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A tripartite domain of the murine immunoglobulin m heavy-chain enhancer contains the mA and mB ele-
ments that bind ETS proteins and the mE3 element that binds leucine zipper-containing basic helix-loop-helix
(bHLH-zip) factors. Analysis of the corresponding region of the human m enhancer revealed high conservation
of the mA and mB motifs but a striking absence of the mE3 element. Instead of bHLH-zip proteins, we found
that the human enhancer bound core binding factor (CBF) between the mA and mB elements; CBF binding was
shown to be a common feature of both murine and human enhancers. Furthermore, mutant enhancers that
bound prototypic bHLH-zip proteins but not CBF did not activate transcription in B cells, and conversely, CBF
transactivated the murine enhancer in nonlymphoid cells. Taking these data together with the earlier analysis
of T-cell-specific enhancers, we propose that ETS-CBF is a common composite element in the regulation of
antigen receptor genes. In addition, these studies identify the first B-cell target of CBF, a protein that has been
implicated in the development of childhood pre-B-cell leukemias.

The immunoglobulin m heavy-chain (IgH) gene enhancer (m
enhancer), located in the JH-Cm intron, is necessary for IgH
gene expression in B lymphocytes (17, 23). The m enhancer has
also been shown to play a key role in the initiation of IgH gene
rearrangements in the most immature B-cell precursors (2, 30,
32, 42). These observations indicate that detailed analysis of
the m enhancer will provide insights into the general problem
of enhancer function as well as early regulatory events in B
lymphopoiesis.

Studies using the murine m enhancer have shown that the
enhancer contains binding sites for several nuclear factors that
mediate its transcription-activating function (6). m enhancer
binding proteins can be broadly classified into two groups:
those whose expression is tissue restricted such as the mA, mB,
and octamer motif binding proteins; and those whose expres-
sion is more ubiquitous, such as the basic helix-loop-helix
(bHLH) family of transcription factors that bind the mE1 to
mE5 motifs. How these two kinds of protein factors collaborate
to produce a functional, cell-specific enhancer is unknown.
Furthermore, mutation of individual motifs within the en-
hancer does not significantly affect enhancer activity, indicating
a degree of functional redundancy among the various motifs
that have been identified (16).

To simplify the analysis of this enhancer, we have previously
described a minimal domain of the murine m enhancer con-
taining the mA, mB, and mE3 motifs that is active in B cells
(24). Based on the observation that minimal enhancer activity
depends on all three motifs, we proposed that this domain
contains no redundant elements. The mA and mB elements
bind the ETS domain proteins Ets-1 and PU.1, respectively,
whereas the mE3 element binds several members of the
bHLH-zip (leucine zipper-containing bHLH) family, such as
TFE3 and USF. Thus, like the full m enhancer, the minimal

enhancer is composed of binding sites for tissue-restricted
(PU.1) and ubiquitously expressed (TFE3 and USF) factors,
suggesting that it is a good model in which to examine the
mechanism of enhancer function. To strengthen the proposed
importance of the minimal enhancer, in this study we examined
the corresponding region of the intronic m enhancer from the
human IgH locus (11).

We found that the sequences of the mA and mB sites, as well
as the spacing between them, were highly conserved between
the two enhancers. Consistent with this observation, Ets-1 and
PU.1 proteins bound to these sites. However, the intervening
mE3 element was less well conserved between the two enhanc-
ers, and we detected no binding of either of two prototypic
bHLH-zip proteins, TFE3 and USF, to the human enhancer.
Because transcriptional activity of the minimal murine en-
hancer requires an intact mE3 site, we predicted that the lack
of a mE3-like element in the human enhancer would render a
corresponding minimal human enhancer fragment inactive in
transfection assays. This was not the case. A mA/mB-containing
region of the human enhancer was as active as the minimal
murine enhancer in S194 plasma cells. Mutagenic analysis fur-
ther showed that sequences between the mA and mB elements
were necessary for enhancer activity, suggesting that the min-
imal human m enhancer also required an element in addition
to the ETS protein binding sites. We found that the intervening
element bound the transcription factor CBF (core binding
factor; also known as PEBP2 or AML1 [15, 39]), and binding
was disrupted in all mutants that were inactive in transfection
assays. These observations identify the first B-cell-specific tar-
get of CBF, a factor that has previously been implicated in the
activation of several T and myeloid cell-specific promoters and
enhancers (7, 12, 27, 35, 41, 44), and demonstrate that ETS-
CBF is a common composite element in antigen receptor gene
enhancers.

MATERIALS AND METHODS

Mammalian and bacterial expression plasmids. The PU.1 (pEVRF-PU.1),
Ets-1 (pEVRF-Ets-1), and CBFa2451 [pcDNA/CBFa2(451)] expression vectors
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have been previously described (5, 43). The bacterial expression plasmids His-
PU.1 and His-ETS(Ets-1) are described in reference 25.

The bacterial expression plasmids GST (glutathione S-transferase)-TFE3 (an
NcoI-EcoRI fragment of the TFE3 cDNA filled in with Klenow enzyme, ligated
into pGEX2T [Pharmacia Biotech, Inc.] cut with SmaI) and GST-USF were a
gift of K. Calame, Columbia University, New York, N.Y. All expression plasmids
were sequenced to ensure that the appropriate reading frame was maintained.

Construction of reporter plasmids. The m70 dimer reporter was described
previously (24). The murine and human m51 wild-type (mWT and hWT) dimer
reporters were constructed by ligating two tandem repeats of the annealed
oligonucleotides 59 TCG ACC TGG CAG GAA GCA GGT CAT GTG GCA
AGG CTA TTT GGG GAA GGG AAC 39 and 59 TCG AGT TCC CTT CCC
CAA ATA GCC TTG CCA CAT GAC CTG CTT CCT GCC AGG 39 (mWT)
and 59 TCG ACC TGG CAG GAA GCA GGT CAC CGC GAG AGT CTA
TTT TAG GAA GCA AAC 39 and 59 TCG AGT TTG CTT CCT AAA ATA
GAC TCT CGC GGT GAC CTG CTT CCT GCC AGG 39 (hWT) into the
D56CAT enhancerless reporter plasmid digested with SalI. The human m51
mutant (hM1 to hM6) and murine mC2 (mmC2) reporters were constructed
similarly with the following annealed oligonucleotides: hM1, 59 TCG ACC TGG
CAG GAA GCA ttg CAC CGC GAG AGT CTA TTT TAG GAA GCA AAC
39 and 59 TCG AGT TTG CTT CCT AAA ATA GAC TCT CGC GGT Gca aTG
CTT CCT GCC AGG 39; hM2, 59 TCG ACC TGG CAG GAA GCA GGT ata
CGC GAG AGT CTA TTT TAG GAA GCA AAC 39 and 59 TCG AGT TTG
CTT CCT AAA ATA GAC TCT CGC Gta tAC CTG CTT CCT GCC AGG 39;
hM3, 59 TCG ACC TGG CAG GAA GCA GGT CAt atg GAG AGT CTA TTT
TAG GAA GCA AAC 39 and 59 TCG AGT TTG CTT CCT AAA ATA GAC
TCT Cca taT GAC CTG CTT CCT GCC AGG 39; hM4, 59 TCG ACC TGG
CAG GAA GCA GGT CAC Ctc tAG AGT CTA TTT TAG GAA GCA AAC
39 and 59 TCG AGT TTG CTT CCT AAA ATA GAC TCT aga GGT GAC CTG
CTT CCT GCC AGG 39; hM5, 59 TCG AGT TGG CAG GAA GCA GGT CAC
CGC GAG gta CTA TTT TAG GAA GCA AAC 39 and 59 TCG AGT TTG CTT
CCT AAA ATA Gta cCT CGC GGT GAC CTG CTT CCT GCC AGG 39; hM6,
59 TCG ACC TGG CAG GAA GCA GGT CAC CGC GAG AGT CTA ccc
TAG GAA GCA AAC 39 and 59 TCG AGT TTG CTT CCT Agg gTA GAC TCT
CGC GGT GAC CTG CTT CCT GCC AGG 39; and mmC2, 59 TCG ACC TGG
CAG GAA GCA GGT CAT GTG GaA AGG CTA TTT GGG GAA GGG
AAC 39 and 59 TCG AGT TCC CTT CCC CAA ATA GCC TTt CCA CAT
GAC CTG CTT CCT GCC AGG 39. The mutated nucleotides are in lowercase
and underlined. All reporter plasmids were sequenced to ensure that the appro-
priate mutations were introduced.

Cell culture, transfections, and CAT assays. S194 cells were grown in RPMI
medium supplemented with 5% newborn serum, 5% inactivated fetal calf serum,
and 50 mg each of penicillin and streptomycin per ml. M12 cells were grown in
RPMI medium supplemented with 10% inactivated fetal calf serum and 50 mg
each of penicillin and streptomycin per ml. Murine and human dimeric enhanc-
er-containing chloramphenicol acetyltransferase (CAT) reporter plasmids (5 mg)
were transfected into S194 and M12 cells by the DEAE-dextran method as
previously described (24); 40 to 48 h after transfection, whole-cell extracts were
prepared by three rounds of freeze-thawing, and the levels of CAT protein in the
extracts were determined by CAT enzyme-linked immunosorbent assay (ELISA)
(Boehringer Mannheim Corp.) according to the manufacturer’s instructions.

HeLa cells were grown in Dulbecco modified Eagle medium supplemented
with 10% newborn serum and 50 mg each of penicillin and streptomycin per ml.
m70 wild-type, mA2, mE32, and mB2 dimeric enhancer-containing CAT reporter
plasmids (2 mg) were cotransfected with PU.1 (1 or 2 mg), Ets-1 (1 or 2 mg), or
CBFa2 (2 mg) expression vectors into HeLa cells by the calcium phosphate
method. Plasmid pEVRF2 (18) was included as a carrier to maintain a total of
6 mg of DNA per transfection. Briefly, 6 3 105 cells were split into individual
plates 2 to 4 h before transfection, and the DNA-containing calcium phosphate

precipitate was gently dropped on the medium. The cells were washed with fresh
medium at 16 h; after harvesting at 40 to 48 h, whole-cell extracts were prepared
by three rounds of freeze-thawing, and the level of CAT protein in 100 mg of
extract was determined by CAT ELISA (Boehringer Mannheim) according to
the manufacturer’s instructions.

In vitro protein expression, EMSAs, and supershifts. Full-length PU.1 and the
ETS domain of Ets-1 [Ets-1(ETS)] proteins were expressed as hexahistidine-
tagged proteins (25). Full-length TFE3 and USF proteins were expressed as GST
fusion proteins and were purified as described by the manufacturer (Pharmacia
Biotech, Inc.) The CBFa241-190 and CBFa241-214 proteins containing the DNA
binding Runt domain of CBFa2 were prepared as previously described (3). For
electrophoretic mobility shift assays (EMSAs), either bacterially expressed and
purified proteins or 4, 8, and 16 mg of S194 nuclear extracts were incubated with
32P-labeled oligonucleotide DNA probes (20,000 cpm) in the presence of 25 ng
of poly(dI-dC) z (dI-dC) (1 mg for extracts), 70 mM NaCl, and 10% glycerol for
10 min at room temperature, and reactions were resolved on a 4% polyacryl-
amide gel. Wild-type and mutant probes in each experiment were of comparable
specific activity. EMSAs in Fig. 5, 6, 8, and 9 were performed with annealed
double-stranded oligonucleotides, whereas those in Fig. 7 were performed with
PstI-BamHI fragments from the murine enhancer (bp 380 to 433) as described
elsewhere (24). The CBF high-affinity consensus probe used for Fig. 8 was
obtained by annealing two oligonucleotides, 59-AAT TCG AGT ATT GTG GTT
AAT ACG-39 and 59-AAT TCG TAT TAA CCA CAA TAC TGG-39. Super-
shifts were performed by incubating 20 mg of S194 or 27 mg of 70Z extracts with
32P-labeled oligonucleotide DNA probes (50,000 cpm) for 20 min at room
temperature, followed by incubation with the specified antibodies for an addi-
tional 30 min on ice (21, 22).

RESULTS
The human m enhancer does not contain a mE3 element. To

extend our ongoing characterization of the murine IgH m en-
hancer, we examined the organization of the human m en-
hancer. Of the several bHLH protein binding sites known in
the murine enhancer, mE1, mE2, and mE4 were easily recog-
nizable in the human enhancer (Fig. 1). Although the mE5 and
mE3 sites showed regions of similarity, they were significantly
less conserved (Fig. 1). Specifically, the regions corresponding
to both the mE3 and mE5 sites lacked one half of the minidyad
that is characteristic of the mE elements. In contrast, the lym-
phoid cell-restricted elements mA, mB, and octamer were high-
ly conserved between the two enhancers, as was the spacing
between the mA and mB elements (Fig. 1). Thus, two of the
three elements present in the minimal murine enhancer (con-
sisting of mA, mB, and mE3 elements) were conserved in the
human sequence.

We examined the binding of mA and mB binding proteins to
the human enhancer to directly establish the validity of the se-
quence comparisons. For these experiments, full-length PU.1
(mB binding protein) and Ets-1(ETS) (mA binding protein)
were expressed as hexahistidine-tagged proteins in bacteria.
The proteins were purified by adsorption to nickel chelate
resins and used in EMSAs. Prototypic mE3 binding proteins,

FIG. 1. Alignment of IgH m enhancer sequences. Sequences of IgH m enhancer from four different species (GenBank accession no. V01523 for mouse, M13799
for rat, K01901 for human, and X13700 for rabbit) were aligned by using the Pileup program in the Wisconsin package version 8.1 (Genetics Computer Group, Madison,
Wis.). Elements containing previously identified recognition motifs are overlined, and positions where the nucleotides from all species are identical are indicated by
asterisks.
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TFE3 and USF, were expressed as GST fusion proteins. Both
murine and human enhancer sequences bound His-tagged
PU.1 and Ets-1(ETS) comparably (Fig. 2, lanes 1 to 8). TFE3
and USF bound well to the murine probe but not at detectable
levels to the human probe (Fig. 2, lanes 9 to 12). We conclude
that the five nucleotides of the putative human mE3 element
that are identical to the murine sequence at the 59 end of the
site (Fig. 1) do not allow efficient binding of either of these
bHLH-zip proteins to the human enhancer.

Functional analysis of the minimal human m enhancer. Our
earlier analysis of the minimal murine m enhancer showed that
mutation of the mE3 site significantly decreased enhancer ac-
tivity in B cells. Absence of a mE3-like element in the human
m enhancer suggested that a corresponding fragment of this
enhancer would have very low enhancer activity, similar to that
of the mE3 mutated murine enhancer. To check if this was so,
we tested the transcription activation properties of a mA/mB-
containing fragment of the human enhancer. Synthetic oligo-
nucleotides encompassing the mA/mB elements from the hu-
man enhancer were cloned as dimers 59 of a CAT reporter
gene transcribed from a c-fos gene promoter and assayed by
transient transfection in S194 plasma cells. Surprisingly, this
human m enhancer fragment was as active as the minimal
murine m70 enhancer in S194 plasma cells (Fig. 3) but not in
nonlymphoid cells (data not shown). As expected, high-level
activity of the murine enhancer was dependent on the mE3 site
because a mE3 mutation significantly decreased activity. We
conclude that despite the absence of a recognizable mE3-like
element that can bind bHLH-zip proteins such as TFE3 and
USF, a fragment of the human enhancer spanning the mA and
mB sites is a functional B-cell-specific enhancer, which we shall
refer to as the minimal human enhancer.

Activity of the minimal human enhancer may be due only to
the mA and mB motifs and their respective binding proteins, or
it may require additional factors. To distinguish between these
possibilities, we analyzed a panel of mutations that introduced
changes in the sequence between the mA and mB sites (Fig. 4A

and B). All mutant fragments were obtained as synthetic oli-
gonucleotides, cloned as dimers in the fos-CAT vector, and
assayed by transient transfection into S194 cells (Fig. 4C).
Mutation of the conserved nucleotides just 39 of the mA site
(hM1) reduced but did not eliminate enhancer activity. In vitro
binding assays suggested that reduced binding of Ets-1 to the
mA element may be partly responsible for the observed de-
crease. However, mutations in the nonconserved region fur-
ther 39 resulted in diminished enhancer activity similar to the
mE32 mutation in the murine enhancer (Fig. 4C). These ob-
servations are consistent with the requirement for an addi-
tional factor, other than ETS proteins at mA and mB sites, for
activity of the minimal human enhancer in B cells. As observed
previously with the murine enhancer, mutation of the mB ele-
ment in the human enhancer (hM6) abolished enhancer
activity. We propose that the minimal human enhancer is
also activated by three closely positioned factors.

To ensure that mutations hM1 to M6 did not disrupt DNA-
protein interaction at the mA or mB site, we used EMSA to
study the binding of PU.1 and Ets-1 to the mutant enhancers.
All of the human enhancer derivatives bound Ets-1(ETS) (Fig.
5, lanes 1 to 6), and all except hM6 bound PU.1 (Fig. 5, lanes
7 to 12), indicating that the functional effects described above
were not due to mutations in the mA or mB site. These results
strengthen the conclusion that a third, unidentified factor is
required for activity of the minimal human enhancer.

Analysis of proteins binding to the human m enhancer.
Close examination of the human sequence revealed a similarity
to the recognition site of CBF, the consensus binding site for
which is PyGPyGGT (15, 19, 37). On the noncoding strand of
the human enhancer, the nucleotides corresponding to the
murine mE3 motif are 59-CGCGGT-39 (Fig. 1). We therefore
tested whether CBFa2 (the DNA binding subunit of CBF)
bound to the human enhancer fragment.

Bacterially expressed DNA binding (Runt) domain from
CBFa2 (AML1) formed a discrete nucleoprotein complex with
the human enhancer probe (Fig. 6A, lane 1). To strengthen the
conjecture that the activity of the human enhancer may be
mediated by CBF, we also analyzed the panel of intervening
site mutants that were tested by transient transfection. The

FIG. 2. DNA binding analysis of PU.1, Ets-1, TFE3, and USF1 to the murine
and human enhancers. The human (H) and murine (M) m enhancer probes were
used in binding assays with the following: lanes 1 and 2, His-PU.1 (80 ng); lanes
3 and 4, His-PU.1 (160 ng); lanes 5 and 6, Ets-1(ETS) (100 ng); lanes 7 and 8,
Ets-1(ETS) (200 ng); lanes 9 and 10, GST-TFE3 (50 ng); and lanes 11 and 12,
GST-USF1 (40 ng). Arrows: 1 and 2, USF and TFE3 binding to the murine probe
only; 3, PU.1-DNA complex; 4, Ets-1(ETS)–DNA complex. EMSAs were per-
formed as described previously (5).

FIG. 3. The minimal murine and human IgH m enhancers activate transcrip-
tion comparably. Reporter plasmids (5 mg) containing dimeric murine m70
[(m70)2], murine mE3 mutant (mE32), and human [h(m51)2] enhancers were
transfected into S194 plasma cell lines, and CAT assays were performed by
ELISA as described in Materials and Methods. CAT enzyme activity is shown on
the y axis as the percentage of the amount of CAT enzyme obtained with the
dimeric murine m70 reporter. Results show the averages of at least two trans-
fections carried out in duplicate. D56 refers to an enhancerless reporter. Error
bars indicate the average deviations of the data.
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inactive mutants, hM2 and hM4, did not bind CBFa2 effi-
ciently (Fig. 6A, lanes 3 and 4), whereas the transcriptionally
active mutants hM1 and hM5 bound CBFa2 in vitro (Fig. 6A,
lanes 2 and 5). The transcriptionally inactive mB mutant, hM6,
also retained CBFa2 binding (Fig. 6A, lane 6), whereas the
inactive mutant hM3 did not bind CBFa2 (see Fig. 9). The
close correspondence between CBFa2 binding and function-
ally active intervening site mutants suggested that the human
enhancer is activated by a combination of ETS proteins and
CBF.

The wild-type and mutated human enhancer sequences were
further characterized by in vitro competition assays (Fig. 6B).
The CBFa2 Runt domain and a wild-type human enhancer
probe were incubated in the presence of increasing amounts of
competitor oligonucleotides. The hWT sequence as well as
hM1, hM5, and hM6 competed efficiently for CBFa2 binding,
whereas hM2 to hM4 competed inefficiently even at the highest
concentrations tested. Subtle variations were seen between
different competitors; for example, in several experiments hM1
competed more efficiently than hWT, and hM4 retained some
protein binding as shown by detectable competition at its high-
est concentration. The increased affinity of hM1 may reflect a

dependence on flanking sequences beyond the core recogni-
tion site for CBFa2 binding, and the weakness of hM4 may be
because all the critical guanosine residues are left unaltered in
this mutation (Fig. 4B). We note that the transcriptional ac-
tivities of mutations hM2 to hM4 in B cells partially recapitu-
late the relative affinities of these sequences for CBFa2 in
vitro. For example, in hM3, three of the four guanosines in the
core CBFa2 recognition site have been altered, and this se-
quence has the least transcriptional activity. In contrast, hM4,
which is the most transcriptionally active of the three muta-
tions, also retains more CBFa2 binding ability.

The murine enhancer also binds CBF. The results presented
above were consistent with the idea that the minimal domain
of the human enhancer examined here is activated by ETS
domain proteins binding to mA and mB sites and a CBF family
member binding to the intervening sequence. The human en-
hancer has two features that are similar to the murine en-
hancer: it requires mA and mB binding proteins, and three
protein binding sites are required for transcriptional activity.
The major difference between the two is that the murine en-
hancer is believed to be activated by bHLH-zip proteins such
as TFE3, whereas the human enhancer does not bind TFE3
and may be activated by CBF. Although it was possible that
ETS domain proteins combined with different factors to acti-
vate the two enhancers, we tested whether CBF binding was a
common feature of both enhancers. Fragments of the wild-type
murine enhancer and mutations thereof were assayed for CBF
binding by EMSA. The wild-type sequence as well as mutants
mA and mB bound CBFa2 in vitro (Fig. 7, lanes 1, 2, and 4);
however, mutant mE3 did not (Fig. 7, lane 3). We conclude
that the murine enhancer contains a CBF binding site between
the mA and mB elements, which is lost in mutant mE32. Thus,
CBF binding is a common feature of both enhancers.

The m enhancers bind CBF present in B-cell nuclear ex-
tracts. To detect CBF DNA binding activity in B-cell extracts,
we used a high-affinity CBF binding site in EMSA. In S194
plasma cell extracts, a discrete nucleoprotein complex was de-
tected with this probe (Fig. 8A, lane 1). This complex was
specific, because it could be competed with the self oligonu-
cleotide (Fig. 8A, lanes 8 and 9) but not with a high-affinity
Ets-1 binding site (Fig. 8A, lanes 10 to 12). The murine and
human enhancer sequences also competed this complex (Fig.
8A, lanes 2 to 4 and 5 to 7, respectively), although approxi-
mately fourfold-higher levels were required compared to the
self competitor. Furthermore, a murine enhancer fragment

FIG. 4. Identification of an element in the human IgH enhancer in the region
corresponding to the murine mE3 motif. (A) Comparison of the murine and
human enhancers indicating the absence of a mE3 motif in the human enhancer.
The mA, mE3, and mB motifs are indicated in boldface, and the nucleotide
numbers of the murine and human enhancers are from references 8 and 11,
respectively. (B) Sequences of a panel of mutants in the human enhancer (hM1
to hM6) corresponding to the region spanning the murine mE3 motif. The
altered sequence in each mutant is indicated in lowercase and underlined. (C)
Transcriptional activities of the minimal human mutant enhancers. Reporter
plasmids (5 mg) containing dimeric wild-type hWT and mutant (hM1 to hM6)
enhancers were transfected into S194 plasma cell lines, and CAT assays were
performed by ELISA as described in Materials and Methods. CAT enzyme
activity is shown on the y axis as the percentage of the activity of the reporter
plasmid containing the hWT enhancer. Results shown are the averages of at least
two transfections carried out in duplicate. Error bars indicate the average devi-
ations of the data.

FIG. 5. DNA binding of PU.1 and Ets-1 to the human enhancer mutants.
EMSAs were carried out with bacterially expressed and purified His-Ets-1(ETS)
(lanes 1 to 6) and His-PU.1 (lanes 7 to 12) proteins and hWT and mutant en-
hancer probes as indicated above the lanes. The mutant probes are numbered as
in Fig. 4B. Specific nucleoprotein complexes are indicated by arrows 1 [His-Ets-1
(ETS)–DNA] and 2 (His-PU.1–DNA). A lower-mobility complex in the lanes
with the PU.1 protein is due to the double occupancy of the mB and mA sites.
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containing a mutated mE3 element did not compete for CBF
binding in S194 extracts (data not shown). We conclude that
the murine and human Ig enhancer sequences bind endoge-
nous B cell CBF with comparable affinities.

To further characterize the CBF proteins present in B-cell
lines, we performed antibody supershift experiments using S194
and 70Z pre-B-cell nuclear extracts. The levels of CBF binding
were comparable in the two extracts (Fig. 8B, lanes 1 and 6),
indicating that CBF proteins are expressed at early stages of
B-cell differentiation. EMSAs were carried out in the presence
of antibodies specific for the three AML proteins, AML-1
(CBFa2), AML-2 (CBFa3), and AML-3 (CBFa1) (21, 22).
The CBF complex in S194 cells was reduced significantly only
with an anti-AML-3 antibody (Fig. 8B, lane 4), while the com-
plex in 70Z cells was most sensitive to the anti-AML-1 anti-
body (Fig. 8B, lane 7). Consistent with earlier observations of
Meyers et al. (21, 22), we observed a similarly migrating com-
plex in Jurkat T-cell nuclear extracts, which was affected by the
anti-AML-1 antibody (data not shown). These results demon-
strate that different CBF proteins are expressed during B-cell
development; however, the functional significance of this dif-
ference is unclear at present. AML-1 mRNA was also detected
in two pre-B-cell lines, a B-cell line and several T-cell lines
(data not shown).

CBF binding correlates with both murine and human en-
hancer activities. Analysis of the human enhancer suggested
that ETS domain proteins plus CBF are sufficient to generate
transcriptional activity in B cells. Furthermore, the murine
enhancer was found to contain a CBF binding site that over-
lapped the mE3 site. It is likely that CBF binds to the TGTGG
motif of the murine enhancer, which is also a part of the CAT
GTGG recognition site of bHLH-zip proteins. Because the
mE3 mutation also eliminated CBF binding, we could not as-
certain whether CBF and bHLH-zip proteins (such as TFE3)
could both provide the third essential component to the tri-
partite enhancer. Ideally we wanted to analyze an enhancer
that bound TFE3, but not CBF, to determine whether bHLH-
zip proteins could confer the observed properties of this en-
hancer. In an attempt to distinguish between CBF and TFE3
binding to the murine enhancer, we mutated the C residue 39
of the CBF core recognition site to an A (Fig. 9A), because
previous studies showed that TGTGGA was recognized poorly
by CBFa2 (37). This mutation, we anticipated, would substan-
tially reduce affinity for CBF binding while retaining TFE3
binding. Fortuitously, an analogous situation was created in the
hM3 human enhancer mutation, where the sequence CATA

TGG is similar to the murine mE3 site and may therefore bind
TFE3 (Fig. 9A).

Protein binding to the mutated enhancers was assayed by
EMSA. Recombinant TFE3 bound strongly to the murine en-
hancer probe (Fig. 9B, lane 1) but not to the wild-type human
enhancer sequence (Fig. 9B, lane 3). The single-base-mutated
murine sequence mC2 retained TFE3 binding, though binding
affinity was reduced approximately twofold (Fig. 9B, lane 2);
however, CBFa2 binding was undetectable (Fig. 9B, lanes 5
and 6). The hM3 human sequence, in sharp contrast to its
wild-type counterpart, gained significant TFE3 binding (Fig.
9B, lane 4) while losing the ability to bind CBFa2 (Fig. 9B,
lanes 7 and 8). Effect of the murine mC2 mutation was also
assayed in S194 extracts. As seen above with recombinant
TFE3, the mC2 probe bound a factor in S194 extracts with
approximately twofold-reduced affinity (Fig. 9B, lanes 9 to 13).
We conclude that mC2 and hM3 sequences do not bind CBFa2
in vitro but bind bHLH-zip proteins, albeit with reduced affin-
ity compared to that of the wild-type murine mE3 sequence.

Inactivity of the hM3 mutant enhancer in S194 cells sug-
gested that the residual TFE3 binding was insufficient to confer
transcriptional activity. We further tested the murine mC2

mutation by transient transfection. Compared to the wild-type
murine enhancer, the mC2 mutant was a much poorer en-
hancer in M12 cells (Fig. 9C). Indeed, the reduced activity was
reminiscent of the mE32 mutation that abolished both CBFa2
and TFE3 binding (24). These results indicate that two en-
hancer derivatives that bind TFE3, but not CBFa2, are not
efficient transcriptional enhancers. Though we cannot rule out
the possibility that reduced TFE3 binding is partly responsible
for the lack of activity of the mC2 enhancer, we favor the
interpretation that TFE3 or TFE3-like bHLH-zip proteins do

FIG. 6. CBFa2 binds the human IgH m enhancer in vitro. (A) EMSAs were carried out with bacterially expressed and purified CBFa241-190, which contains the DNA
binding Runt domain of CBFa2, and hWT and mutant enhancer probes as indicated. Specific nucleoprotein complexes in lanes 1, 2, 5, and 6 are indicated by an arrow.
(B) In vitro competition assays with CBFa241-190 bound to the human WT probe. EMSAs were carried out as described in the text, with 25-, 125-, and 250-fold molar
excesses of competitor DNA fragments indicated by triangles. Competitor DNA was excised as dimeric fragments from reporter plasmids used for transfections in Fig.
4C and contain wild-type or mutated human enhancer sequences as indicated.

FIG. 7. CBFa2 binds the murine IgH m enhancer in vitro. EMSAs were
carried out with bacterially expressed and purified CBFa241-190, which contains
the DNA binding Runt domain of CBFa2, and the mWT m enhancer and mA,
mE3, and mB mutant enhancer probes as indicated.
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not activate this domain of the enhancer in B cells. Therefore,
the requirement for the sequences between mA and mB for
enhancer function likely represents a role for CBF in the ac-
tivation of both the murine and human enhancers.

CBFa2 plus Ets-1 activate the m enhancer in nonlymphoid
cells. The preceding analysis suggested that CBF may work
together with ETS proteins to activate the minimal m enhanc-
er. To obtain further supporting evidence, we assayed the abil-
ity of CBFa2 to transactivate the m enhancer fragment in non-
lymphoid cells. In HeLa cells, the m70 enhancer was activated
about 10-fold by coexpression of PU.1 and Ets-1 (Fig. 10, com-
pare first and last bars). In the presence of PU.1, Ets-1, and
CBFa2, significantly higher transcriptional activity was ob-
served (Fig. 10, bar 2) which required all three elements in the
enhancer to be intact (Fig. 10, bars 3 to 5). Of the three mu-
tations, the mB mutation had the weakest effect, presumably
because exogenously expressed Ets-1 and CBFa2 (mA and mE3
binding proteins, respectively) partially reduced the require-

FIG. 8. The murine and human m enhancers bind CBF in B-cell nuclear
extracts. (A) In vitro competition assays with CBF bound to a high-affinity
consensus binding probe. EMSAs were carried out with 20 mg of S194 nuclear
extracts with 32P-labeled CBF oligonucleotide DNA probes (50,000 cpm), in the
presence of no competitor DNA (lane 1), 5-, 25-, and 133-fold molar excesses of
murine m enhancer DNA (lanes 2 to 4) and human m enhancer DNA (lanes 5 to
7), and 8- and 33-fold molar excesses of self (lanes 8 and 9) and 16-, 32-, and
66-fold molar excesses of nonspecific (lanes 10 to 12) competitor oligonucleo-
tides, indicated by triangles. Specific nucleoprotein complexes are indicated by
an arrow. The nonspecific competitor is a high-affinity binding site for Ets-1 (28).
(B) Supershift EMSAs were carried out with 20 mg of S194 plasma cell and 27 mg
of 70Z pre-B-cell extracts and a CBF high-affinity consensus binding site probe.
Lanes 1 to 5 show complexes formed by the incubation of S194 extracts with CBF
probes followed by no antiserum (lane 1), antiserum specific for AML-1, -2, and
-3 (lanes 2, 3, and 4, respectively), and normal rabbit serum (NRS) (lane 5).
Lanes 6 to 10 show complexes formed by the incubation of 70Z extracts with CBF
probes followed by no antiserum (lane 6), antiserum specific for AML-1, -2, and
-3 (lanes 7, 8, and 9, respectively), and normal rabbit serum (lane 10). Specific
complexes are indicated by an arrow on the left.

FIG. 9. CBFa2 binding correlates with minimal m enhancer activity in B-cell
lines. (A) Sequences of murine and human wild-type enhancers compared to
sequences of two mutants in the murine (mmC2) and human (hM3) enhancers.
The overlapping mE3 (bHLH-zip protein binding) and mC (CBF binding) sites in
the murine enhancer are overlined and underlined, respectively. The murine
mC2 mutation alters the single nonoverlapping base between the two motifs.
This position in the CBFa2 consensus binding site has been shown to be impor-
tant for binding (19). The mC motif in the human motif is also underlined and is
shown to be mutated in the hM3 mutation, which introduces an E-box motif into
the human enhancer sequence that is absent in the wild-type sequence. (B)
EMSAs were carried out with bacterially expressed and purified GST-TFE3,
CBFa241-214, and S194 plasma cell extracts and the indicated murine and human
probes. Lanes 1 to 4 show complexes formed by the incubation of approximately
50 ng of GST-TFE3 with the indicated probes. Specific complexes in lanes 1, 2,
and 4 are indicated by the top arrow on the left, and a nonspecific complex is
indicated by an asterisk. Lanes 5 to 8 show complexes formed by the incubation
of 100 ng of CBFa241-214 and the indicated probes. Specific nucleoprotein com-
plexes in lanes 5 and 7 are indicated by the bottom arrow on the left. Lanes 9 to
11 and 12 to 14 show complexes formed by the incubation of 4, 8, and 16 mg of
S194 extracts, respectively, with the mWT and mmC2 probes. The mE3 binding
complex is indicated by the arrow on the right. (C) Transcriptional activity of the
murine enhancer. Reporter plasmids (5 mg) containing dimeric murine wild-type
[WT or (m70)2] and mutant (mC2) enhancers or no enhancer (D56) were trans-
fected into the M12 B-cell line, and CAT assays were performed by ELISA as
described in the Materials and Methods. CAT enzyme activity is shown on the y
axis as the percentage of the activity of the reporter plasmid containing the
wild-type murine (m70)2 enhancer. Results shown are the averages of at least two
transfections carried out in duplicate. Error bars indicate the average deviations
of the data.
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ment for the mB site in the cotransfection assay. Similar effects
were observed when only Ets-1 and TFE3 were coexpressed,
resulting in mB-independent activation of m70 (unpublished
observations). Consistent with the mutational analysis, Ets-1
plus CBFa2 transactivated the m70 enhancer, whereas PU.1
and CBFa2 did not (data not shown). These results indicate
that CBFa2 may be a functional m enhancer binding protein.

DISCUSSION

We have previously defined a functional domain of the mu-
rine IgH gene enhancer that contains the mA and mB motifs
that bind ETS domain proteins and the mE3 element that binds
several ubiquitously expressed bHLH-zip proteins. All three
elements are required for activity of this domain in transient
transfection assays. Here we describe the analysis of the cor-
responding region of the human IgH enhancer. Both mA and
mB sites were highly conserved between the two enhancers;
however, the intervening mE3 element was not. Lack of se-
quence similarly in this region was reflected in the inability of
prototypic bHLH-zip proteins TFE3 and USF to bind to the
human enhancer. However, in striking contrast to the mE3
mutated murine enhancer that is inactive in transfection as-
says, the human enhancer domain was an active transcriptional
enhancer in B cells. Nucleotides between the mA and mB
motifs were necessary for enhancer activity and were found to
bind the transcription factor CBF. Furthermore, we also found
that the mE3 element of the murine enhancer was a CBF
binding site. These observations highlight the similarity in or-
ganization of the murine and human enhancers, particularly
with respect to the core enhancer domain. The CBF binding
site in the Ig m enhancers will be referred to as the mC element.

Although it has been assumed that the murine mE3 se-
quence works by binding bHLH-zip proteins, our observation
that this element is also a CBF binding site raised the question

of whether TFE3-like proteins or CBF family members were
the functional mE3 binding proteins. Based on the analysis of
the murine and human enhancers and several mutants thereof
and transactivation studies, we propose that CBFa2 is likely to
be the common, functional protein required to generate tran-
scriptional activity in B cells. Is TFE3 binding to the murine
sequence, then, a complete coincidence, or do these proteins
also activate the enhancer under some circumstances? Reex-
amination of the early in vivo footprint experiments of
Ephrussi et al. (4) provides some interesting ideas. They ob-
served protections over the bHLH protein binding sites of the
murine m enhancer, including the mE3 motif, in plasmacytoma
cells, which represent the terminal stage of B-cell differentia-
tion. Indeed, the residues that scored in the assay are reminis-
cent of TFE3-mE3 interactions and unlike the expected pattern
for CBFa2. Specifically, only two of three guanosines on the
coding strand were protected by dimethyl sulfate in vivo and by
TFE3 proteins in vitro, whereas methylation interference as-
says with CBFa2 would be expected to identify all three
guanosines. Furthermore, no protections were seen over the
mA and mB elements in the in vivo footprinting studies, even
though these sites are crucial for enhancer activity in transfec-
tion experiments. The recent analysis of TFE3-deficient mice
in which serum Ig levels are reduced indicates a defect in
terminal B-cell differentiation (20). One possibility is that ac-
tivation of the enhancer requires ETS and CBF proteins at
earlier stages of B-cell differentiation, and in later stages of
differentiation such as plasma cells, enhancer activity is main-
tained by bHLH proteins such as TFE3. Our observation that
TFE3 and Ets-1 can interact directly as well as transactivate
the m enhancer is consistent with the possibility that bHLH-zip
proteins also play a role in m enhancer regulation (unpublished
data).

CBF has been previously implicated in the regulation of T
and myeloid cell-specific genes (1, 27, 36, 44). Since its iden-
tification as the protein that confers T-cell tropism to transfor-
mation by Moloney murine leukemia virus (34), CBF binding
sites have been found in the enhancers of all the T-cell recep-
tor (TCR) genes (7, 10, 12, 14, 41). Interestingly, CBF binding
sites in both TCRa and -b enhancers are close to sites that
bind ETS proteins. T-cell-specific activity of the TCRa en-
hancer depends on an ATF/CREB site, a LEF binding site, and
a composite ETS-CBF element (7). It is likely that T-cell spec-
ificity is largely determined by the LEF site which also binds
TCF-1, a T-cell-restricted factor (38, 40). In the TCRb en-
hancer, two ETS-CBF elements have been identified, and our
recent experiments suggest that both elements plus an addi-
tional element between them are necessary for enhancer ac-
tivity in T-cell lines (1a). The elements that confer T-cell spec-
ificity to the TCRb enhancer are not known. Our identification
of an ETS-CBF composite motif in the Ig m enhancer suggests
that this is a common element that regulates both B- and T-cell
antigen receptor genes. An interesting possibility is that the
ETS-CBF motif is a hematopoietic cell-specific element whose
activity is further modulated in a lineage (or developmental
stage)-specific manner by other factors.

Two differences may be noted in the organization of ETS-
CBF motifs in the TCR enhancers compared to the IgH m
enhancer. First, the ETS and CBF binding sites in both TCRa
and -b enhancers are close together, whereas the mA and mC
motifs of the m enhancer are well separated. For example, the
ETS-CBF motif in the bE4 element of the TCRb enhancer has
the sequence GGATGTGG, and the mA/mC sequence is
shown in Fig. 1. Second, both TCR enhancers contain a second
CBF site very close to the ETS-CBF element (this results in an
ETS/CBF/CBF element in the TCR enhancers), whereas the m

FIG. 10. CBFa2 activates the IgH m enhancer in nonlymphoid cells in coop-
eration with Ets-1. HeLa cells were transfected with reporter plasmids containing
the (m70)2 enhancer along with expression plasmids for PU.1 (2 mg) and Ets-1 (2
mg) (bar 1) and for PU.1 (1 mg), Ets-1 (1 mg), and CBFa2 (2 mg) (bar 2) or with
an empty pEVRF2 expression plasmid as carrier DNA (bar 6). The transcription
activation abilities of PU.1 (1 mg), Ets-1 (1 mg), and CBFa2 (2 mg) were also
tested by cotransfecting these reporter plasmids with binding site mutant ver-
sions of the (m70)2 enhancer, mA2 (bar 3), mE32 (bar 4), and mB2 (bar 5). Cells
were harvested 2 days after being transfected, and CAT analysis was performed
by ELISA. Results shown are the averages of at least two transfections carried
out in duplicate. Error bars indicate the average deviations of the data.
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enhancer contains a second ETS site (mB), making it an ETS-
CBF/ETS-dependent regulatory sequence. It is likely that the
second ETS site in the m enhancer confers cell specificity by
binding the B-cell- and macrophage-specific transcription fac-
tor PU.1. We have recently shown that the mA/mE3/mB en-
hancer activates transcription in B cells as well as macrophage
cell lines (26) but not in T cells (unpublished observations),
strengthening the idea that the mB site may specify transcrip-
tional activation within hematopoietic cell types.

One of the genes encoding DNA binding a subunits of CBF
(also known as PEBPA2B or AML1) is targeted in the most
prevalent form of chromosomal translocation, t(12;21), iden-
tified in childhood acute lymphoblastic leukemias (9, 31, 33).
The resulting TEL-AML1 fusion protein contains an N-termi-
nal region derived from the ETS domain gene, TEL, which is
fused to AML1 coding sequences that include the DNA bind-
ing Runt homology domain. Thus, the oncoprotein retains the
ability to bind to CBF binding sites, and it is hypothesized that
dysregulation of CBF-dependent gene regulation is a major
factor in the development of disease (13). Because the leuke-
mia induced by the t(12;21) translocation is one of immature B
cells (9, 31, 33), CBF is likely to be important in early B-cell
gene expression. Furthermore, in mice carrying a targeted dis-
ruption of the Cbfa2 (murine AML1) gene, both B- and T-cell
development is blocked, reemphasizing the importance of this
factor in lymphopoiesis (29) (unpublished observations). How-
ever, no CBF-regulated B-cell genes had been previously iden-
tified. Our studies are the first to identify a B-cell-specific
enhancer that may be a target of CBF and highlight the com-
binatorial mechanisms by which ETS-CBF composite elements
may be used to regulate B- and T-cell-specific gene expression.

ACKNOWLEDGMENTS

Anti-AML antisera were generously provided by S. Hiebert
(Vanderbilt University Cancer Center, Nashville, Tenn.).

We thank W. Dang and G. Tian for discussions, assistance with
plasmid constructions, and gifts of purified proteins.

This work was supported by NIH grants GM38925 to R.S. and
CA58343 to N.A.S.

REFERENCES

1. Cameron, S., D. S. Taylor, E. C. TePas, N. A. Speck, and B. Mathet-Prevot.
1994. Identification of a critical regulatory site in the human interleukin-3
promoter by in vivo footprinting. Blood 83:2851–2859.

1a.Carvajal, I., and R. Sen. Unpublished observations.
2. Chen, J., F. Young, A. Bottaro, V. Stewart, R. K. Smith, and F. Alt. 1993.

Mutations of the intronic IgH enhancer and its flanking sequences differen-
tially affect accessibility of the JH locus. EMBO J. 12:4635–4645.

3. Crute, B., A. Lewis, Z. Wu, J. Bushweller, and N. Speck. 1996. Biochemical
and biophysical properties of the core-binding factor alpha2 (AML1) DNA-
binding domain. J. Biol. Chem. 271:26251–26260.

4. Ephrussi, A., G. M. Church, S. Tonegawa, and W. Gilbert. 1985. B lineage
specific interactions of an immunoglobulin enhancer with cellular factors in
vivo. Science 227:134–140.

5. Erman, B., and R. Sen. 1996. Context dependent transactivation domains
activate the immunoglobulin mu heavy chain gene enhancer. EMBO J. 15:
4565–4575.

6. Ernst, P., and S. T. Smale. 1995. Combinatorial regulation of transcription
II: the immunoglobulin heavy chain gene. Immunity 2:427–438.

7. Giese, K., C. Kingsley, J. Kirshner, and R. Grosschedl. 1995. Assembly and
function of a TCR alpha enhancer complex is dependent on LEF-1-induced
DNA bending and multiple protein-protein interactions. Genes Dev. 9:995–
1008.

8. Gillies, S. D., S. L. Morrison, V. T. Oi, and S. Tonegawa. 1983. A tissue-
specific transcription enhancer element is located in the major intron of a
rearranged immunoglobulin heavy chain gene. Cell 33:717–728.

9. Golub, T. R., G. F. Barker, S. K. Bohlander, S. Hiebert, D. C. Ward, P.
Bray-Ward, E. Morgan, S. C. Raimondi, J. D. Rowley, and D. G. Gilliland.
1995. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute
lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92:4917–4921.

10. Hallberg, B., A. Thornell, M. Holm, and T. Grundstrom. 1992. SEF1 binding
is important for T cell specific enhancers of genes for T cell receptor-CD3

subunits. Nucleic Acids Res. 20:6495–6499.
11. Hayday, A. C., S. D. Gillies, H. Saito, C. Wood, C. Wiman, W. S. Hayward,

and S. Tonegawa. 1984. Activation of a translocated human c-myc gene by an
enhancer in the immunoglobulin heavy-chain locus. Nature 307:334–340.

12. Hernandez-Munain, C., and M. Krangel. 1995. c-Myb and core-binding
factor/PEBP2 display functional synergy but bind independently to adjacent
sites in the T-cell receptor delta enhancer. Mol. Cell. Biol. 15:3090–3099.
(Erratum, 15:4659.)

13. Hiebert, S. W., W. Sun, N. Davis, T. Golub, S. Shurtleff, A. Buijs, J. R.
Downing, G. Grosveld, M. F. Roussel, D. G. Gilliland, N. Lenny, and S.
Meyers. 1996. The t(12;21) translocation converts AML-1B from an activa-
tor to a repressor of transcription. Mol. Cell. Biol. 16:1349–1355.

14. Hsiang, Y. H., D. Spencer, S. Wang, N. A. Speck, and D. H. Raulet. 1993. The
role of viral “core” motif-related sequences in regulating T cell receptor g
and d gene expression. J. Immunol. 150:3905–3916.

15. Kamachi, Y., E. Ogawa, M. Asano, S. Ishida, Y. Murakami, M. Satake, Y.
Ito, and K. Shigesada. 1990. Purification of a mouse nuclear factor that binds
to both the A and B cores of the polyomavirus enhancer. J. Virol. 64:
4808–4819.

16. Lenardo, M., J. W. Pierce, and D. Baltimore. 1987. Protein-binding sites in
Ig gene enhancers determine transcriptional activity and inducibility. Science
236:1573–1577.

17. Libermann, T. A., and D. Baltimore. 1990. Transcriptional regulation of
immunoglobulin gene expression. Mol. Aspects Cell. Regul. 6:399–421.

18. Matthias, P., M. M. Müller, E. Schreiber, S. Rusconi, and W. Shaffner. 1989.
Eukaryotic expression vectors for the analysis of mutant proteins. Nucleic
Acids Res. 17:6418.

19. Melnikova, I., B. Crute, S. Wang, and N. Speck. 1993. Sequence specificity of
the core-binding factor. J. Virol. 67:2408–2411.

20. Merrell, K., S. Wells, A. Henderson, J. Gorman, F. Alt, A. Stall, and K.
Calame. 1997. The absence of the transcription activator TFE3 impairs
activation of B cells in vivo. Mol. Cell. Biol. 17:3335–3344.

21. Meyers, S., J. Downing, and S. Hiebert. 1993. Identification of AML-1 and
the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-
binding proteins: the runt homology domain is required for DNA binding
and protein-protein interactions. Mol. Cell. Biol. 13:6336–6345.

22. Meyers, S., N. Lenny, W. Sun, and S. Hiebert. 1996. AML-2 is a potential
target for transcriptional regulation by the t(8;21) and t(12;21) fusion pro-
teins in acute leukemia. Oncogene 13:303–312.

23. Nelsen, B., and R. Sen. 1992. Regulation of immunoglobulin gene transcrip-
tion. Int. Rev. Cytol. 133:121–149.

24. Nelsen, B., G. Tian, B. Erman, J. Gregoire, R. Maki, B. Graves, and R. Sen.
1993. Regulation of lymphoid-specific immunoglobulin mu heavy chain gene
enhancer by ETS-domain proteins. Science 261:82–86.

25. Nikolajczyk, B., B. Nelsen, and R. Sen. 1996. Precise alignment of sites
required for mu enhancer activation in B cells. Mol. Cell. Biol. 16:4544–4554.

26. Nikolajczyk, B. S., M. Cortes, R. Feinman, and R. Sen. 1997. Combinatorial
determinants of tissue-specific transcription in B cells and macrophages.
Mol. Cell. Biol. 17:3527–3535.

27. Nuchprayoon, I., S. Meyers, L. Scott, J. Suzow, S. Hiebert, and A. Friedman.
1994. PEBP2/CBF, the murine homolog of the human myeloid AML1 and
PEBP2b/CBFb proto-oncoproteins, regulates the murine myeloperoxidase
and neutrophil elastase genes in immature myeloid cells. Mol. Cell. Biol. 14:
5558–5568.

28. Nye, J. A., J. Tersen, C. V. Gunther, M. D. Jonsen, and B. J. Graves. 1992.
Interaction of murine Ets-1 with GGA-binding sites establishes the ETS
domain as a new DNA-binding motif. Genes Dev. 6:975–990.

29. Okuda, T., J. van Deursen, S. Hiebert, G. Grosveld, and J. Downing. 1996.
AML1, the target of multiple chromosomal translocations in human leuke-
mia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330.

30. Oltz, E. M., F. W. Alt, W. Lin, J. Chen, G. Taccioli, S. Desiderio, and G.
Rathbun. 1993. A V(D)J recombinase-inducible B-cell line: role of transcrip-
tional enhancer elements in directing V(D)J recombination. Mol. Cell. Biol.
13:6223–6230.

31. Romana, S. P., H. Poirel, M. Leconiat, M.-A. Flexor, M. Mauchauffe, P.
Jonveaux, E. A. Macintyre, R. Berger, and O. A. Bernard. 1995. High fre-
quency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia.
Blood 86:4263–4269.

32. Serwe, M., and F. Sablitzky. 1993. V(D)J recombination in B cells is im-
paired but not blocked by targeted deletion of the immunoglobulin heavy
chain intron enhancer. EMBO J. 12:2321–2327.

33. Shurtleff, S. A., A. Buijs, F. G. Behm, J. E. Rubnitz, S. C. Raimondi, M. L.
Hancock, G. C.-F. Chan, C.-H. Pui, G. Grosveld, and J. R. Downing. 1995.
TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common
genetic lesion in pediatric ALL and defines a subgroup of patients with an
excellent prognosis. Leukemia 9:1985–1989.

34. Speck, N. A., B. Renjifo, and N. Hopkins. 1990. Mutation of the core or
adjacent LVb elements of the Moloney murine leukemia virus enhancer
alters disease specificity. Genes Dev. 4:233–242.

35. Sun, W., B. Graves, and N. Speck. 1995. Transactivation of the Moloney
murine leukemia virus and T-cell receptor beta-chain enhancers by CBF and
ETS requires intact binding sites for both proteins. J. Virol. 69:4941–4949.

VOL. 18, 1998 CBF ACTIVITY IN B CELLS 1329



36. Takahashi, A., M. Satake, Y. Yamaguchi-Iwai, S.-C. Bae, J. Lu, M. Ma-
ruyama, Y. W. Zhang, H. Oka, N. Arai, K. Arai, and Y. Ito. 1995. Positive and
negative regulation of granulocyte-macrophage colony-stimulating factor
(GM-CSF) promoter activity by AML1-related transcription factor, PEBP2.
Blood 86:607–616.

37. Thornell, A., B. Hallberg, and T. Grundström. 1988. Differential protein
binding in lymphocytes to a sequence in the enhancer of the mouse retro-
virus SL3-3. Mol. Cell. Biol. 8:1625–1637.

38. van de Wetering, M., M. Oosterwegel, D. Dooijes, and H. Clevers. 1991.
Identification and cloning of TCF-1, a T lymphocyte-specific transcription
factor containing a sequence-specific HMG box. EMBO J. 10:123–132.

39. Wang, S., Q. Wang, B. Crute, I. Melnikova, S. Keller, and N. Speck. 1993.
Cloning and characterization of subunits of the T-cell receptor and murine
leukemia virus enhancer core-binding factor. Mol. Cell. Biol. 13:3324–3339.

40. Waterman, M., W. Fischer, and K. Jones. 1991. A thymus-specific member

of the HMG protein family regulates the human T cell receptor C alpha
enhancer. Genes Dev. 5:656–669.

41. Wotton, D., J. Ghysdael, S. Wang, N. Speck, and M. Owen. 1994. Cooper-
ative binding of Ets-1 and core binding factor to DNA. Mol. Cell. Biol. 14:
840–850.

42. Yancopoulos, G. D., and F. W. Alt. 1985. Developmentally controlled and tissue-
specific expression of unrearranged VH gene segments. Cell 40:271–281.

43. Zaiman, A., A. Lewis, B. Crute, N. Speck, and J. Lenz. 1995. Transcriptional
activity of core binding factor alpha (AML1) and beta subunits on murine
leukemia virus enhancer cores. J. Virol. 69:2898–2906.

44. Zhang, D., C. Hetherington, S. Meyers, K. Rhoades, C. Larson, H. Chen, S.
Hiebert, and D. Tenen. 1996. CCAAT enhancer-binding protein (C/EBP)
and AML1 (CBFa2) synergistically activate the macrophage colony-stimu-
lating factor receptor promoter. Mol. Cell. Biol. 16:1231–1240.

1330 ERMAN ET AL. MOL. CELL. BIOL.


