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Abstract

Advances in a scientific discipline are often measured by small incremental steps. Here we 

report on two intertwined disciplines in the protein structure prediction field, the modeling of 

single chains and complexes, that have over decades emulated this pattern, as monitored by the 

community-wide blind prediction experiments CASP and CAPRI. However, over the last few 

years, dramatic advances were observed for the accurate prediction of single protein chains, driven 

by an upsurge of deep learning methodologies entering the prediction field. We review the main 

scientific developments that enabled these recent breakthroughs and feature the important role of 

blind prediction experiments in building up and nurturing the structure prediction field. We discuss 

how the new wave of AI-based methods is impacting the field of computational and experimental 

structural biology and highlight areas of future developments that deep learning methods are likely 

to thrust forward, provided major challenges are overcome.
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Introduction

The problem of predicting the native 3D structure of a protein from its amino acid sequence 

has occupied the center stage in protein modeling research for over 5 decades owing to 
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its inherent scientific interest and to the many potential applications that robust structure 

prediction algorithms would offer in areas such as the prediction of function from genome 

sequence, or designing new drugs to treat disease (104). In comparison, although the 

important functional role of protein-protein interactions and complexes was recognized in 

the sixties, methods for predicting the structure of complexes became a booming research 

area only since the turn of the century(136), fueled by the realization of the ubiquitous 

involvement of protein complexes in nearly all cellular processes.

The last decade has seen major advances in both types of prediction methodologies, 

due to a variety of factors. Notable has been the application of artificial intelligence 

(AI) methods, culminating with the recent phenomenal success of the AI-based algorithm 

AlphaFold2 by DeepMind in predicting the structures of single protein chains to accuracy 

levels rivaling with experimental methods (53). Important in nurturing and catalyzing these 

developments have been the blind prediction experiments of CASP (Critical Assessment of 

Structure predictions and CAPRI (Critical Assessment of PRedicted Interactions), focusing 

respectively, on the critical assessment of methods for the predicting the structure of proteins 

and protein complexes.

In this review we outline the progression in the methods developed for these two prediction 

tasks. We describe how the performance of prediction methods is evaluated by CASP and 

CAPRI and how progress is assessed. We highlight the role of blind predictions in building 

up the communities of methods developers and shaping the field. We end by offering 

our view on the impact the new wave of AI-based methods is having on the field of 

computational and experimental structural biology, and where the remaining challenges lie.

Prediction of protein 3D structure from sequence

Computational analysis of protein structures has been initiated by Shneior Lifson and 

his group in the 1960s, who extended the molecular mechanics approach developed for 

modeling small organic molecules to large molecular systems (42, 43). They introduced the 

“Consistent Force Field” (CFF) energy function, which led to the development of some of 

the most important all-atom potentials used today in protein modeling, including CHARMM 

(11), Amber (133) and ECEPP(50). All three potentials include covalent, non-covalent, 

and electrostatic energy terms as in the original CFF, with some additional terms, specific 

to each force field. These classical potentials have served well whenever various intrinsic 

properties of the protein needed to be investigated in vacuum; however, they were proven 

inadequate for a thermodynamic description of stable compact protein folds in solution, 

and unable to discriminate between native proteins and incorrectly folded models (97). 

The main reason was the failure to account for solvation effects, an important determinant 

of protein stability. These effects were usually incorporated by using these potentials in 

molecular dynamics (MD) simulations of the protein immersed in a box of explicit solvent 

molecules, an exercise, which remained prohibitive for protein structure prediction due to its 

computational burden, leading to problems of convergence and inadequate conformational 

sampling.
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The next step forward was the addition of implicit solvation terms to the classical potentials. 

These included surface area-dependent empirical models used in conjunction with atomic 

solvation parameters (30) and continuum electrostatic terms evaluating the electrostatic 

contribution to the solvation free energy, using the finite difference Poisson–Boltzmann 

(PB) method (38) and various approximations to the Generalized Born (GB) treatment 

(99). Augmented with a surface area-based term to represent the nonpolar contribution to 

solvation and integrated into the classical potential functions, the resulting force-fields could 

identify the native states of peptides or proteins, albeit with limited accuracy (45, 147).

Such problems led to interest in extracting effective potentials from experimentally 

determined protein structures. A frequently used approach to deriving such potentials 

consists of computing frequencies of structural features (‘structural frequencies’) and 

converting these frequencies into free energy contributions (123). Following this approach 

many statistical (or knowledge-based) potentials were proposed (52, 117). Most of these 

potentials used simplified residue-based representations of the protein, reminiscent of the 

coarse-grained potentials used decades earlier in protein folding calculations (85). These 

relatively simple, computationally efficient potentials helped score and rank predicted 

protein models. When combined with various energy optimization methods they were also 

able to model the structure of very small proteins from their amino acid sequence, the 

so-called ab-initio protein modeling approach. But sampling the vast conformational space 

of average size proteins remained a problem. To address it, data on proteins sequences and 

known protein structures were increasingly relied upon.

Since evolutionarily related proteins adopt similar 3D structures(22), with the increasing 

number of experimentally determined protein structures this property gave rise to the 

method of homology modeling, also known as comparative- or template-based- modeling 

(29). The atomic-resolution structure of the "target" protein is modeled from its amino acid 

sequence and an experimental three-dimensional structure of an evolutionary related protein 

(the template). Aligned regions of the template backbone are simply copied into the target, 

whereas special prediction methods are used for adding loops in the non-aligned regions 

(32) and also for placing the side chains of non-conserved residues (32), and the resulting 

models are refined using molecular mechanics or molecular dynamics methods.

A notable development in conformational sampling, which in some ways bridges template-

based and ab-initio methods has been the fragment-based assembly approaches, whereby 

models are built from short contiguous backbone fragments (typically 3–15 residues in 

length) taken from proteins of known structure, and assembled into full length models using 

Monte-Carlo simulated annealing or equivalent techniques (67, 119).

The next major advance in protein modeling has been the effective use of co-evolutionary 

information, enabled by the growing number of related sequences (39). The underlying 

hypothesis was that if mutations occurring at two positions in the aligned sequences are 

correlated, then these positions are likely to form a contact in 3D space (103). To find true 

evolutionary covariation between residues is difficult because one must minimize the effect 

of transitive correlations: indirect correlations that are observed, for example, when two 

residues contact the same third residue but do not actually contact each other. Transitive 
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correlation can be removed by global statistical approaches involving either direct coupling 

analysis (90), pseudo-likelihood optimization (56), or machine learning (134). The approach 

has first been used to identify residue pairs that are in contact, and further extended to 

derive residue distance and dihedral angle distributions, all used as restraints in ab-initio 

modeling (103, 143). The more recent neural network-based learning methods further extend 

the use of multiple sequence alignment to end-to-end protein structure prediction, achieving 

previously unimaginable accuracy for a significant fraction of proteins (53), as will be 

discussed in the last section of this review.

Prediction of the 3D structure of protein complexes

Efforts to model protein-protein interactions started in the nineteen seventies, driven by the 

desire to explain aberrant protein-protein interactions caused by a single point mutant in 

sickle-cell hemogolobin (Hb-S)(84). The first protein docking algorithm, formulated as the 

task of modeling the atomic structure of a native protein complex from the structures of 

its components, was developed a few years later. This early incarnation of docking treated 

the interacting proteins as rigid bodies, used a coarse-grained representation of the protein 

developed for protein folding calculations (85) and searched for large surface patches with 

complementary shapes. Shape complementary was evaluated by the interface area formed by 

the contacting proteins (21), a geometric quantity representing the loss of solvent accessible 

surface area upon binding, itself related to the hydrophobic contribution to the binding free 

energy (20).

Ab-initio docking methods

Over the following two decade a variety of docking procedures were proposed (136, 137), 

including most notably the Fast Fourier Transform (FFT)-based methods (57) that currently 

dominate the field of protein docking. FFT-based methods enable speedy coarse-grained 

rigid-body searches capable of detecting shape complementary, as well as the evaluation of 

different properties of protein interfaces, such as hydrophobicity (127), or electrostatic and 

van der Waals interactions (9). Following these advances strategies were proposed to speed 

up high-resolution searches, required for accurately defining the molecular positions and 

orientations. These include the use of spherical polar Fourier expansion coefficients, shown 

to significantly accelerate the search for solutions that optimize properties of generated 

interfaces (112).

A series of rigid docking algorithms with variations on these fundamental principles (19, 

35, 60, 112) underpin most of the docking procedures used today. One in particular forms 

the basis of a well frequented automatic docking server, ClusPro (62), which enables the 

reduction of the search space from 6 to 5 degrees of freedom by employing a Fourier 

transform in polar coordinate space, resulting in a 10-fold speed up over classical FFT 

approaches without compromising accuracy (100). A few alternative sampling algorithms 

such as enhanced sampling Monte-Carlo procedures (142), and algorithms incorporating 

heuristic methods based on Particle Swarm Optimization (PSO) (89) also hold their own.

Also worth mentioning, is the so-called data-driven docking methods, which involve the 

incorporation of distance restraints obtained from biophysical or biochemical data into the 
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modeling protocol, thereby reducing the search space for the location of the native complex. 

One of the first approaches using these principles, now operating as a publicly available 

server (24), is the program HADDOCK (28). Similar restraints-based methodologies have 

been added to other protein docking methods (102, 132, 139). More recently, inter molecular 

contacts derived from data on residue co-evolution were also used as restraints in docking 

calculations with however, modest success (108).

Scoring docking poses—To further prioritize the large number of solutions (often in 

the thousands) produced by the docking calculations, these solutions are re-ranked using 

more sophisticated scoring functions. An important requirement for such functions has 

been that they be able to reliably percolate the most native-like binding modes to the 

top of the list. Aware of the challenge, the development of scoring schemes has been 

a major focus over the past two decades. These schemes span a wide range and are 

often combined with model optimization. Use is being made of atom or residue pair 

potentials, sometimes in combination with classical potential energy terms, but increasingly 

implementing different flavours of knowledge-based potentials. The latter are adapted from 

those developed for the structure prediction of single protein chains (46, 48, 145, 146). 

Among the most effective, are methods combining knowledge-based potentials with the 

evaluation of interatomic contact areas using Voronoi tessellation(98), methods that enrich 

knowledge-based potentials with evolutionary relationships (96), and methods augmented 

with deep learning models (86) or replaced with such models (111). A notable example 

is the Rosetta all-atom multi-component energy function (2), for its broad use in various 

molecular modeling applications including the evaluation of docking models. For many 

scoring schemes the rank of native-like solutions can be bolstered by clustering the top 

ranking docking poses based on the similarity of their interfaces and using cluster size 

and stability to perturbation(61) to rank models alone or as part of more complex ranking 

procedures (62).

Handling protein flexibility—With rigid-body search algorithms making up the core 

component of most docking procedures, it not surprising that these procedures do 

poorly when the interacting proteins exhibit moderate to high levels of flexibility (26). 

Nevertheless, with modifications to some rigid-body docking algorithms for so called ‘soft 

docking’ - allowing for some atomic clashes to be alleviated subsequently by standard 

molecular dynamics - this problem can be alleviated to a point. Another strategy coined 

‘ensemble docking’ involves generating ensembles of conformers for individual components 

of a complex by molecular dynamics(121) or normal mode analysis (27), and systematically 

docking conformers from both ensembles to one another, with however mitigated results 

(71).

The inability to adequately address flexibility led to the design of algorithms, which 

introduced protein backbone movements and sidechain repacking of putative interface 

residues during the sampling process, with some success recorded for small to medium 

conformational changes upon complex formation (4, 10). However, to this day, it remains 

debatable as to whether modelling protein flexibility using available methods improves 

the quality of docked models sufficiently to justify the typical higher computational cost 
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entailed (107). Nevertheless, new methodologies are continuing to address the problems 

associated with significant conformational change upon complex formation, some of which 

include a new wave machine learning approaches (44).

Template-based docking

Template-based docking was borne out by the increasing success of the homology modeling 

techniques for single protein chains, described above. With the growing number of available 

experimentally determined protein structures, it was soon realized that homology- or 

template-based modeling may be extended to pairs of homologous complexes, if at least 

some of their component parts show a degree of sequence similarity (3). This then led 

to the concept that the 3D structure of a complex can be modelled directly from the 

experimentally determined structures of other complexes. The accuracy of the method 

hinges on sensitive sequence searches and alignment to the appropriate complexed proteins 

(120). Interestingly, bearing in mind the constraints on accuracy described above, enough 

experimentally determined protein complex templates are available to model most native 

protein-protein interactions for any organism (70) - a concept underlined by the successful 

employment of the methodology in a number of recent CAPRI blind trials (74). Rapid 

searching for homologous complexes is now supported by annotated databases of such 

predicted relationships (69).

Scoring and ranking models derived from template-based docking conforms to the same 

principles as for classical docking, but with the potential advantage of having to score and 

rank fewer models. However, there is an obvious caveat, if the modelled complexes do not 

comply with the principle of conservation of homologous interfaces, the native complex will 

not be sampled. This contrasts with the ab-initio methods, where there is always a chance, 

provided flexibility does not dominate, of at least having a near-native model in the complete 

list of models generated. Moreover, there are clearly certain categories of interactions that 

are not conducive to this form of docking, the classic examples being antibody antigen 

complexes, where evolutionary relationships between the binding partners is not expected to 

be prevalent, thereby enforcing ab-initio docking methods (40).

Ab-initio and templates-based docking methods are clearly not mutually exclusive, and 

procedures are actively being developed to employ both in order to model the widest range 

of interactions possible, and to the highest level of accuracy, should the appropriate levels 

of sequence homology prevail (140); such pipelines have already been encoded into some 

automatic docking servers (109, 141). With the recent advances in deep learning approaches 

(see final section), both for components and full complex modelling, these two principal 

methodologies are likely to become seamlessly merged.

The blind prediction challenges

CASP

Critical Assessment of protein Structure Prediction (CASP) is a community-wide double-

blind experiment for testing and comparing protein structure prediction (94). Every two 

years sequences of soon-to-be experimentally determined protein structures are collected 

Wodak et al. Page 6

Annu Rev Biophys. Author manuscript; available in PMC 2024 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and passed on to registered predictors. Predictors fall into two categories: teams of 

participants who usually have a period of three weeks to complete their work; and 

automatic servers, which must return a model within 72 hours, in principle without human 

intervention. Predictions are evaluated by independent assessors using well developed 

criteria. CASP provides research groups with an opportunity to test their protein structure 

prediction methods and delivers an independent assessment of the state of the art in protein 

structure modeling to the research community and software users. The results show what 

progress has been made during the previous two years and expose where future approaches 

should focus to improve the methodology.

The CASP experiment had a fairly modest start in 1994 with 35 participating research 

groups (95). Targets were provided in three prediction categories: comparative modeling, 

fold recognition or threading, and ab initio folding (95). The results of CASP1 demonstrated 

a sobering failure of prediction methods using physics-based potentials, shocking the protein 

folding community. The only meaningful predictions have been obtained using comparative 

modeling, and only for easy targets with closely related known structures. Such negative 

results made it difficult for protein scientist to continue publishing theoretical papers 

without participating in CASP. The pre-eminence of template-based approaches was further 

emphasized by CASP2 in 1996. By that time CASP has become more recognized as a much 

needed “blind” experiment that had the potential to introduce a new area of reproducibility 

and openness in protein structure prediction. The number of participating groups grew to 

70, and there was some improvement in the predictions of more difficult targets (Figure 1). 

Improved sequence alignment tools, the use of multiple templates, and fragment assembly 

approaches further improved results at CASP3 and CASP4, but after that, improvements 

remained moderate, essentially until CASP13 in 2018. Although contacts maps based on co-

evolutionary information were already present in several methods at CASP10 to CASP12, 

their effective use with deep learning led to a jump in prediction quality only at CASP13 

(2018, about 100 participating groups), particularly for difficulty targets (Figure 1). While 

this improvement was already very significant, CASP14 in 2020 lead to a revolution by 

AlphaFold2, a neural network based end-to-end prediction method that will be further 

discussed in this paper. However, predictions by other predictor groups and servers have also 

become much better (Figure 1).

The CASP predictions are evaluated using a variety of quality measures (63) that are 

listed on the Protein Structure Prediction Center website (https://predictioncenter.org/). The 

most important measure is GDT_TS (Global DistanceTest Total Score), shown in Figure 1. 

Another important measure is the Local Distance Difference Test (lDDT), a superposition-

free score that evaluates local distance differences of all atoms in a model, including 

validation of stereochemical plausibility. However, the ranking of CASP predictions is 

generally based on GDT_TS, computed over the alpha carbon atoms and reported as a 

percentage, ranging from 0 to 100, with higher values indicating a closer fit of a model to a 

given reference structure (see Figure 1 for details).

At CASP14 the targets were assigned to one of four classes of modeling difficulty, 

based on sequence and structure similarity to already experimentally determined structures: 

‘TBM-Easy’ for straightforward template modeling targets, ‘TBM-Hard’ for more difficult 
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homology modeling targets, ‘FM/TBM’ for those with only remote structural homologies 

and ‘FM’ (Free modeling) for the most difficult set with no detectable homology to 

known structures (65). However, with the significant improvement in prediction quality, for 

the ongoing CASP15 the distinction between template-based and template-free modeling 

is eliminated. As shown in Figure 1, until CASP13 the predictions were becoming 

substantially less accurate as the level of difficulty increased. However, this changed in 

2018 with the introduction of deep learning methods at CASP13 that were able to yield 

predictions with GDT_TS over 60 for the most difficult targets. This trend was further 

strengthened at CASP14 (the black straight-line), as prediction quality starts at a GDT_TS 

of about 95, and rarely goes below 80. Although the outstanding performance at CASP14 

is dominated by AlphaFold2, the dashed black line in Figure 1 shows that other groups also 

made substantial advances.

As shown in Figure 1, at CASP14 automated servers had similar performance to human 

groups (without the results for Alphafold2). Lastly, we note that the quality of many protein 

structure prediction servers is continuously evaluated by CAMEO (Continuous Automated 

Model EvaluatiOn), a fully automated assessment platform, which is a complement to the 

bi-annual CASP experiment (41, 113).

CAPRI

CAPRI (Critical Assessment of Predicted Interactions) is a community-wide experiment 

inspired by CASP. It was established in 2001 (51) to offer computational biologists the 

opportunity to test their algorithms in blind predictions of experimentally determined 3D 

structures of protein complexes, the ‘targets’, provided to CAPRI prior to publication. 

Experiments focusing on this prediction task were attempted only twice before, including 

once in 1996 by CASP (51), attracting limited interest. Since its inception, CAPRI 

prediction rounds have been managed in collaboration of the PDBe (Protein Databank 

Europe), at the European Bioinformatics Institute (EBI) ( https://www.ebi.ac.uk/pdbe/

complex-pred/capri/ )

Due to the slower rate at which structures of protein complexes are being determined and 

offered as targets for prediction, CAPRI runs prediction rounds on a rolling basis, as targets 

become available (51). Like in CASP, participants include automatic servers, which must 

return models within 72 hours, and human predictors who are given 6-8 weeks to complete 

their predictions. Initially limited to homo- and hetero- protein-protein complexes, the panel 

of targets diversified to include protein-peptide interactions, complexes of proteins with 

RNA, DNA and oligosaccharides(78). With time, target size and complexity also increased, 

especially with the availability of large multimeric complexes solved to high resolution by 

cryo-EM. Recognizing the essential role scoring functions play in identifying native-like 

association modes, CAPRI also offers a scoring challenge upon the completion of each 

prediction round. In this challenge a larger set of anonymized models predicted by different 

groups and comprising both correct and incorrect binding modes, is made available to all 

participants to test new scoring functions independently from docking calculations (78, 

82). The data comprising the consolidated ensemble of predicted complexes made available 

in the CAPRI scoring experiments have been compiled in a freely available benchmark 
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dataset (the ScoreSet(83)), recently extended to include 19000 models of diverse complexes 

predicted by different methods for all CAPRI targets whose structure has been published.

The way the prediction problem is formulated for a given target has likewise evolved 

over the years to ensure the best use of the available data on the known structures of 

single protein chains and complexes. In early CAPRI rounds, predictor groups were offered 

the coordinates of the unbound structures for the components of the complex to predict. 

Occasionally the bound conformation of one of the components was provided as input 

in random orientation with sidechain coordinates stripped away (51). As the repertoire of 

3D structures of single protein chains was progressive filled thanks in particular to the 

structural genomics initiatives (18), participants were invited to predict the structure of 

the target assembly starting from sequence information alone. This requires the integration 

of homology-based modeling of individual subunits with docking calculations or relying 

entirely on template-based modeling when adequate templates for the entire complex are 

available (see Methods). Identifying adequate templates is not trivial and has been a task 

members of the CAPRI community, who specialize in ab-initio docking calculations, 

had to learn to master using available resources such as HHPRED(36), PPI3D(23) or 

GalaxyWEB(59). The increased reliance on homology and template-based modeling was 

further catalysed starting in 2014, when CASP included the prediction of protein assemblies 

in their biannual prediction season in collaboration with CAPRI (80); a collaboration that 

has been continuing since.

Model quality measures—Objective criteria for independently evaluating the quality of 

predicted models by comparing them against the target structure, are a key component 

of blind prediction challenges such as CAPRI and CASP. When dealing with models 

representing protein complexes comprising two or more interacting partners, the evaluation 

criteria need to account for both local and global parameters of the molecular assembly. In 

CAPRI, the standard evaluation protocol involves the evaluation of three parameters for a 

given pair of interacting subunits (76): Two are based on residue-residue contacts and local 

backbone similarity respectively, and quantify different aspects of the fit between the model 

and the target binding interfaces. The third parameter quantifies the relative rigid-body 

global displacement between the binding partners in the model versus the target. Based on 

ranges in the values of these 3 parameters, defined by expert evaluation and validated by 

the community, models are assigned to 4 discrete categories: high-, medium-, and acceptable 

quality and incorrect (76). For targets representing higher order assemblies with multiple 

distinct interfaces, submitted models are evaluated by comparing each pair of interacting 

subunits in the model to each of the relevant pairs of interacting subunits in the target(80). 

The quality scores of the individual interfaces are then used to derive a global quality score 

for the full assembly. Several different formulations were tested over time, with the latest 

being a weighted sum of the quality scores of individual interfaces of the assembly (74).

This interface-centric evaluation reflects the essential role of the binding interface in 

defining the 3D structure of the complex. Even models that reproduce the structure of 

the native interface to lower accuracy (acceptable or medium accuracy) provide useful 

information that can be further exploited, whereas incorrect models that totally miss the 

binding interface are in general of little utility. The performance of individual groups is 
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therefore ranked based only on the best model of respectively, acceptable- medium- or high- 

quality each group produces for a given target. This results in a coarse-grained ranking, 

which has its advantages (79), but may also be deemed cumbersome in comparison to 

continuous model quality metrics, which can be used to evaluate performance at different 

graininess levels and are more amenable to statistical analyses. The continuous DockQ 

metric, formulated as a weighted sum of the CAPRI model quality criteria(7) (see also 

Figure 2a) is an attractive alternative that CAPRI and other studies(13) have already 

been using to analyze prediction results. Still missing however, are evaluation criteria that 

seamlessly integrate quality measures of the interface region with those of the remainder of 

the protein structure.

Evaluating progress—CAPRI has been evaluating progress in intervals of about 3 years, 

with each evaluation performed on results for 10 – 30 targets achieved during the prediction 

rounds of the intervening period. In addition, the CAPRI team, which has been evaluating 

CAPRI prediction results since its inception, independently evaluated the results obtained 

by participants in the assembly prediction challenges of the CASP11-CASP14 prediction 

seasons. All the evaluations were performed on results achieved by human predictor groups 

(~40 on average), by automatic servers (increasing from about 3 to as many as 12 over the 

years), and by participants in the scoring challenges (15-20 groups on average). Detailed 

evaluations of these results and assessments of the progress achieved by the community have 

been reported in the associated publications, amply cited in this review. Here we provide a 

bird’s eye overview of the main trends.

Figure 2b plots the quality of predicted binding modes measured by the average DockQ 

score across human predictor groups as a function of the level of modeling difficulty of the 

corresponding targets. These binding modes were those evaluated in the successive dated 

periods since 2009, setting the chronological order of the results. The plots clearly illustrate 

the substantial variability in target difficulty levels during individual evaluation periods that 

persists over time, highlighting the challenge of evaluating differences in performance across 

time periods and challenges. Nonetheless, one observes that model quality improves with 

time for easy and medium difficulty targets but remains low for difficult targets. Examples 

of targets in different modeling categories and typical characteristics of these targets detailed 

in Figure 2b, clearly indicate that the modeling challenge differs substantially depending 

on the system at hand. Some large multi-component assemblies solved to high resolution 

by cryo-EM (not shown) are particularly challenging to model when they combine several 

characteristics of difficult to model complexes.

An important contribution of CAPRI community has been the development of automatic 

servers, the performance of which has steadily improved and diversified to the point of 

often rivaling with those of human predictors(75). Several of the best performing servers 

such as ClusPro(62), GalaxyPPDock (73), MDockPP (47) integrate docking procedures with 

template-based modeling and offer a panoply of handy tools for various modelling tasks, 

therewith gaining popularity with the wider scientific community.

Another area where CAPRI helped breaking new grounds is the prediction of protein-

peptide complexes. This is an important category of complexes for which interest is rapidly 
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growing given the important role recognition of short peptide motifs by protein domains 

plays in many regulatory processes (128). Recent methods, also implemented in several 

automatic servers, rose to the task of mastering the problem of modeling this challenging 

category of transient complexes, often to medium and high accuracy, despite their small 

binding interfaces, and the significant degree of flexibility of the bound peptide ligands(78).

For the other modeling problems CAPRI occasionally offers, such as the prediction of 

protein-nucleic acid complexes (81) of interface sidechain conformations and positions 

interfacial water molecules (77), or for protein oligosaccharide complexes, encouraging 

results were obtained (78). But the number of targets for these complexes was too low to 

draw any conclusions.

Considering the state of protein science before these blind prediction experiments, it 

is difficult to imagine that the current level of prediction technology could have been 

reached without CASP leading the way. With CAPRI following suit a few years later, both 

experiments created higher level of transparency not only in protein structure prediction but 

in computational biology in general, requiring the source code for most publications. They 

also built competitive and yet collaborative communities, promoting the increased exchange 

of ideas, and thus speeding up method development.

The breakthrough of DL-based prediction method: The current state of play

The last few years have witnessed a breakthrough in modelling the 3D structure of proteins. 

This breakthrough can be attributed to two primary factors. One is the extraordinary growth 

in protein sequence databases (126) coupled with a less prolific, yet notable, growth 

in the database of experimentally determined structures (131), both freely available in 

public depositories. The second is the progressive introduction of cutting-edge methods 

in deep learning to a maturing protein modelling field (5, 122, 124). A key role was 

also played by the community-wide initiatives that enabled the critical evaluation of the 

recent breakthrough methods for predicting the structure of single protein chains, recorded 

in the CASP13 and CASP14 prediction seasons(16). Without these three components the 

extraordinary achievement of the company Google DeepMind (118) would not have been 

possible. In the following we examine the impact of this remarkable achievement on 

charting the structural landscape of native proteins and their complexes using computations 

and experiments.

Predicting the structure of single chains

For the reasons invoked above, deep learning, a subfield of machine learning that utilises 

multi-layered artificial neural networks to extract patterns within large datasets, without the 

need to explicitly define their features (72, 114), was uniquely primed to make substantial 

contributions to protein structure prediction field. Taking advantage of this, the DeepMind 

scientists designed and employed their prediction engine AlphaFold2 (53) in the CASP 

2020 season (54). This engine was trained on approximately 170,000 experimentally 

determined protein structures in the PDB (8) and massive data on multiply aligned protein 

sequences of related proteins, many of unknown structure (126), to produce models that 

rival in accuracy with experimentally determined protein structures, surpassing the results 
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of their first program, AlphFold1 (116) shown to performed well 2 years earlier (115). The 

power of AlphaFold2 lies with its novel multi-component architecture that jointly embeds 

features from multiple sequence alignments (MSAs) and a residue pair representation, 

encoding spatial relationships between residues, and integrates graph-based components 

with attention learning (58). The pipeline also involves iterative refinements of predicted 

residue interactions based upon their predicted interactions to other residues, enabling it 

to encapsulate structural features to a higher level of accuracy in a fully differentiable 

end-to-end deep learning method(53).

To enable the community benefit from their monumental advance, DeepMind made their 

source code for the trained model of AlphaFold2 freely available to anyone wishing 

to make new predictions [https://github. com/deepmind/alphafold]. Following suit, the 

group of David Baker released their deep learning protocols for protein prediction and 

design, RoseTTAfold an algorithm exploring similar ideas to those of AlphaFold (6). In 

a further move to accelerate scientific research, DeepMind partnered with the European 

Bioinformatics Institute (EBI), to create AlphaFold-DB(130) providing access to predicted 

structures of single protein chains for the human proteome and other key organisms, as well 

as to the majority of the manually curated Uniport entries (SwissProt), with plans to further 

extend the coverage to over 100 million catalogued proteins, on 2022.

This new treasure trove of structural data and the associated software tools has had 

a watershed effect on the field of computational and experimental structural biology, 

generating a flurry of studies (16). Examples include the optimization of multiple sequence 

alignments fed into AlphaFold2 (12), and a community-wide study evaluating various 

aspects of the structural information that AlphaFold produced and the applications it enables 

(1). Evaluating these applications, has been greatly aided by two confidence measures 

Alphafold2 assigns to its predicted structures: a per-residue measure of confidence assigned 

to the local backbone structure, and another measuring the confidence associated with 

residue-pairwise distances (53). The first is usually high for structures domains, but low for 

linker regions, regions that may be flexible, intrinsically disordered or structured only in the 

context of a larger complex. The second is useful for assessing more global features, such as 

domain packing.

Results obtained from these first analyses suggest that AlphaFold2 can be used to 

substantially extend the structural information for model proteomes beyond what is enabled 

by homology modeling, provided its confidence metrics are critically interpreted. For 

example, while the atomic coordinates of regions modelled with low confidence may not 

be trustworthy, they can nevertheless be used to predict disordered regions more accurately 

than state-of-the-art methods (1) . Similar analyses, currently underway to characterize the 

structures of AlphaFold-DB whose number is orders of magnitude larger, should shed 

further light on the information that may be safely extracted from these predicted structures. 

Clearly missing however, is information on the dynamic properties of proteins, many of 

which adopt multiple conformational states that are essential for their function (i.e binding 

other proteins, nucleic acids, small molecule ligands, or switching between functionally 

active and inactive states) (93, 138). This is currently a serious limitation of deep learning 
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approaches such as AlphaFold2 as recently discussed (33). Tackling this limitation is an 

important goal, which is receiving increased attention, as further noted below.

Notwithstanding these limitations, ready access to the predicted protein structures in 

AlpfaFold-DB and to the freely available code and resources such as ColabFold(88) for 

predicting new structures with AlphaFold2 or RoseTTAFold efficiently with more modest 

computational resources, is having a resounding impact on experimental determination of 

protein structures. Rather than putting experimental structural biology out of business it 

is offering new opportunities like never before. Combining these opportunities with the 

recent spectacular advances in cryo-EM techniques, is propelling the field to new levels. 

In several instances, hard to solve X-ray or cryo-EM structures have been elucidated 

by using AlphaFold models in molecular replacement protocols, (64, 87). AlphaFold and 

RoseTTAfold models have been used successfully to fit residual electron density of cryo-EM 

maps, most notably in a recent assembly of the human nuclear pore complex (91). This is 

clearly an area that should soon see major advances from closer integration of deep learning-

based and other structure modeling approaches with emerging DL-based and experimental 

cryo-EM techniques (125, 144).

Prediction of protein complexes and assemblies

An obvious next frontier for DL-based protein structure prediction methods is the accurate 

prediction of complexes and larger protein assemblies, as witnessed by a flurry of recent 

studies reporting forays towards this goal. Several benchmarking studies suggest that 

extensions of DL-based methods to the prediction of protein complexes will provide a major 

advance over traditional docking methods. In these studies AlphaFold2, was ‘tricked’ into 

successfully modeling the structure of a set of protein complexes of known stoichiometry, 

albeit not consistently to high accuracy, by feeding it the concatenated sequences of 

the interacting component proteins. (13). Better performance, was reported for AlphaFold-

Multimer the inference engine of AlphaFold, directly trained on protein complexes from 

the PDB (31). For the same benchmark dataset of heteromeric interfaces AlphaFold-

Multimer produced acceptable prediction (DockQ ≥ 0.23 ) for ~67% of the interfaces, 

but high accuracy predictions(DockQ ≥0.80) for only 23%, an improvement of 25% and 

11% respectively, over the modified alphafold2 version. More modest improvement was 

achieved for homomeric interfaces generally associated with higher binding affinity, for 

which larger fractions could be predicted to acceptable (69%) and high accuracy (34%), 

respectively. At the same time ways have been proposed to integrate AlphaFold2 predictions 

of complexes with classical docking calculations and using the predicted complexes as 

templates for AlphaFold2 to significantly improve the performance of either method used 

independently(37).

Furthermore, several studies have suggested that AlphaFold and RoseTTafold, can be 

used to extend the structural coverage of model interactomes beyond what is enabled by 

homology modeling (of complexes, or of single chains followed by docking (92)). For 

example, for the human interactome AlphaFold predicted ~1,400 high confidence models 

of complexes displaying no homology to a known structure (15). Both prediction methods 

were used of identify interacting proteins and model their complexes in Baker’s yeast (49) 
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and the human mitochondrion (105), deriving in each case new structural information for 

functionally important complexes.

While these early results are very promising, they also indicate that significant room remains 

for improvement. Further optimizing these methods to tackle complexes spanning a wide 

range of binding partners, binding affinities, and functional states, has the potential to lead 

to significant breakthroughs for these prediction problems. However, fulfilling this potential 

will not be effortless. The structural coverage of the protein complexes that form in living 

cells – the body of data AI methods need to ‘learn’ from – is orders of magnitude smaller 

than the current structural coverage of single protein chains. Furthermore, the formation 

of many of the more transient complexes featuring lower binding affinities, such as those 

associated with signal transaction processes, is highly context dependent. Currently however, 

the ability of experimental structural biology to adequately sample the physiologically 

relevant contexts of complexes is limited. Third, modeling the dynamic properties of the 

component proteins, which govern the conformational changes associated with binding, will 

be an important bottleneck to overcome.

What next?

Although this new wave of applied deep learning methods in the protein structure prediction 

field have rocked the biological sciences, with numerous applications in view (55), much 

work will be needed to mitigate important current limitations. Top of the list is the problem 

of accounting for dynamic flexibility, within single chains, the association process and 

within the complex (106). This is important for understanding and modelling the functional 

states of proteins, including those of intrinsically disordered proteins of which there is a 

natural abundance (68). Next, and related to the first, DL-based methods are still incapable 

to interpret the effects of single point mutations; backbone movements are simply not 

replicated when one amino acid is substituted for another, as benchmarked in several recent 

studies (14, 101).

Here too deep learning methodologies are offering a way forward by first ‘understanding’ 

the conformational states a protein samples (f.e. in known structures) and the likely 

transition paths between them (110). This ‘understanding’ is then used to further extend 

the sampled conformational space, by generating experimentally unobserved but native-like 

protein conformations, as recently described with an Autoencoder method (25). These 

descriptions of multiple conformations of a given protein will have to be integrated 

with the data on multiple sequence alignments to model structures corresponding to 

specific functional states. Crucial for training and testing this type of methods will be 

the development of benchmark datasets of physiologically pertinent structures of single 

chain proteins and complexes that incorporate information on the sampled conformational 

landscape.

Addressing these challenges will impact all areas of protein structure predictions including 

that of protein assemblies. Here progress will also depend on the ability of deep learning 

algorithms to restrain the sampling of the vast number of potential binding modes closer 

to the basin of native-like solutions, even in cases where co-evolution signals derived from 
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the multiple sequence alignments are weak (such as for complexes with antibodies, or host 

pathogen interactions): a problem that AlphaFold seems to struggles with (37). Improving 

the ability to recognize native-like binding modes – the model ranking problem will likewise 

be important. Promising results towards the latter goal have recently been reported by 

standalone deep learning models implementing convolutional neural networks (CNNs) and 

other methods (17, 111, 135). Ultimately ranking models of protein complexes needs to 

display some correlation with binding affinities, a goal that scoring methods have pursued 

with modest success(34, 129).

As end-to-end machine learning methodologies are improved and mastered by the wider 

structural biology community, it will become routine to model a significant fraction of 

proteins and the complexes they form just from their amino acid sequences, ultimately 

negating the need for intermediate steps, such as searching for and utilising closest structural 

templates. One likewise expects these new methodologies to be extended to modelling 

nucleic acids, more particularly RNA but also DNA, and the complexes they form with 

proteins within the cell. Here too a major challenge will be to collate enough experimental 

data to train and validate machine learning methods. The way forward would be a closer 

integration of computational and experimental approaches. This would involve combining 

emerging methods for extracting information on structural heterogeneity in macromolecular 

complexes from the cryo-EM data obtained from endogenous material with AI-based 

structure prediction algorithms and molecular simulation techniques. All these are important 

developing areas where blind prediction initiatives will continue to play a major role.
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Figure 1: Backbone accuracy of the best models in each of the 14 CASP rounds.
Individual target points are shown for CASP14. The two targets with the lowest agreement 

with experiment are colored blue are NMR structures and red point represent the model 

of a a subunit of a cryo-EM-derived large heteromeric structure. The agreement metric, 

GDT_TS, is a multi-scale indicator of the closeness of the Cα atoms in a model to those 

in the corresponding experimental structure, and is reported as a percentage, ranging from 

0 to 100. Because of experimental errors and artifacts, models with GDT-TS >90 are 

considered compatible with experiment in backbone accuracy (65). Target difficulty is based 

on sequence and structure similarity to other proteins with known experimental structures. 

(Reproduced from reference (66) with permission).
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Figure 2: Accuracy levels of the best models of protein complexes in CAPRI and CASP-CAPRI 
prediction rounds, and the relation of the DockQ score to the CAPRI model quality categories.
(a) Scatter plots of DockQ values for models submitted by predictors for individual targets 

evaluated in ref (78) (vertical axis) as a function of f1 (f1= 2fnat (1-fnon_nat)/ (fnat + (1-

fnon_nat)), where fnat is the fraction of native contacts recalled in the model, and (1-fnon_nat) 

is the fraction of predicted contacts that are native (79). Individual points are color-coded 

according to the CAPRI model quality category: incorrect (yellow), acceptable (blue), 

medium (green), high(red).

(b) DockQ values for the best models as a function of target difficulty. Individual colour 

coded plots refer to best models evaluated in individual CAPRI assessment periods and 

CASP-CAPRI prediction rounds between 2009-2020, as indicated in the legend. Examples 
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of targets of different difficulty levels are shown together with their PDB-RCSB codes. 

Arrows indicate the rounds in which they were offered; numbers shown in parentheses 

following the PDB codes refer to the models of individual interfaces of the targets in 

question. Target difficulty is based on sequence and structure similarity to other proteins 

with known experimental structures.
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