/pre-measure: p < .001, 
p < .001, and p = .191, respectively; and z-tests for occur-
rences, coverages, and transitions for the day two/post-meas-
ure: p < .001, p < .001, and p = .030, respectively).

Discussion

Our results show excellent consistency of topographic maps 
that can be assigned to the five microstate types A, B, C, 
C′, and D across four independent measures (day one/pre, 
day one/post, day two/pre, day two/post) and two clustering 
procedures (k-means/AAHC). Conversely, extracting four, 
six, or seven clusters yielded inconsistent combinations of 
microstate maps. This finding is in line with a recent study, 
which found that extracting five clusters that were very 
similar to ours, resulted in highly comparable microstate 
maps across different EEG frequency bands and behavioral 
conditions in a large sample of n = 203 (Férat et al. 2022c). 
Furthermore, previous studies that used an objective meta-
criterion (available in the software CARTOOL; Brunet et al. 
2011) often identified the same five clusters to optimally 
fit their data (e.g., Pascual-Marqui et al. 1995; Dambor-
ská et al. 2019a; Bréchet et al. 2020; Murphy et al. 2020; 
Zanesco et al. 2020; Bochet et al. 2021; D’Croz-Baron et al. 
2021; Artoni et al. 2022). Based on earlier research (e.g., 
Koenig et al. 1999), four microstate maps (A, B, C, D) have 
been extracted from resting EEG data in most studies (for a 
review, see Michel and Koenig 2018). However, extracting 
four maps solely based on this tradition without considering 
objective criteria might not be the best choice, as a different 
number of clusters might explain the data better (Michel and 
Koenig 2018). In support of this view, Custo and colleagues 

(2017) found a considerable spatial correlation between 
microstate C and C′ (named F in that study) despite differ-
ent neural generators, and argue that this might have caused 
previous studies to collapse these two maps into one, or 
mislabel them. Indeed, our study shows that C and C′ can 
be reliably identified as independent maps across measures, 
clustering procedures, and fitting procedures. Considering 
our own and the abovementioned findings, we recommend 
that data-driven criteria should be used to assess the optimal 
number of microstate maps. Regarding their spatial reliabil-
ity, extracting five instead of four microstate maps seems to 
be superior. The grand-mean microstate maps identified in 
this study may be used as templates in future research.

The main goal of this study was to assess the short- and 
long-term retest-reliability of EEG microstate characteris-
tics. As predicted, there was good to excellent short-term 
retest-reliability of microstate durations, occurrences, and 
coverages across an average interval of 138 min. This finding 
could be confirmed using two independent EEG measures 
from day two with an average interval of 99 min. Further-
more, there were mostly good long-term retest-reliability 
coefficients across an average interval of 63 days. Again, 
this finding could be confirmed using two independent 
EEG measures recorded after the test-batteries on each day. 
We also tested for the long-term retest-reliability of micro-
state characteristics in five groups with varying intervals 
between measures. Surprisingly, there were no systematic 
decreases in the retest-reliability with increasing intervals. 
Indeed, even participants with an interval of at least half a 
year between measures showed moderate to excellent retest-
reliability of microstate durations, occurrences, and cover-
ages. These results provide the first evidence of its kind for 
the longstanding notion that microstate dynamics represent 
stable neural traits (e.g., da Cruz et al. 2020; Murphy et al. 
2020; Zanesco et al. 2020; Kleinert et al. 2022). The fact that 
microstate characteristics were as reliable after one week as 
they were after half a year but showed even higher within-
session reliability on the same day, suggests that millisec-
ond brain dynamics might change to a certain degree on 
a day-to-day basis, but remain highly stable in their basic 
structure over long time periods. Note that we found high 
retest-reliability across different EEG systems (64-electrode 
Brain Products system vs. 30-electrode BioSemi system), 
recording lengths (three minutes on day one vs. two minutes 
on day two), and cognitive states (before vs. after experi-
mental sessions), further highlighting the robustness of our 
findings.

Contrary to our hypotheses, there was only poor to mod-
erate retest-reliability of microstate transitions across all 
measures, clustering procedures, and fitting procedures 
(ICCs mostly < 0.500). Although previous studies also found 
lower retest-reliability of microstate transitions compared 
to durations, occurrences, and coverages (Liu et al. 2020; 
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Antonova et al. 2022), these values were still within an 
acceptable range (ICCs mostly > 0.600). As these studies 
used different software to analyze microstates, differences 
might result from different computation models. Antonova 
and colleagues (2022) speculate that the poor retest-reliabil-
ity of transition probabilities (even after less than 1 h) might 
be due to the low reliability of occurrences, which are used 
to compute transitions. However, this explanation does not 
hold in our study, as occurrences showed good reliability. 
Compared to durations, occurrences, and coverages, transi-
tions represent more complex temporal dynamics of micro-
state syntax that involve (at least) two different microstate 
types (for an example, see Lehmann et al. 2005). Given that 
complexity naturally hinders reproducibility, the lower relia-
bility of microstate transitions seems a logical consequence. 
Research focusing on microstate transitions should thus aim 
to use large samples. However moderate, it should be noted 
that specific transition types showed acceptable short- and 
long-term retest-reliability, even after more than half a year. 
Thus, some transition types might have a trait-like quality 
as well, even if their reliability was lower compared to more 
simple microstate dynamics such as durations, occurrences, 
and coverages.

As hypothesized, individual fitting produced less reliable 
results compared to grand-mean fitting in all conditions, 
especially regarding coverages (see Fig. 2). Thus, our study 
strongly supports prior findings by Khanna and colleagues 
(2014) but extends them to a much larger sample. These 
findings provide evidence that using predominant individual 
maps instead of grand-mean microstate maps as templates to 
assign individual maps to a microstate type results in con-
siderable inconsistencies across individuals, and eventually 
lower reliability of microstate characteristics. Nevertheless, 
it should be noted that durations and occurrences obtained 
from individual fitting mostly showed moderate to good 
short- and long-term retest-reliability. Relatedly, there was 
mixed consistency of microstate characteristics across fit-
ting procedures, especially regarding coverages, which was 
probably due to the lower reliability of individual fitting 
compared to grand-mean fitting. The main problem with 
the individual fitting procedure is that the mean individual 
maps used as templates show substantial differences between 
individuals, leading to inconsistencies in assigning individ-
ual EEG maps to microstate types and consequently low 
reliability. This problem also exists on a lower scale in the 
current study because different grand-means were used as 
templates in the different conditions. However, this problem 
can be considered to be relatively minor, as grand-means 
were almost perfectly consistent. If anything, inconsistencies 
might lead to an underestimation of the true retest-reliability 
of microstate characteristics. In sum, we therefore recom-
mend using grand-mean fitting and not individual fitting to 

obtain reliable microstate characteristics in future studies, 
especially when microstate coverages are to be analyzed.

As expected, both k-means clustering and AAHC yielded 
good overall short- and long-term retest-reliability of micro-
state characteristics. Although k-means clustering is the more 
popular method, AAHC appeared to yield somewhat superior 
short- and long-term retest-reliability of microstate durations, 
occurrences, and coverages. However, there was excellent con-
sistency of microstate durations, occurrences, and coverages 
across clustering procedures (also see Khanna et al. 2014), 
supporting the view that both methods are valid options.

A limitation of this study is that pre-measures were con-
ducted in the morning, and post-measures in the early after-
noon, after participants completed a cognitively demanding 
test battery. Thus, this study might underestimate the true 
short-term retest-reliability of microstate characteristics as 
post-measures were likely affected by cognitive depletion and 
tiredness. Another limitation is that we used different EEG 
systems (64 vs. 30 electrodes) and recording times (3 vs. 2 
min) on day one and day two. Again, this means that this 
study might underestimate the true long-term retest-reliabil-
ity of microstate characteristics due to systematic differences 
between EEG recordings. On the other hand, these differ-
ences attest to the reliability of our findings across different 
cognitive states, EEG systems, and recording times. Differ-
ent recording lengths might be related to different levels of 
arousal, since participants may become drowsy even after 
short resting state measurements (e.g., Tagliazucchi and 
Laufs 2014). As we did not assess arousal levels, we could 
not control for this possible covariate. In addition, it should 
be noted that we performed microstate analysis using the 
EEGLAB plugin for microstates by Koenig (2017; version 
1.2), so our findings may not generalize to microstate char-
acteristics obtained with other software. In conclusion, this 
study provides robust evidence for the short-and long-term 
retest-reliability of EEG microstate characteristics, even after 
more than 6 months. Moreover, both k-means clustering and 
AAHC yielded reliable results, whereas grand-mean fitting 
yielded superior reliability compared to individual fitting. 
This is a crucial step forward for standardized microstate 
research and ultimately for the use of microstates as biomark-
ers in basic research as well as clinical settings.
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