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Abstract 
Enhancers play an important role in the process of gene expression regulation. In DNA sequence abundance or absence of enhancers and 
irregularities in the strength of enhancers affects gene expression process that leads to the initiation and propagation of diverse types of 
genetic diseases such as hemophilia, bladder cancer, diabetes and congenital disorders. Enhancer identification and strength prediction 
through experimental approaches is expensive, time-consuming and error-prone. To accelerate and expedite the research related to 
enhancers identification and strength prediction, around 19 computational frameworks have been proposed. These frameworks used 
machine and deep learning methods that take raw DNA sequences and predict enhancer’s presence and strength. However, these 
frameworks still lack in performance and are not useful in real time analysis. This paper presents a novel deep learning framework 
that uses language modeling strategies for transforming DNA sequences into statistical feature space. It applies transfer learning by 
training a language model in an unsupervised fashion by predicting a group of nucleotides also known as k-mers based on the context 
of existing k-mers in a sequence. At the classification stage, it presents a novel classifier that reaps the benefits of two different 
architectures: convolutional neural network and attention mechanism. The proposed framework is evaluated over the enhancer 
identification benchmark dataset where it outperforms the existing best-performing framework by 5%, and 9% in terms of accuracy and 
MCC. Similarly, when evaluated over the enhancer strength prediction benchmark dataset, it outperforms the existing best-performing 
framework by 4%, and 7% in terms of accuracy and MCC. 
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INTRODUCTION 
Deoxyribonucleic acid (DNA) contains diverse types of informa-
tion about living organisms from their birth till death [1]. Based 
on physico-chemical properties and roles in performing biological 
functions, DNA sequence is categorized into two main regions: 
coding and noncoding. Coding region contains genes that get 
expressed and produce proteins, while noncoding region affects 
the production of proteins [2]. Furthermore, which genes need 
to be expressed at what point in time is controlled by specific 
genes and regulatory elements present in the noncoding regions 
of DNA [3]. Regulatory elements of noncoding region including 
promoters, enhancers, silencers and insulators regulate the pro-
cess of converting coding DNA into messenger ribonucleic acid 
(RNA) (transcription) that is later translated into proteins which 
are essential for the development, growth and functioning of 
organisms [3–5]. 

Among the different types of regulatory elements, enhancers 
are considered more important to control expression rate of genes 
[3]. To exploit the destiny of cells during evolution and differ-
entiation, enhancers bio-molecules enhance the transcription of 
targeted genes. These bio-molecules facilitate a platform to tran-
scription factors (TFs) that recruit diverse co-activators includ-
ing RNA polymerase II initiation as well as elongation factors. 
Enhancers posses different strength; the stronger the enhancer is, 
the longer it can support TFs and other regulatory machinery to 
execute transcription. Irregularities in the presence of enhancers 
and their strength, TFs and co-activators lead to the develop-
ment of various diseases and disorders [6, 7] such as Cancer [8]. 
Moreover, it has been discovered that genetic mutations within 
enhancers can cause severe illness including neurodegenerative 
disease [9–12], bladder cancer [13], Hirschsprung disease [14] and  
inflammatory bowel disease [15].
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Considering the impact of enhancers and their strength 
in diverse types of biological processes and to explore their 
additional roles in diseases propagation [3], development of 
diverse types of methodologies for accurate identification of 
enhancers and their strength is an active area of research in 
Genomics sequence analysis [2, 16]. Enhancers are being iden-
tified using various methods such as genome-wide correlation 
with chromatin data, conservation analysis, transcription of a 
reporter gene and enhancer RNA (eRNA) measurement. The 
complex of DNA and proteins that make up chromosomes is 
called chromatin. In genome-wide correlation with chromatin 
data analysis, scientists study the interaction between DNA and 
chromatin-associated proteins in order to identify the regions 
of the genome that are likely to be enhancers. This correlation 
helps to narrow down the potential enhancer regions. Particularly, 
genomic regions exhibiting enhancer activity are often marked by 
chromatin enrichment in H3K4me1, H3K27ac and the chromatin 
modifier p300 histone acetyltransferase, serving as genome-
wide markers [17, 18]. Since enhancers use TFs and associated 
cofactors necessary for their activation, they are nucleosome-
deficient. Candidate enhancers are often identified by assessing 
accessible chromatin regions away from transcriptional start sites 
(TSSs), a process inferred through techniques such as DNase-seq 
and ATAC-seq [19, 20]. However, these approaches rely on certain 
genetic or biological features such as occupation of TFs, hence 
they only manage to detect certain portion of enhancers because 
not all enhancers are occupied by the TFs [21]. Furthermore, 
these approaches are labor-intensive, time-consuming and 
expensive [21]. 

Evolutionary conservation analysis also plays a crucial role 
in identifying enhancers. If a DNA sequence is conserved across 
different species, it suggests that the sequence has been preserved 
over time because of its functional importance. By comparing the 
genomes of different species, researchers have been identifying 
regions that are highly conserved and likely to be enhancers. 
However, it is important to note that many enhancers cannot 
be identified only through sequence conservation [22, 23]. Fur-
thermore, another method being used for enhancer identification 
involves the transcription of a reporter gene. A reporter gene is a 
gene that can be easily observed or measured, and its expression 
is used as an indicator of enhancer activity. Scientists insert the 
reporter gene into a DNA construct along with the suspected 
enhancer sequence. If the enhancer is active, it will bind to TFs 
and increase the expression of the reporter gene. This increased 
expression can be easily detected and measured. Enhancers are 
also being identified through eRNA measurement. eRNAs are 
short noncoding RNA molecules that are transcribed from active 
enhancer regions. By measuring the levels of eRNAs, scientists 
can infer the activity of enhancers. eRNAs are bidirectional tran-
scription that occurs from enhancer TSSs, often coinciding with 
established enhancer histone marks. eRNAs offer high specificity 
in detecting enhancers compared with histone modifications due 
to their single-base resolution in nascent transcripts [24, 25]. 
These eRNAs are identified through analyses like CAGE, enriching 
for active 5’ TSSs, or nascent transcript analyses like PRO-seq and 
GRO-seq, where transcript expression levels quantify enhancer 
activity functionally [24, 26–28]. These genome-wide approaches 
have revealed millions of enhancer candidates across different 
cell types and tissues in metazoans. Nonetheless, confirming the 
authenticity of these candidates remains a major obstacle. 

With an aim to replace experimental approaches with 
computational methods, taking into account the wide success 
of artificial intelligence (AI) approaches in diverse Genomics 

and Proteomics sequence analysis tasks [29, 30], several AI-
supported enhancers identification and strength prediction 
frameworks have been proposed [2, 31–37]. Working paradigm 
of these frameworks can be categorized into two different 
modules. The first module transforms raw DNA sequences into 
statistical feature space and the second module, which comprises 
of machine or deep learning classifier, discriminates enhancers 
from non-enhancers and also differentiates weak enhancers from 
strong enhancers. Initially the focus of researchers was to develop 
computational frameworks that take only raw DNA sequences 
and identy the presence or absence of enhancers [38–42]. With 
this particular motivation five different computational frame-
works were developed: CSI-ANN [38], RFECS [41], EnhancerFinder 
[39], EnhancerDBN [40] and BiRen [42]. In 2016, Liu et al. [33] 
developed the very first framework namely iEnhancer-2L [33] 
that distinguishes enhancers from other regulatory elements and 
determines the strength of enhancers. iEnhancer-2L [33] leveraged 
the pseudo k-tuple nucleotide composition (PseKNC) encoder 
to characterize DNA sequences into statistical vectors. In the 
following years, to further improve the performance, researchers 
have developed three different frameworks: EnhancerPred [31], 
EnhancerPred 2.0 [32] and iEnhancer-PsedeKNC [33]. These frame-
works used physico-chemical properties for the transformation 
of DNA sequences into statistical vectors. Furthermore, eight 
existing frameworks, namely, iEnhancer-EL [43], iEnhancer-2L [33], 
tan2019ensemble [44], iEnhancer-XG [45], iEnhancer-MFGBDT 
[34], iEnhancer-KL [46], iEnhancer-RD [36], iEnhancer-Deep [16], 
and Enhancer-FRL [35] transform DNA sequences into statistical 
feature space by combining the power of different sequence 
encoding methods including one-hot encoding, k-mer frequency, 
nucleotide composition, physico-chemical properties and sub-
sequence profiles. Moreover, three frameworks [47–49] utilize  
Bidirectional Encoder Representations from Transformers (BERT) 
representations. 

With an aim to transform DNA sequences into statistical 
vectors by capturing both discriminative and semantical rela-
tionships of nucleotides, researchers developed two frameworks, 
iEnhancer-5Step [37] and Enhancer-DSNet [2], that used unsu-
pervised and supervised neural k-mer embedding generation 
approaches. 

At the classification stage, among the 19 existing frameworks, 
nine frameworks [12, 31–33, 37, 43, 45, 50] used machine learn-
ing classifiers including support vector machine (SVM), Logistic 
regression, XGBoost, Random forest, K-neighbors and Naive bayes. 
Four frameworks [16, 47, 48] use convolutional neural network 
(CNN) based classifiers, two frameworks [44, 51] use hybrid model 
combination of CNN and Long Short-Term Memory (LSTM) based 
classifier, one framework [52] utilizes the effect of attention along 
with hybrid network (CNN-LSTM) and one framework only uses 
the linear layer as classifier. Furthermore, two frameworks rely 
on generative adversarial network (GAN) [36, 51] based classifiers 
and the most recent framework [53] uses the Laplacian regular-
ized radial function based classifier for enhancer identification 
and strength prediction tasks. 

The top-performing enhancer identification and strength pre-
diction approaches utilize word embedding approaches (DNA2Vec 
[54], SuperDNA2Vec [1]) and language model BERT [49] [48] to bet-
ter characterize enhancer sequences. However, DNA2Vec [54] fails  
in capturing comprehensive residue relations with target classes 
and SuperDNA2Vec [1] fails in capturing comprehensive long-
range residue-to-residue relations and translational in-variances 
of residues. Bert language model training mechanism comprises 
of two different strategies namely masked words prediction and
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next sentence prediction. In natural language processing (NLP) 
it has produced state-of-the-art performance in diverse types of 
classification tasks including document classification, sentiment 
analysis and fake news detection [55?? –57]. Unlike NLP tasks in 
biological sequence analysis BERT remains a failure in extracting 
neucleotides semantics and discriminative potential because here 
the next sentence prediction is not possible and the model is 
trained only based on masked k-mers. 

A critical analysis of the existing frameworks reveals that 
although these frameworks have achieved reasonable per-
formance figures for enhancer identification task, they still 
lack in precisely identifying the strength of enhancers. Among 
the five most recent frameworks, iEnhancer-MRBF [53] and  
iEnhancer-DLRA [58] achieve top accuracy of almost 80% for 
enhancer identification task and around 76% for enhancer 
strength prediction task. Considering the room for performance 
improvement, contributions of this paper are manifold: 

• With an aim to generate comprehensive statistical feature 
space of raw sequences the proposed framework reaps the 
benefit of Average Stochastic Gradient Descent–Long Short-
Term Memory (AWD-LSTM) based ULMFIT language model; 
we trained ULMFIT in an unsupervised fashion to learn the 
distribution of neucleotides in DNA sequences. 

• It presents a novel CNN and self-attention-based classifier 
that facilitates to learn and extract informative patterns of 
neucleotides in a more precise and comprehensive manner. 

• The proposed framework is evaluated over two benchmark 
datasets of enhancer identification and strength prediction 
under two different experimental settings, i.e. 5-fold cross-
validation and independent test sets. 

• It explores performance impact of different sizes k-mers 
for generating informative and more discriminative features 
among sequences of distinct classes. 

• The proposed framework outperforms the existing enhancer 
identification and strength prediction frameworks over two 
public benchmark datasets in terms of four distinct evalua-
tion measures. 

RELATED WORK 
In the marathon of developing robust and precise AI framework 
for enhancers identification and their strength prediction, to the 
best of our knowledge, 19 different frameworks have been pro-
posed, which are summarized in this section. 

Liu et al. [33] presented the very first framework, iEnhancer-2L, 
that discriminates enhancers from other regulatory elements and 
also estimates their strength. iEnhancer-2L leveraged the PseKNC 
encoder for transforming raw DNA sequences into statistical 
vectors and SVM classifier for discriminating enhancers from 
non-enhancers and strong enhancers from weak enhancers. The 
authors performed experimentation over enhancers identifica-
tion and strength prediction core datasets and independent test 
sets to explore the effectiveness of the proposed iEnhancer-2L 
[33] framework. On core datasets of enhancers identification and 
strength prediction, iEnhancer-2L managed to produce 76.89% 
and 61.93% accuracy, 78.09% and 62.21% sensitivity, 75.88% and 
61.82% specificity and 0.54 and 0.24 MCC, respectively. Similarly 
on independent test sets it produced 73% and 60.5% accuracy, 71% 
and 47% sensitivity, 75% and 74% specificity and 0.46 and 0.218 
MCC, respectively. To improve the predictive performance of the 
iEnhancer-2L [33] framework,  Jia  et al. [31] developed Enhancer-
Pred that transforms raw DNA sequences into statistical feature 

space by utilizing three different sequence encoding methods: 
Bi-profile Bayes, nucleotide composition and pseudo-nucleotide 
composition. Generated feature space along with SVM classifier 
managed to produce 73.18% and 62.06% accuracy, 72.57% and 
62.67% sensitivity, 73.79% and 61.46% specificity and 0.43 and 0.24 
MCC, over core datasets of enhancers identification and strength 
prediction, respectively. Similarly on independent test sets of 
enhancers identification and strength prediction it produced 74% 
and 55% accuracy, 73.5% and 45% sensitivity, 74.5% and 65% 
specificity and 0.48 and 0.102 MCC, respectively. 

Liu et al. [59] developed another computational framework 
namely iEnhancer-PsedoKNC that generates sequence represen-
tation using pseudo degenerate kmer nucleotide composition 
encoding scheme and performed classification using SVM 
classifier. Experimentation on benchmark datasets indicates the 
dominance of iEnhancer-PsedeKNC compared with iEnhancer-2L 
[33] and EnhancerPred [31]. Over core datasets, the iEnhancer-
PsedoKNC framework produced 76.78% and 63.41% accuracy, 
77.31% and 62.62% sensitivity, 76.30% and 64.41% specificityand 
0.54 and 0.27 MCC, respectively. He et al. [32] developed Enhancer-
Pred2.0 that transforms DNA sequences into statistical vectors 
using physio-chemical property based encoding method namely 
electron–ion interaction potential (EIIP) encoder with position-
specific tri-nucleotide propensity. Furthermore, it removes 
irrelevant and redundant features through wrapper-based feature 
selection method. SVM classifier along with selected features 
produced 88.27% and 98.05% accuracy, 87.94% and 97.98% 
sensitivity, 88.61% and 98.11% specificity and 0.77 and 0.96 
MCC, over core datasets of enhancers identification and strength 
prediction, respectively. 

Liu et al. [43] presented iEnhancer-EL, which transforms raw 
DNA sequences into statistical feature space using three different 
sequence encoding methods including NAC, subsequence profile 
and PseKNC. At the classification stage, enhancer sequences 
discrimination from non-enhancer sequences, the authors 
proposed a meta predictor that generates probabilistic feature 
space of SVM-based six different encoders, namely, PseKNC-77, 
PseKNC-81, PseKNC-4113, subsequence-profile-64, kmer-64 and 
kmer-4096 using SVM classifier. Similarly, for weak enhancers 
discrimination from strong enhancers, the authors developed 
a meta predictor that generates probabilistic feature space of 
SVM-based 10 different encoders, namely, PseKNC-9, PseKNC-
9, PseKNC-9, PseKNC-13, PseKNC-29, PseKNC-77, PseKNC-81, 
PseKNC-265, kmer-64 and kmer-4096. On core datasets of 
enhancers identification and strength prediction, it produced 
78.03% and 65.03% accuracy, 75.67% and 69.00% sensitivity, 
80.39% and 61.05% specificity and 0.56 and 0.31 MCC, respectively. 
Similarly on independent test set of enhancers identification 
and strength prediction datasets it produced 74.75% and 61% 
accuracy, 71% and 54% sensitivity, 78.5% and 68% specificity and 
0.49 and 0.222 MCC, respectively. 

Tan et al. [44] proposed an ensemble of CNN and recurrent 
neural network for efficient identification of enhancers and their 
strength. For sequence representation, they employed six dif-
ferent kinds of physico-chemical properties, namely, Rise, Roll, 
Shift, Slide, Tilt and Twist. Performance comparison with existing 
frameworks using benchmark datasets and independent test sets 
indicated that the proposed framework outperforms the existing 
three computational frameworks, iEnhancer-EL [43], iEnhancer-2L 
[33] and EnhancerPred [31], with decent margin across different 
evaluation metrics. On core datasets of enhancers identification 
and strength prediction, it produced 74.83% and 79.65% accuracy, 
73.25% and 58.96% sensitivity, 76.42% and 38.28% specificity and
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Table 1: A Summary of Feature Encoding Schemes, Experimental Datasets and Computational Approaches Proposed For Enhancer 
Identification and Strength Prediction Task 

Author Feature Encoding Classifier Dataset Performance 

Liu et al-2016 [33] PseKNC SVM Benchmark 
Dataset, 
& 
Independent 
Test set 

Layer-1 
SN=78.09, SP=75.88, ACC= 76.89, MCC= 0.54, AU-ROC=0.85 
Layer-2 
SN=62.21, SP=61.82, ACC= 61.93, MCC=0.24, AU-ROC 0.66 
& 
Layer-1 
SN=71.0 SP=75.0 ACC=73.00 MCC=0.460 AU-ROC=80.62 
Layer-2 
SN=47.00, SP=74.00, ACC= 60.50, MCC= 0.218, AU-ROC= 66.78 

Jia et al-2016 [31] Bi-profile Bayes+ 
Nucleotide composition+ 
pseudo-nucleotide 
composition 

SVM Benchmark 
Dataset 
& 
Independent 
Test set 

Layer-1 
SN=71.97 SP=82.82 ACC=77.39, MCC= 0.55, AU-ROC=N/A 
Layer-2 
SN=71.16, SP=65.23, ACC=68.19, MCC=0.36 
& 
Layer-1 
SN=73.5 SP=74.5 ACC=74.00 MCC=0.480 AU-ROC=80.13 
Layer-2 
SN=45.00, SP=65.00, ACC= 55.00 MCC=0.102 AU-ROC=57.90 

Liu et al-2016 [59] Pseudo degenerate 
kmer nucleotide 
composition 

SVM Benchmark 
Dataset 

Layer-1 
SN=77.31, SP=76.30, ACC=76.78, MCC=0.54, AU-ROC=0.85 
Layer-2 
SN=62.62, SP=64.41, ACC=63.41, MCC=0.27, AU-ROC=0.69 

He et al-2017 [32] position-specific 
trinucleotide propensity + 
EIIP of trinucleotides+ 
F-score feature selection 

SVM Benchmark 
dataset 

Layer-1 
SN=87.94, SP= 88.61, ACC= 88.27, MCC= 0.77 
Layer-2 
SN=97.98, SP= 98.11, ACC= 98.05, MCC= 0.96 

Bin Liu et al-2018 [43] kmer+subsequence profile 
+PseKNC 

SVM Benchmark 
Dataset 
& 
Independent 
test set 

Layer-1 
SN=75.67, SP= 80.39, ACC=78.03 MCC=0.5613, AU-ROC=85.47 
Layer-2 
SN=69.00, SP=61.05, ACC= 65.03, MCC= 0.3149AU-ROC= 69.57 
& 
Layer-1 
SN=71.0, SP=78.5, ACC=74.75, MCC=0.496, AU-ROC=81.73 
Layer-2 
SN=54.00,SP= 68.00 ACC=61.00 MCC=0.222 AU-ROC=68.01 

Tan et al-2019 [44] One hot encoding 
+ 
physicochemical properties 

CNN+RNN 
Ensemble 

Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=73.25, SP= 76.42, ACC= 74.83, MCC= 0.498, AU-ROC= 76.94 
Layer-2 
SN=58.96, SP= 38.28, ACC= 79.65, MCC= 0.197, AU-ROC= 60.68 
& 
Layer-1 
SN= 75.5, SP= 76.00, ACC= 75.50, MCC= 0.51 AU-ROC= 77.04 
Layer-2 
SN= 83.15, SP= 45.61, ACC= 68.49, MCC= 0.312AU-ROC= 67.14 

Le et al-2019 [37] Neural word embeddings SVM Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=81.1, SP=83.5, ACC=82.3, MCC=0.65 
Layer-2 
SN=75.3, SP=60.8, ACC=68.1, MCC=0.37 
& 
Layer-1 
SN=82, SP=76, ACC=79, MCC=0.58 
Layer-2 
SN=74, SP=53, ACC=63.5, MCC=0.28 

Asim et al-2020 [2] K-mer representaion 
by fusing k-mer 
positional information 
with sequence type 

Precise 
Softmax 
Classifier 

Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=76.0, SP=76.0, ACC=76.0, MCC=0.52 
Layer-2 
SN=67.0, SP=67.0, ACC=63.0, MCC=0.26 
& 
Layer-1 
SN=78.0, SP=77, ACC=78, MCC=0.56 
Layer-2 
SN=83.0, SP=67.0, ACC=83.0, MCC=0.70 

(continued) 
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Table 1: Continued 

Author Feature Encoding Classifier Dataset Performance 

Le et al-2021 [48] BERT 
Embeddings 

CNN Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=79.5, SP= 73, ACC=76.2, MCC=0.525 
& 
Layer-1 
SN=80, SP=71.2, ACC=75.6, MCC=0.514 

Lim et al-2021 [60] binary 
+debinary 
+ANF +NCP 
+ ENAC, KGAP 

RF Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=73.64, SP= 78.71, ACC=76.18, MCC=0.5264, AUC=84 
Layer-2 
SN=68.46, SP=56.61, ACC=62.53, MCC=0.2529, AUC=67 
& 
Layer-1 
SN=78.50, SP=81, ACC=79.75, MCC=0.5952 
Layer-2 
SN=93, SP=77.0, ACC=85, MCC=0.7091 

Cai et al-2021 [45] Mismatch k-tuple 
+PSSM +Spectrum 
+Subsequence Profile 
+ PseDNC 

XGBoost Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=75.7, SP= 86.5, ACC=58.55, MCC=0.62 
Layer-2 
SN=74.94, SP=58.55, ACC=66.74, MCC=0.33 
& 
Layer-1 
SN=74.0, SP=77.5, ACC=75.75, MCC=0.514 
Layer-2 
SN=70.0, SP=57.0, ACC=63.5, MCC=0.272 

Kamran et al-2022 
[16] 

One hot encoding CNN Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=86.99, SP=88.54, ACC=87.77, MCC=0.75 
Layer-2 
SN=83.57, SP=78.16, ACC=80.86, MCC=0.62 
& 
Layer-1 
SN=81.5, SP=67, ACC=74.02, MCC=0.4902 
Layer-2 
SN=73.0, SP=49.0, ACC=61, MCC=0.226 

Yang et al-2021 [36] Skip-gram GAN Independent 
Test set 

Layer-1 
SN=81.1, SP=75.8, ACC=78.4, MCC=0.567 
Layer-2 
SN=96.1, SP=53.7, ACC=74.9, MCC=0.505 

Liao et al-2022 [52] Word2vec CNN-LSTM-
Attention 

Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=84.18, SP=82.45, ACC=83.32, MCC=0.666 
Layer-2 
SN=89.27, SP=77.33, ACC=83.3, MCC=0.673 
& 
Layer-1 
SN=78, SP=78.50, ACC=78.25, MCC=0.565 
Layer-2 
SN=87, SP=69.0, ACC=78, MCC=0.569 

Luo et al-2022 [47] DNABERT CNN Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
ACC=79.4, MCC=0.593, AUC= 87.9 
Layer-2 
ACC=65.3, MCC=0.31, AUC=70.3 
& 
Layer-1 
ACC=79.3, MCC=0.585, AUC= 84.4 
Layer-2 
ACC=70.1, MCC=0.401, AUC= 81.2 

Geng et al-2022 [51] GAN 
+ 
FastText 

LSTM-CNN Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=74.87, SP=75.63, ACC=75.25, MCC=0.5051 
Layer-2 
SN=70.68, SP=68.89, ACC=69.7, MCC=0.3954 
& 
Layer-1 
SN=74.87, SP=75.63, ACC=75.25, MCC=0.5051 
Layer-2 
SN=70.68, SP=68.89, ACC=69.7, MCC=0.3954 

(continued) 
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Table 1: Continued 

Author Feature Encoding Classifier Dataset Performance 

Xiao et al-2023 [58] kmer 
+ 
ANF 
+ 
NBP 

RBF Benchmark 
dataset 
& 
Independent 
Test set 

Layer-1 
SN=79.52, SP=82.95, ACC=81.23, MCC=0.6254, AUC= 88.09 
Layer-2 
SN=77.23, SP=79.69, ACC=76.95, MCC=0.5419, AUC=84.09 
& 
Layer-1 
SN=82, SP=77.50, ACC=79.75, MCC=0.5956 
Layer-2 
SN=100, SP=67.0, ACC=83.5, MCC=0.7098 

Li et al-2023 [49] BERT Linear Benchmark 
dataset 

Layer-1 
SN=93.73, SP=95.75, ACC=94.74, MCC=0.8951 
Layer-2 
SN=80, SP=86, ACC=83, MCC=0.6612 

0.498 and 0.197 MCC, respectively. Similarly on independent test 
sets of enhancers identification and strength prediction datasets 
it produced 75.5% and 68.49% accuracy, 75.5% and 83.15% sensi-
tivity, 76% and 45.61% specificity and 0.51 and 0.312 MCC, respec-
tively. Le et al. [  37] presented the iEnhancer-5Step framework that 
utilizes neural k-mer embeddings based on sub-word information 
to effectively identify enhancers and their strength along with 
SVM classifier. On core datasets of enhancers identification and 
strength prediction, iEnhancer-5Step produced 82.3% and 68.1% 
accuracy, 81.1% and 75.3% sensitivity, 83.5% and 60.8% specificity 
and 0.65 and 0.37 MCC, respectively. Similarly on independent 
test sets of enhancers identification and strength prediction it 
produced 79% and 63.5% accuracy, 82% and 74% sensitivity, 76% 
and 53% specificity and 0.58 and 0.28 MCC, respectively. 

Asim et al. [2] proposed Enhancer-DSNet that captures position 
as well as semantics of residues; they generated sequence repre-
sentation by fusing k-mer position and sequence type informa-
tion. A rich performance comparison with the existing compu-
tational frameworks proved that Enhancer-DSNet outperformed 
all frameworks across both core dataset and independent test in 
terms of distinct evaluation metrics. On benchmark core datasets 
of enhancers identification and strength prediction, it produced 
76% and 63% accuracy, 76% and 67% sensitivity, 76% and 67% 
specificity and 0.52 and 0.26 MCC, respectively. Similarly on inde-
pendent test sets of enhancers identification and strength pre-
diction datasets it produced 78% and 83% accuracy, 78% and 
83% sensitivity, 77% and 67% specificity and 0.56 and 0.70 MCC, 
respectively. Cai et al. [45] proposed the iEnhancer-XG framework 
that discretizes the DNA sequences ensembling of five different 
sequence encoding methods, namely, Mismatch k-tuple, Position-
specific scoring matrix (PSSM), Spectrum, Subsequence Profile 
and Pseudo dinucleotide composition (PseDNC) and performed 
classification using the XGBoost classifier. The authors performed 
experimentation using 10-fold cross-validation on core bench-
mark datasets and independent test set of enhancers identifi-
cation and their strength prediction. On core enhancers identi-
fication benchmark dataset they achieved 58.55%, 75.7%, 86.5% 
and 0.62 in terms of accuracy, sensitivity, specificity and MCC, 
respectively. On independent test sets of enhancers identification 
and strength prediction datasets they achieved 75.75% and 63.5% 
accuracy, 74% and 70% sensitivity, 77.5% and 57% specificity and 
0.514 and 0.272 MCC, respectively. 

Lim et al. [60] proposed iEnhancer-RF framework by utilizing 
six different types of sequence encoding methods, namely, binary, 

dibinary, NCP, XY KGAP, ENAC and accumulated nucleotide 
frequency (ANF), and performed classification using random 
forest classifier. The authors performed experimentation using 
two benchmark datasets enhancers identification and strength 
prediction. iEnhancer-RF produced 76.18% and 62.53% accuracy, 
73.64% and 68.46% sensitivity, 78.71% and 56.61% specificity 
and 0.5264 and 0.2529 MCC over core datasets of enhancers 
identification and strength prediction. Similarly, over independent 
test set of enhancers identification and strength prediction 
detests it produced 79.75% and 85% accuracy, 78.50% and 93% 
sensitivity, 81% and 77% specificity and 0.5952 and 0.7091 MCC, 
respectively. 

Yang et al. [36] presented adversarial sequence-generation-
based framework, namely, iEnhancer-GAN. For feature engineer-
ing they used overlapped and non-overlapped strategies to gen-
erate word embedding using skip-gram model. The authors per-
formed experimentation using independent test set of enhancers 
identification and strength prediction. iEnhancer-GAN produced 
performance values of 78.4%, 81.1%, 75.8% and 0.567, respectively, 
in terms of accuracy, sensitivity, specificity and MCC on enhancers 
identification dataset. On the other hand, over strength predic-
tion dataset it produced 74.9% accuracy, 96.1% sensitivity, 53.7% 
specificity and 0.505 MCC. Kamran et al. [16] proposed a deep-
learning-based framework, namely, iEnhancer-Deep, that used 
one-hot encoding scheme to transform DNA raw sequences into 
statistical vectors and CNN as a classifier for the identification of 
enhancers and their strengths. The authors performed extensive 
experimentation using core datasets and independent test set of 
both tasks enhancers identification and strength prediction. On 
benchmark core datasets of enhancers identification and strength 
prediction, it produced 87.77% and 80.86% accuracy, 86.99% and 
83.57% sensitivity, 88.54% and 78.16% specificity and 0.75 and 0.62 
MCC, respectively. Similarly on independent test sets of enhancers 
identification and strength prediction datasets it produced 74.02% 
and 61% accuracy, 81.5% and 73% sensitivity, 67% and 49% speci-
ficity and 0.49 and 0.226 MCC, respectively. 

Liao et al. [52] proposed a deep-learning-based framework 
iEnhancer-DCLA that extracts the semantic information between 
k-mers through the word2vec approach. This semantic infor-
mation is passed to the CNN layer followed by the attention-
based LSTM layer. To analyze the effect of the proposed model 
the authors performed experimentation using benchmark core 
dataset and independent test set of enhancers identification 
and strength prediction datasets. Using enhancers identification
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and strength prediction datasets it produced 83.32% and 83.3% 
accuracy, 84.18% and 89.27% sensitivity, 82.45% and 77.33% 
specificity and 0.666 and 0.673 MCC, respectively. Similarly on 
independent test sets of enhancers identification and strength 
prediction datasets it produced 78.25% and 78% accuracy, 78% 
and 87% sensitivity, 78.5% and 69% specificity and 0.565 and 
0.569 MCC, respectively. 

Luo et al. [47] presented a transfer-learning-based framework 
iEnhancer-BERT by utilizing a pre-trained language model 
DNABERT fine-tuned on enhancers sequences. The authors per-
formed experimentation on two benchmark datasets enhancers 
identification and strength prediction, and evaluated the 
proposed framework in terms of three evaluation measures: 
accuracy, MCC and AUC. Over core datasets of enhancers 
identification and strength prediction iEnhancer-BERT produced 
79.4% and 65.3% accuracy, 0.593 and 0.31 MCC and 87.9% and 
70.3% AUC, respectively. Similarly over independent test sets 
of enhancers identification and strength prediction datasets it 
produced 79.3% and 70.1% accuracy, 0.585 and 0.401 MCC and 
84.4% and 81.2% AUC, respectively. Geng et al. [51] proposed  
the RankGAN-based framework in which firstly the authors 
increased the number of samples through GAN by considering 
the enhancers dataset small. Secondly, the FastText embedding 
approach is used to transform the DNA raw sequences into 
statistical vectors. These vectors passed to the deep learning 
hybrid model LSTM-CNN that managed to produce 75.25% and 
69.7% accuracy, 74.87% and 70.68% sensitivity, 75.63% and 68.89% 
specificity and 0.5051 and 0.3954 MCC over two core datasets 
enhancers identification and strength prediction, respectively. 
Similarly, over independent test sets of enhancers identification 
and strength prediction it produced 75.25% and 69.7% accuracy, 
74.87% and 70.68% sensitivity, 75.63% and 68.89% specificity and 
0.5051 and 0.3954 MCC, respectively. 

Xiao et al. [58] proposed the iEnhancer-MRBF framework that 
utilizes three different types of sequence encodings, namely, kmer, 
ANF and nucleotide binary profiles (NBPs). Further, we passed this 
encoding vector to the Laplacian radial-based classifier RBF. Over 
benchmark core datasets of enhancers identification and strength 
prediction, it managed to achieve 81.23% and 76.95% accuracy, 
79.52% and 77.23% sensitivity, 82.95% and 79.69% specificity and 
0.625 and 0.541 MCC, respectively. Similarly on independent test 
sets of enhancers identification and strength prediction datasets 
it achieved 79.75% and 83.50% accuracy, 82% and 100% sensitivity, 
77% and 67% specificity and 0.595 and 0.709 MCC, respectively. 
Li et al. [49] presented a BERT-based language model namely 
iEnhancer-ELM that captures contextual information of k-mers 
with four different combinations: 3-mer, 4-mer, 5-mer and 6-mer. 
The authors utilized enhancers identification dataset with two 
different evaluations: 5-fold cross validation and independent 
test set. Over independent test iEnhancer-ELM achieved perfor-
mance values of 83%, 80%, 86% and 0.6612 in terms of accuracy, 
sensitivity, specificity and MCC, respectively. Over 5-fold cross-
validation it achieved performance values of 94.74%, 93.73%, 
95.75% and 0.8951 in terms of accuracy, sensitivity, specificity and 
MCC, respectively. 

MATERIALS AND METHODS 
This section describes the working paradigm of the proposed 
framework along with the benchmark datasets and evaluation 
metrics used to evaluate the performance of the proposed 
framework. 

Figure 1. K-mers generation for enhancers sequences. 

Proposed ADH-enhancer methodology 
In NLP and biological sequence analysis tasks AI frameworks’ 
performance rely on the competence of representation learning 
methods that transform textual or biological sequence data into 
statistical feature space [61–64]. Researchers have established a 
plethora of effective representation learning approaches ranging 
from different statistical encoders, neural embeddings [37, 65, 
66], to language models [67–69]. The prime focus of every other 
representation learning method is to capture discriminative and 
semantical relationships of words in NLP and neucelotides in DNA 
or RNA sequences [2, 66, 70, 71]. 

Our proposed ADH-Enhancer framework comprises of two 
major modules, namely, representation learning or sequence 
transformation to statistical feature space and classification. Rep-
resentation learning module uses the Universal Language Model 
Fine-Tuning based optimized language model that is trained in 
an unsupervised fashion by predicting the next nucleotides based 
on the previous known neucleotides. Classification module uses 
a novel classifier that reaps the benefits of two different neural 
architectures, namely, CNN and attention mechanism. Graphical 
illustrations of both modules of the proposed ADH-Enhancer 
framework are given in Figures 2 and 3, and a detailed workflow 
of each module is discussed in the following subsections. 

Statistical representation learning 
DNA sequences are comprised of repetitive patterns of four basic 
nucleotides namely adenine (A) guanine (G) cytosine (C) and 
thymine (T) [2]. Expanding upon the extensive research in biomed-
ical sequence analysis, it found that discriminative patterns can 
be extracted when sequences are expressed in terms of combina-
tion of basic nucleotides [1]. Here we generate a combination of 
nucleotides called k-mers of DNA sequences. Figure 1 represents 
k-mer generation process of a sample sequence ‘ACTAGGA’. Fur-
ther, these k-mers are passed to neural language model namely 
ULMFIT. ULMFIT uses self-supervised learning where the model 
is trained by predicting the next k-mer based on the context 
provided by the previous k-mers in the sequence. This helps the 
model in learning contextual relationships between k-mers and 
their inherent meanings. 

ULMFIT is based on a stack of multiple layers including the 
stochastic embedding layer, the AWD-LSTM layers and the output 
layer [72], as illustrated in Figure 2. 

Stochastic embedding layer converts the input k-mer sequences 
into numerical representations which can be processed by the
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Figure 2. Workflow of self-supervised pre-training and fine-tuning of ULMFIT Module. 

Figure 3. Workflow of attention-based CNN classifier. 

model. It maps each k-mer of input sequences to a fixed-
size vector and generates an embedding weight matrix E ∈ 
R|unique_kmers| ×  embedding_size. The number of rows in the matrix is 
equal to the number of unique k-mers, and the number of 
columns is equal to the size of the k-mer embeddings. To fine-
tune the embedding matrix in a more general way, we introduce 
two different types of dropouts on embedding matrix. The first 
type of dropout replaces certain k-mer embedding vectors with 
zeros using the probability of pembeddings, while the second type 
replaces individual continuous values within the remaining 
k-mer embedding vectors with zeros using the probability 
of pembeddings_dim. These dropouts help to regularize learnable 
parameters and prevent model overfitting by ensuring that the 
model does not over-specialize certain k-mers. The dropout 
probabilities (pembeddings, pembeddings_dim) are tweaked from 0.001 to 
0.0008; however the best results are achieved using 0.001. The 
embedding matrix containing the 400-dimensional embedding 
vectors of each k-mer is passed to a stack of three regularized 
LSTM layers called AWD-LSTM. 

AWD-LSTM processes the input sequences sequentially and 
learn the context and dependencies of k-mers. Unlike the trivial 

recurrent neural network (RNN), LSTM cellsuse several gates 
expressed in the following equations to filter the flow of k-mer 
information. 

Input Gate (Īu) = sigmoid (Wi .xt + Ui .ht−1 + bu) (1) 

Forget Gate (Īf ) = sigmoid (Wf .xt + Uf .ht−1 + bf ) (2) 

Output Gate (Īo) = sigmoid (Wo .xt + Uo .ht−1 + bo) (3) 

cint = tanh (Wc .xt + Uc .ht−1) (4) 

memory cell state (ct) = (Īu � cint + Īf � ct−1 (5) 

hidden state (ht) = (Īo � tanh(ct)) (6) 

The input, forget and output gates of AWD-LSTM are activated 
or deactivated based on their weight matrices and biases, and they 
use activation functions (such as sigmoid or tanh) to determine 
which information should be retained or discarded from the
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memory cell states (ct, ct−1). To preserve k-mer information for an 
extended time frame, the hidden state h of every cell is conserved 
at each time step t. 

To better regularize the recurrent layer, unlike the existing 
methodologies which randomly drop hidden states while updat-
ing the memory state ct, AWD-LSTM employs a special dropout 
technique called DropConnect that applies dropout with a prob-
ability of 0.4 to the recurrent weight matrices [Ui, Uf , Uo] as well  
as non-recurrent weight matrices [Wi, Wf , Wo] of the LSTM layer 
before the forward and backward passes. This helps the LSTM lay-
ers to extract informative features and long-range dependencies 
more effectively. The AWD-LSTM model in which each LSTM layer 
uses 256 hidden units is capable of identifying the short- and long-
range dependencies of features that are important for enhancer 
sequence analysis. The resulting 256-dimensional feature vectors 
are then fed to the output layer. 

Classifier 
With an aim to best utilize context and translational invariance 
aware statistical representations of k-mers generated by base-
language model, we have developed a precise yet robust classifier. 
Figure 3 illustrates graphical representation of proposed classifier 
that makes use of convolutional layer to extract comprehensive 
discriminative features and attention layer to focus on specific 
features that are more important to distinguish enhancers from 
non-enhancers as well as strong enhancers from weak enhancers. 
Attention distribution aware features are passed from normaliza-
tion and dropout layer before feeding to softmax layer for final 
prediction. The combination of language model and attention 
based convolutional layer allow the model to make more informed 
decisions about the classification of enhancers by considering the 
context in which k-mers are used and the relative importance of 
different parts of the sequences. A brief description of different 
layers of proposed classifier is given in following subsections. 

Convolutional Layer

The convolutional layer is extensively being used in tasks related 
to NLP and Bioinformatics because of its local perception and 
parameter sharing capabilities. It functions like cells in the 
human brain, using a process called convolution to extract 
relevant features and simplify the neural network by using shared 
weights and local connections. The convolution operation at a 
particular layer lth generates a feature map A[l] which can be 
represented mathematically as: 

A[l] = f (A[l] ⊗ W[l] + b[l] ) (7) 

The convolutional kernel weight matrix is represented by W[l] 

for l layer, symbol ⊗ represents convolutional operation, b[l] 

denotes off-set vector, and f(x) represents activation function. In 
our experimentation, we have used ReLu activation to mainly 
sparse the output of convolution layer which leads to acceler-
ate training and promote steady convergence rate by avoiding 
vanishing gradient problem. CNN layer makes use of 50 kernels 
having the size of 3 to generate information features based 50-
dimensional feature vectors that are fed to the attention layer of 
proposed neural network. 

Attention Layer

Attention is a mechanism used in NLP and other fields to weight 
the importance of different features in a sequence. It is often used 
in neural networks to allow the model to focus on specific parts 
of the input when making a prediction. Attention function mainly 

maps Query vectors (Q), key vectors (K), and Value Vectors to 
output vectors. Here all three Q, K, V vectors are linear projections 
of the given enhancer sequences representations and attention 
function generates new statistical representations of exact same 
dimensions by incorporating extensive mutual association of k-
mer present in enhancer sequences. In our experimentation, we 
have used scaled dot product as attention function and computed 
attention in four different steps. First, we calculate the dot product 
of the query (Q) and key (K) matrices that measure the similarity 
between the two matrices. The dot product is then scaled by a 
scaling factor, which is typically the square root of the dimen-
sionality of the key matrix. This scaling is done to prevent the dot 
product from becoming too large, which can cause issues with 
numerical stability. Then we apply a softmax function on scaled 
dot product output to obtain probability distribution. In following 
equation 8, Weight denotes a square matrix which has number of 
rows or columns equal to the length of enhancer sequences. 

Weight = softmax 
QKT

√
dk 

(8) 

The attention weights are then calculated by taking the dot 
product of the softmax probabilities with the value matrix (V). The 
attention weights represent the importance of each element in the 
value matrix. Finally weighted sum of value matrix is calculated 
using the attention weights, which is mathematically expressed 
in equation 9. 

yi = γ ∗ x̂i + β (9) 

The weighted sum represents the final attention-weighted out-
put of the scaled dot product attention mechanism. Given 50-
dimensional representations of enhancer sequences, scaled dot 
product attention mechanism modifies the statistical values of 
features in such a way that features important for enhancer 
sequence analysis will have better statistical values as compared 
with those features which are less useful for enhancer sequence 
analysis. 

Normalization Layer

A major problem in neural networks is internal co-variance shift, 
which happens when the distribution of inputs to the hidden lay-
ers of the network changes after the model weights are updated 
during each batch. This can destabilize the neural network and 
make the optimal weights learned during previous iterations use-
less, disrupting the convergence and generalizability of the model. 
To avoid this issues, in proposed classifier, we have used a nor-
malization layer, which involves standardizing the input before it 
is fed into a hidden layer for each batch. This helps to prevent 
the input-to-output mapping of the neural network from over-
specializing on a specific region of enhancer sequences, leading to 
faster training, better convergence, and improved generalizability. 
The process of normalization can be understood using following 
mathematical expressions and descriptions. 

Given a mini-batch of sequences X with m examples and n 
features, the activations of a layer Z can be computed as Z = 
WX + b, where W is the weight matrix and b is the bias vector. 
To normalize the activations, we first calculate the mean and 
variance of the mini-batch: 

μ = 
1 
m 

m∑
i=1 

zi (10) 

σ 2 = 
1 
m 

m∑
i=1 

(zi − μ)2 (11) 
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We can then use these statistics to normalize the activations: 

ẑi = 
zi − μ√
σ 2 + ε

(12) 

Where epsilon is a small constant added to the variance to ensure 
that it is never zero. 

Finally, we apply learnable scale and shift parameters gamma 
and beta to the normalized activations to scale and shift them as 
needed: 

zscaled = γ ẑi + β (13) 

This normalized and scaled version of the activations is then used 
as input to standard dropout layer of proposed neural network. 

Dropout Layer

Dropout is a widely used strategy for regularizing neural net-
works, which helps to avoid over-fitting by arbitrarily dropping a 
specific percentage of activations in a layer during the training. 
This forces the network to learn more robust features, prevent 
hidden unit co-adaptations so that every hidden unit cannot rely 
on the other hidden units to compensate for their errors. 

Given a layer of hidden units A, we apply dropout by setting 
each activation A_i to zero with probability p, value of which 
ranges from 0.01 to 0.4. 

Ai = Ai ∗ Bernoulli(1 − p) (14) 

Here Bernoulli(p) is a random variable that takes on the value 1 
with probability p and 0 with probability 1 - p. 

In order to ensure that the expected value of the activation is 
not changed by the dropout process, we also scale the activations 
by a factor of 1/(1 - p): 

Ascaled = Ai ∗ 1/(1 − p) (15) 

This scaled version of the activations is then used as input to 
softamx layer of proposed neural network. During test time, we 
do not apply dropout to the activations. Instead, we use the full 
set of activations without any dropout applied. 

Softmax Layer

Using normalized 50 dimensional statistical representations of 
enhancer sequences, softmax layer distinguishes enhancers from 
non-enhancers as well strong enhancers from weak enhancers. 
Softmax can be mathematically expressed using equation 16 
where z is the input vector, i is the index of the element in 
the output vector, and K is the number of classes. The function 
converts each element in the input vector into a non-negative 
value between 0 and 1, such that the sum of all the values is 1. 
This allows the output of the softmax function to be interpreted 
as a probability distribution over the classes. 

σ(z)i = 
ezi

∑
j = 1K ezj 

(16) 

We use categorical cross-entropy which is often used as the 
loss function for a neural network classifier with a softmax output 
layer. It measures the difference between the predicted probability 
distribution and the true probability distribution for each class. 
The categorical cross-entropy loss is defined as follows: 

L = −  
K∑

i=1 

yi log(ŷi) (17) 

Where y is the true probability distribution (a vector of length 
K), and ŷ is the predicted probability distribution (also a vector of 
length K). The loss is calculated by summing the negative log of 
the predicted probability for each class. 

Benchmark datasets 
To evaluate the integrity and generalizability of proposed 
framework, selection of suitable datasets is an important task 
[73]. Following the need of enhancer identification and strength 
prediction datasets, in 2016, Liu et al. developed two public 
benchmark datasets [12]. Specifically, one dataset for enhancer 
identification and one dataset for strength prediction. Authors 
also provided independent test sets for both datasets. Almost 
all the recent frameworks are evaluated on these benchmark 
datasets. To make sure fair performance comparison of proposed 
framework with existing frameworks, we also utilize same 
benchmark datasets. A detailed description about datasets 
development process is illustrated in Liu et al paper [12]. Figure 4 
illustrates multi-layered Donut charts that provide statistics of 
both benchmark data-sets. As shown in the outermost layer, 
the core dataset has 2,968 DNA sequences in total, among 
these 50% sequences fall under the hood of enhancer class and 
rest of the 50% belong to non-enhancer class. A total of 742 
sequences constitute each of the 50% enhancer sequences, 25% 
of which are strong enhancers and the remaining 25% are weak 
enhancers. In addition to this the central donut chart displays 
the characteristics of an independent test set which comprises 
of only 200 enhancer sequences. Among these 200 enhancer 
sequences, 100 enhancer sequences are strong enhancers while 
the remaining 100 are weak enhancers. 

Evaluation measures 
Following evaluation criteria of existing studies [2, 3, 12, 16], we 
evaluate our proposed framework using 6 different evaluation 
measures namely accuracy (Acc), Sensitivity (Sen), Specificity 
(Spec), Mathhews Correlation Coefficient (MCC), Area Under 
Receiver Operating Characteristics (AUROC), and Area Under 
Precsion Recall Curve (AUPRC) 

f (x) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

ACC = TP+FP 
TP+FP+TN+FN 

SP = TN 
TN+FP 

SN = TP 
TP+FN 

MCC = (TP∗TN)−(FP∗FN)√
(TN+FN)∗(TN+FP)∗(TP+FN)∗(TP+FP) 

AUROC = 1 
2 ( TN 

TN+FP + TP 
TP+FN ) 

AUPRC = 1 
2 ( TP 

TP+FN ∗ TP 
TP+FP ) 

(18) 

Equation 18 illustrates mathematical expressions of these 
measures, number of positive observations and number of 
negative observations correctly identified in their corresponding 
classes are represented as true positive (Tp) and true negative (TN), 
respectively. Whereas the positive observations wrongly predicted 
as negative observation are represented by false negative (FN) and  
negative observations miss-classified as positive observations 
are referred by false positive (Fp). Additionally, MCC, AUROC and 
AUPRC are utilized to assure that the performance of the proposed 
ADH-Enhancer framework is not influenced by the size of corpus 
classes. MCC calculates overall framework’s performance by 
taking into consideration the size of the positive and negative 
classes as well as the four performance matrices including Tp,Tn,Fp 

and Fn. AUROC aids in analyzing the trade-off between the true 
positive rate and false positive rate by giving equal attention to 
true positives and true negatives. While AUPRC focuses primarily
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Figure 4. Number of Ssequences in core dataset and independent test for two-Layer prediction involving enhancer identification and its strength 
prediction. 

on how effectively the model can predict positive class from all 
input data, it also examines the trade-off between true positive 
rate and positive projected value. 

EXPERIMENTAL SETUP 
Proposed ADH-Enhancer framework is implemented in python 
by utilizing 8 different APIs namely; Biopython(https://biopython. 
org/), Pytorch (https://pytorch.org/), Fastai(https://www.fast.ai/), 
Pandas (https://pandas.pydata.org/), Plotly(https://plotly.com/), 
matplotlib (https://matplotlib.org/), numpy (https://numpy.org/) 
and dash(https://dash.plotly.com/reference). ADH-Enhancer 
framework comprises of two modules, Base language model 
and classification head. In base language model we optimized 
following hyper-parameters, batch size, learning rate, embedding 
vector dimension. We tweaked batch size value from 16 to 256 
with a step size of 2n where (n e 4, 5, 6, 7, 8). Similarly, learning rate 
is tweaked between e−1 to e−5 with a step size of e−1. Embedding 
vector size is tweaked from 100 to 500 with a step size of 100. 
For all three hyper-parameters, from given search space to find 
optimal value of each hyperparameter we employed grid search 
strategy. Similarly, in classification module, we optimized number 
of CNN layers, number of filters and kernel size of each CNN layer. 
We tweaked number of CNN layers from 1,2, and 3. Similarly 
number of filters on each CNN layer is tweaked from 10-50 range 
with step size of 10 and kernel size is tweaked from 1-5 with 
step size of 1. Table 2 illustrates the search space of different 
hyperparameters and optimal selected values of hyperparameters 
for language model and classifier. To train the language model 
and classifier categorical cross entropy loss function and Adam 
optimizer is used. To reach model convergence early stopping 
is utilized that stops the model training at the point when loss 
becomes increases. Furthermore, following evaluation criteria of 
existing studies [33] [31] [59] [32] [43] [44] [37] [2], we perform 
experimentation using 5-fold cross-validation and independent 
test set based settings. 

RESULTS AND DISCUSSION 
This section illustrates the discriminative and distributive poten-
tial of nucleotide in enhancer and non-enhancer sequences and 
further from enhancers in weak and strong enhancers sequences. 
It also illustrates the performance impact of different size k-mers 

and statistical representations generated through language 
model and random embeddings, over two benchmark datasets 
for tasks in hand. Finally, it presents an in-depth performance 
comparison of proposed framework with 19 existing frameworks 
[2, 16, 31–33, 36, 37, 43–45, 47, 49, 51–53, 59, 65, 74, 75]. 

Nucleotides distribution analysis 
We use sequence logo library [76] to visualize position aware 
distribution of nucleotides in enhancer and non enhancer as 
well as weak and strong enhancer sequences. Here aim is to 
analyze position aware discriminative potential of nucleotides 
in the sequences of two different classes. Figure 5 represents 
discriminative potential of four nucleotides (A,C,G,T) in two dif-
ferent classes for two benchmark datasets related to enhancers 
identification and enhancers strength prediction. Discriminative 
distribution potential is depicted through the height of character 
that expresses a nucleotide at each position. To make visualiza-
tion easy to understandable, we visualize only those nucleotides 
that have occurrence probability at least 0.75 at relative position. 

It can be seen from Figure 5(a,b), in enhancers identification 
datasets sequences that belong to non-enhancer class have sig-
nificantly higher prevalence of adenine (A) and thymine (T), while 
sequences that belong to enhancers class have abundance of gua-
nine (G) and cytosine (C). Similarly, in Figure 5(c,d) visual analysis 
of enhancers strength prediction datasets shows that sequences 
that belong to strong enhancers class have higher prevalence of 
guanine (G) and cytosine (C), and weak enhancers class sequences 
have these nucleotides in less prevalence. Thus, compositional 
information of each nucleotide in a sequence has a significance 
importance because of its discriminative distribution behavior 
across different classes. 

Furthermore, Figure 5 reveals that discriminative behavior 
shows more prominent when consider consecutive two or three 
nucleotides. For example in both datasets consecutive ‘AA’, ‘AAA’, 
‘TT’ and ‘TTT’ occurs with mess in non-enhancers and weak 
enhancers class sequences that will facilitate to discriminate the 
sequences of both benchmark datasets into distinct classes. 

Performance analysis of proposed framework 
using different k-mers 
Selection of appropriate k-mer size is an important task because 
the size of k-mer decides unique vocabulary of k-mers and their 
discriminative potential among sequences of different classes.
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Table 2: A comprehensive summary of search space and optimal values of hyper-parameters 

Expression Search Space Optimal Value 

Language Model Classifier 

Enhancers 
Identification 

Strength 
Prediction 

Number of LSTM layers 1,2,3 3 - -
Number of neurons 32, 64, 128, 256, 512 256 - -
Number of CNN layers 1,2,3 - 1 1 
Number of filters 10,20,30,40,50 - 30 30 
Kernal size 1,2,3,4,5 - 3 3 
Weight Decay 1e−1, 1e−2, 1e−3, 1e−4, 1e−5 1e−2 1e−4 5e−3 

Batch size 16, 32, 64, 128, 256 64 64 64 
Dropout 1e−1, 1e−2, 1e−3, 3e−3, 5e−3, 1e−4, 1e−5 1e−3 1e−2 1e−1 

Embedding size 100, 200, 300, 400, 500 400 400 400 
Learning rate 1e−1, 1e−2, 2e−2, 3e−2, 1e−3, 1e−4, 1e−5 1e−4 1e−3 2e−2 

Early Stopping 1-200 50 5 7 

Figure 5. Nucleotides distribution analysis among enhancers identification (Enahncers, Non-Enhancers), and Enhancers Strength Prediction (Weak, 
Strong Enhancers) using two core benchmark datasets and their independent test sets. 

To find suitable size of k-mer that improve the predictive per-
formance of proposed framework, we perform large scale experi-
mentation by taking n different size k-mers, where nε1, 2, 3, 4, 5, 6. 
Figure 6 highlights impact of 6 different size k-mers on the pre-
dictive performance of proposed framework over two benchmark 
datasets in-terms of accuracy, sensitivity, specificity and MCC 
using 5-fold cross validation and independent test set based 
experimental settings. 

Figure 6(a),(b) illustrates that sequences segregated at 1-mer 
perform worst on enhancers and non-enhancers identification 
dataset with 5-fold cross-validation and independent test set 
based experimental settings. Although the performance score of 
remaining different size k-mers is almost similar but 2-mer of 
sequences reflect peak performance across all evaluation metrics 
over 5-fold cross-validation. Furthermore, 2-mers of sequences 
once again surpasses the performance of remaining different size 
k-mers over independent test set. In the case of enhancer strength 
prediction, oscillating performance scores of different size k-mers 
under both experimental settings can be seen in Figure 6(c),(d). 1-
mer of enhancer sequences once again continue to underperform 
over both experimental settings, which indicates a single residual 
unit of the sequence is incapable of generating relevant and 
discriminative features. Enhancer sequences segregated at 3-mer 

and 4-mer perform best among all other different size k-mers 
over independent test set and 5-fold cross-validation, respectively. 
Overall, we observe that 2-mer enables the extraction of more 
discriminative features of sequences for accurate identification 
of enhancer and non-enhancer sequences, while for enhancer 
strength prediction 3-mer and 4-mer extract more discriminative 
features of sequences. 

Performance impact of language model on 
enhancers identification and strength prediction 
In NLP, transfer learning by training language model in an unsu-
pervised fashion significantly improves the performance of a 
classifier. Following the success of language models in NLP, our 
proposed framework predictive pipeline also utilizes the power of 
language model pre-training. Specifically, to analyze the impact 
of language model training on the performance of proposed clas-
sifier, we perform experimentation in two different experimental 
settings. In one setting we perform experimentation by using ran-
dom word embeddings and in other setting, we replace random 
embeddings with pre-trained language model. 

Figures 7 and 8 illustrates proposed classifier performance 
with pre-trained language model and random embeddings over 
enhancer identification and strength prediction datasets in terms
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Figure 6. Performance comparison of proposed framework using six different k-mer values over Enhancers identification and strength prediction 
datasets with two evaluation settings 5-fold cross-validation and independent test set. 

of 5-fold cross-validation and independent test sets. Figure 7 
reveals that over enhancer identification dataset with 5-fold 
cross validation based experimental setting, in comparison 
with random embedding’s by using pre-trained language model 
predictive performance of classifiers boost almost 14% and 15% 
in terms of AUROC and AUPRC. Similarly, over independent 
test set pre-trained language model improves almost 7% and 
9% performance in terms of AUROC and AUPRC. In case of 
enhancer strength prediction dataset, a similar performance 
trend can be observed from Figure 8. In 5-fold cross validation 
based experimental setting, proposed classifier produce 30% and 
34% more AUROC and AUPRC performance figures with pre-
trained language model as compared with its performance with 
random word embeddings. Over independent test set proposed 
classifier in combination with pre-trained language model 
produce 23% and 22% more performance in terms of AUROC and 
AUPPRC. 

Overall, it can be concluded, pretrained language model sig-
nificantly improve the performance of classifier because dur-
ing language model pre-training LSTM layers extract and learn 
comprehensive information about distribution of nucleotides or 
k-mers in the sequences. 

Proposed and existing frameworks performance 
comparison 
This section summarizes performance comparison of proposed 
and 19 existing frameworks for the tasks of enhancer identifi-
cation and strength prediction using 5-fold cross-validation and 
independent test set over benchmark datasets. Table 3 illustrates 
that over 5-fold cross-validation among 19 existing frameworks 
for enhancer and non-enhancer discrimination, iEnhancer-Deep 
[16] framework stands out in terms of accuracy and sensitivity 
with performance values of 87.77% and 86.99% while iEnhancer-
CNN [65] framework performs more effectively in terms of speci-
ficity and MCC by achieving performance figures of 88.88% and 
0.69%, respectively. However, over independent test set iEnhancer-
MRBF framework [53] manages to beat the performance of all 
existing frameworks with 79.75% accuracy, 82% sensitivity and 
0.59% MCC while iEnhancer-EBLSTM [74] framework only outper-
forms existing frameworks in terms of specificity with a value of 
79.5%. Hence, existing frameworks are unable to generalize for 
distinguishing between enhancer and non-enhancer sequences 
and predicting the strength of enhancers. In contrast to this, pro-
posed framework is capable of extracting discriminative features 
and outperforms existing top-performing frameworks [16] [53]
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Figure 7. Over enhancers identification dataset with two evaluation settings 5-fold cross-validation and independent test set, performance comparison 
of proposed framework using language model representations and random embedding ‘without language model’ in terms of AUROC and AUPRC. 

Figure 8. Over enhancers strength prediction dataset with two evaluation settings 5-fold cross validation and independent test set, performance 
comparison of proposed framework using language model representations and random embedding ‘without language model’ in terms of AUPRC and 
AUPRC. 

with a significant margin of 14% and 9% in terms of MCC over 
5-fold cross-validation and independent test set respectively. 

With respect to robustness, existing and proposed frameworks 
fall into two categories: highly biased and less biased frame-
works based on differences in specificity and sensitivity val-
ues. Highly biased frameworks have higher differences and less-
biased frameworks have less difference between sensitivity and 
specificity values. It is evident from Table 3 that a larger num-
ber of frameworks show higher specificity and sensitivity differ-
ence under an independent test set in contrast to 5-fold cross-
validation. Based on specificity and sensitivity differences (greater 
than 5), seven existing frameworks including iEnhancer-Deep [16], 
iEnhancer-EL [43], BERT [48], iEnhancer-GAN [36], iEnhancer-RD 
[36], iEnhancer-5step [37] and iEnhancer-MRBF [53] are highly 
biased on independent test set. In contrast to this, only three 
existing frameworks, namely, Bert [48], iEnhancer-CNN [65] and  
iEnhancer-XG [45] belong to the highly biased category over 5-
fold cross-validation. However, the proposed framework is less-
biased as it shows very small specificity and sensitivity difference 
(less than 5) under 5-fold cross-validation and independent test 
set. In general, highly biased techniques are prone either toward 
Type 1 error or Type 2 error. An error of Type 1 occurs when a 
technique has higher sensitivity and lower specificity values due 
to a greater number of false positive predictions and an error 
of Type 2 occurs when a technique has lower sensitivity and 
higher specificity values due to large number of false negative 
predictions. Over independent test set except iEnhancer-EL [43] all  
highly biased frameworks are prone to Type 1 error, whereas over 
5-fold cross validation among the three highly biased frameworks 
two frameworks namely iEnhancer-XG [45] and iEnhancer-CNN 
[65] are prone to type 2 error. 

Table 4 provides a fair performance analysis of the proposed 
and the 19 existing enhancers strength prediction frameworks 
under two different experimental settings. It can be seen from 

Table 4 that among the existing frameworks the iEnhancer-DCLA 
[52] and iEnhancer-MRBF [53] frameworks produce the highest 
accuracy, specificity and MCC values over 5-fold cross-validation 
and independent test set, respectively. On the other hand, 
iEnhancer-Deep secures the highest performance in terms of 
sensitivity over 5-fold cross-validation. Comparative performance 
analysis depicts that the proposed framework outperforms all 
the existing frameworks over both the experimental settings 
in terms of the four evaluation measures except for specificity 
over independent test, where the iEnhancer-CNN framework [65] 
attains a slightly better performance. Taking into account a higher 
value of specificity and lower value of sensitivity of the iEnhancer-
CNN framework [65] depicts it is highly biased toward type-2 error. 

Over 5-fold cross-validation a large number of existing 
frameworks including iEnhancer-EL [43], iEnhancer-Deep [16], 
iEnhancer-XG [45], tan2019ensemble [44], Tan et al. Enhancer [44], 
iEnhancer-5step [37] and iEnhancer-DCLA [52] exhibit unusual 
behavior with high sensitivity and specificity difference of 7.5%, 
5.41%, 16.39%, 41.37%, 42%, 14.73% and 11.94%, respectively. It is 
interesting to note that all these frameworks are prone toward 
type-1 error. Hence, these frameworks depict higher false positive 
rate and incorrectly classify weak enhancers as strong enhancers. 
In contrast to these existing frameworks the proposed framework 
shows a negligible difference of 0.4% between the specificity and 
sensitivity values and hence is independent of type-1 or type-2 
errors. 

In case of independent test, all the existing frameworks once 
more exhibit highly biased behavior due to huge differences 
between sensitivity and specificity values except rank-GAN 
framework [51]. Among the 19 existing frameworks once again the 
10 frameworks including iEnhancer-Deep [16], iEnhancer-XG [45], 
iEnhancer-EBLSTM [74], iEnhancer-ECNN [75], Tan et al. Enhancer 
[44], iEnhancer-DSNet [2], iEnhancer-RD [36], iEnhancer-GAN [36], 
iEnhancer-DCLA [52] and iEnhancer-MRBF [53] frameworks are
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Table 3: Over enhancers identification dataset and its independent test set performance comparison of the proposed and existing 
frameworks in terms of four evaluation measures 

5-Fold Independent 

framework ACC Sn Sp MCC ACC Sn Sp MCC 

Enhancers/ 
Non-Enhancer 

iEnhancer-2L [33] 76.89 78.09 75.88 0.54 73 71 75 0.46 

EnhancerPred [31] 73.18 72.57 73.79 0.43 74 73.5 74.5 0.48 
tan2019ensemble [44] 74.83 73.25 76.42 0.49 - - - -
iEnhancer-DSNet [2] 76 76 76 0.52 78 78 77 0.56 
iEnhancer-Deep [16] 87.77 86.99 88.54 0.75 74.02 81.5 67 0.4902 
iEnhancer-EL [43] 78.03 75.67 80.39 0.56 74.75 71 78.5 0.496 
Rank-GAN [51] 75.25 74.87 75.63 0.5051 75.25 74.87 75.63 0.5051 
BERT [48] 76.2 79.5 73 0.525 75.6 80 71.2 0.514 
iEnhancer-XG [45] 58.55 75.7 86.5 0.62 75.75 74 77.5 0.514 
Tan et al. Enhancer [44] 74 73 76 0.5 76 76 76 0.51 
iEnhancer-ECNN [75] - - - - 76.9 78.5 75.2 0.537 
iEnhancer-EBLSTM [74] - - - - 77.2 75.5 79.5 0.534 
iEnhancer-CNN [65] 80.63 75.88 88.88 0.69 77.5 78.25 79 0.585 
iEnhancer-DCLA [52] 83.32 84.18 82.45 0.6668 78.25 78 78.5 0.565 
iEnhancer-GAN [36] - - - - 78.4 81.1 75.8 0.567 
Enhancer-RD [36] - - - - 78.8 81 76.5 0.576 
iEnhancer-5Step [37] 82.3 81.1 83.5 0.65 79 82 76 0.58 
iEnhacner-BERT [47] 79.4 - - 0.593 79.3 - - 0.585 
iEnhancer-MRBF [53] 81.23 79.52 82.95 0.6254 79.75 82.00 77.50 0.5956 
Proposed 94.6 94.6 94.9 0.892 84.3 84.2 87 0.686 

Table 4: Over Enhancers strength prediction dataset and its independent test set performance comparison of Proposed and existing 
frameworks in terms of 4 evaluation measures 

5-Fold Indepencent 

framework ACC Sn Sp MCC ACC Sn Sp MCC 

Weak/ Strong 
Enhancer 

EnhancerPred [31] 62.06 62. 67 61.46 0.24 55 45 65 0.1021 

iEnhancer-2L [33] 61.93 62.21 61.82 0.24 60.5 47 74 0.2181 
iEnhancer-EL [43] 65.03 69 61.05 0.31 61 54 68 0.2222 
iEnhancer-Deep [16] 80.86 83.57 78.16 0.62 61 73 49 0.2266 
iEnhancer-XG [45] 66.74 74.94 58.55 0.33 63.5 70 57 0.272 
iEnhancer-EBLSTM [74] - - - - 65.8 81.2 53.6 0.324 
iEnhancer-ECNN [75] - - - - 67.8 79.1 56.4 0.368 
tan2019ensemble [44] 58.96 79.65 38.28 0.19 - - - -
Tan et al. Enhancer [44] 59 80 38 0.2 68.49 0.83 0.46 0.31 
iEnhancer-DSNet [2] 63 63 67 0.26 83 83 67 0.70 
Rank-GAN [51] 69.7 70.68 68.89 0.3954 69.7 70.68 68.89 0.3954 
iEnhacner-BERT [47] 65.3 - - 0.31 70.1 0.401 
iEnhancer-5Step [37] 68.1 75.53 60.8 0.37 - - - -
Enhancer-RD [36] - - - - 70.5 84 57 0.426 
iEnhancer-GAN [36] - - - - 74.9 96.1 53.7 0.505 
iEnhancer-CNN [65] 76.43 73.64 76.8 0.45 75 65.25 76.1 0.3232 
iEnhancer-DCLA [52] 83.3 89.27 77.33 0.6736 78 87 69 0.5693 
iEnhancer-MRBF [53] 76.95 77.23 79.69 0.5419 83.50 100.00 67.00 0.7098 
Proposed 90 90 89.6 0.8 87.5 87.3 75 0.774 

prone to Type 1 error as they have a higher value of sensitivity 
and a lower value of specificity. However, comparatively a lower 
number of frameworks, namely, EnhancerPred [ 31], iEnhancer-
2L [33], iEnhancer-EL [43] and iEnhancer-CNN [65] are  prone  
to Type 2 error due to a smaller value of sensitivity and a 
larger value of specificity. Although the proposed enhancer 
strength prediction framework also suffers from type-1 error, 
it has a relatively lower biasness in comparison with the existing 
frameworks. 

CONCLUSION 
In the marathon of developing a robust and precise AI framework 
for enhancers identification and their strength prediction, 
researchers have proposed several machine- and deep-learning-
based frameworks. These frameworks transform raw DNA 
sequences into statistical feature space by utilizing physicochem-
ical properties, k-mer neural embeddings, correlation information 
of nucleotides and bag-of-words. However, these encoding 
methods are unable to capture the discriminative patterns and
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semantic relationships of k-mers in a sequence. To address 
this challenge, we feed an attention-based CNN with context-
aware statistical representation of sequences. Over enhancers 
identification dataset, the proposed ADH-Enhancer framework 
outperforms the existing best-performing framework by 7%, 8%, 
6% and 14% in terms of accuracy, sensitivity, specificity and 
MCC, respectively. On the other hand, over benchmark enhancers 
strength prediction dataset it outperforms the existing best by 7%, 
1%, 12% and 13% in terms of accuracy, sensitivity, specificity and 
MCC, respectively. This research study has opened new frontiers 
for biomedical researchers to explore the potential of language 
modeling strategies for generating comprehensive statistical 
representations of sequence to enhance the performance of a 
variety of biomedical tasks. We believe predictors performance 
analysis across cross cell-types provides more useful insights 
about enhancers. However. to perform such analysis there is a 
need of benchmark datasets having enhancers annotations along 
with cell lines information. 

Key Points 
• Irregularities in the strength of enhancers affects gene 

expression process that initiates diverse types of genetic 
diseases. 

• We propose a robust and precise predictor that takes raw 
DNA sequences and predicts enhancer sites and their 
strength. 

• The proposed predictor transforms raw DNA sequences 
into statistical feature space by training a language 
model on large DNA sequence data in unsupervised 
fashion. 

• On top of the pre-trained language model we designed 
a novel classifier that reaps the benefits of two different 
architectures: CNN and attention mechanism. 
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