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Abstract 
Motivation: DNA barcoding has become a powerful tool for assessing the fitness of strains in a variety of studies, including random transposon 
mutagenesis screens, attenuation of site-directed mutants, and population dynamics of isogenic strain pools. However, the statistical analysis, 
visualization, and contextualization of the data resulting from such experiments can be complex and require bioinformatic skills.
Results: Here, we developed mBARq, a user-friendly tool designed to simplify these steps for diverse experimental setups. The tool is seam
lessly integrated with an intuitive web app for interactive data exploration via the STRING and KEGG databases to accelerate scientific discovery.
Availability and implementation: The tool is implemented in Python. The source code is freely available (https://github.com/MicrobiologyETHZ/ 
mbarq) and the web app can be accessed at: https://microbiomics.io/tools/mbarq-app.

1 Introduction
Advances in DNA sequencing and computational technolo
gies have facilitated the assembly of millions of microbial 
genomes, leading to the continuous discovery of new genes 
(Koonin et al. 2021). However, the characterization of these 
genes has not kept pace with the rate of their discovery, since 
gathering functional insights, for example through individual 
gene knockouts, remains slow and labor intensive. As a re
sult, many genes remain uncharacterized, even in extensively 
studied organisms (Tantoso et al. 2023). To fully explore the 
microbially encoded sequence space, it is crucial to increase 
the throughput of testing the effect of individual genes on cell 
growth and reproduction (i.e. fitness). However, traditional 
methods, such as comparing the fitness between individual 
mutant and wild-type strains under specific conditions, 
do not scale well when dealing with a large number of genes 
and conditions.

A more effective alternative to such traditional approaches 
is to analyze multiple mutants in the same experiment. One 
powerful method to bridge the sequence-to-function gap is 
transposon-based mutagenesis coupled to next-generation se
quencing, or transposon-insertion sequencing (TIS). TIS iden
tifies genomic loci that contribute to organismal fitness under 
different experimental conditions (Cain et al. 2020). Recent 

advances in the conventional TIS protocol, such as including 
a random DNA barcode sequence into each transposon for 
screening by PCR (Wetmore et al. 2015, Price et al. 2018, 
Cain et al. 2020, Nguyen et al. 2020), have significantly in
creased experimental throughput. This approach (i.e. random 
barcode transposon mutagenesis coupled with sequencing, 
RB-TnSeq) is increasingly employed to study fitness effects of 
genes, as well as to improve the annotation of uncharacter
ized protein families across diverse bacterial species (Price 
et al. 2018). This methodology has also been applied to eluci
date genotype-phenotype relationships in eukaryotic model 
systems (Han et al. 2010, Kawakami et al. 2017, Pettitt et al. 
2017). However, while the experimental methodology has 
been well established, the processing and analysis of the 
resulting data remain a challenge.

RB-TnSeq data analysis involves several steps, including 
identifying the chromosomal positions of barcoded insertions 
(mapping), quantifying the barcoded strains across experi
mental conditions (counting), and ultimately, identifying the 
fitness factors or genomic loci whose functions are essential 
for or affect the reproduction of organisms in a given experi
mental setting (statistical analysis).

However, each of these steps has to be adapted to a 
specific study, as there is great variation in experimental 
protocols, in library creation, and in experimental design 
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(Wetmore et al. 2015, Pettitt et al. 2017, Price et al. 2018, 
Nguyen et al. 2020). While a rich ecosystem of analysis and 
visualization tools exists for TIS (Cain et al. 2020), the only 
code available for the analysis of RB-TnSeq data is a collec
tion of scripts that accompanied the original publication 
(Wetmore et al. 2015), and it is unclear whether the code can 
be adapted to RB-TnSeq libraries generated by other experi
mental protocols. Furthermore, a consensus on statistical 
procedures for the analysis of RB-TnSeq data is still lacking, 
and user-friendly, interactive tools are needed to contextual
ize the results and reduce the dependency on bioinfor
matic expertise.

In addition to studying the fitness effect or the essentiality 
of genes, barcoded sequencing data have also been used to 
study the dynamics of strain populations. In this approach, 
known barcodes are introduced at neutral genomic loci to 
trace isogenic strains over time and/or space. These barcoded 
strains are used to understand microbial population evolu
tionary trajectories, colonization bottlenecks, rates of immi
gration into a new niche, death and replication rates, and 
priority effects (Hausmann and Hardt 2021). However, cur
rent tools generally lack the flexibility to analyze barcoded se
quencing data from these types of experiments, or have 
optimized only specific parts of the analysis, such as barcode 
clustering accuracy (Zhao et al. 2018), and lack the required 
mapping and analysis capabilities required for RB-TnSeq 
experiments.

Here, we introduce mBARq (pronounced: “embark”), a 
versatile and user-friendly framework for the analysis and in
terpretation of RB-TnSeq and other barcoded sequencing 
data. A command line tool allows mapping, counting, and 
statistical analysis of RB-TnSeq data. Notably, we adapted a 
novel statistical framework (Li et al. 2014, Wang et al. 2019) 
and benchmarked it using experimentally validated data 
(Nguyen et al. 2020) to show that it results in higher sensitiv
ity, while retaining similar precision to previously published 
methods. In addition, we demonstrate that mBARq can also 
be applied to the analysis of barcoded isogenic strains to in
vestigate their population dynamics. Finally, a companion 
web app enables customized quality control, visualization of 
the results, and exploratory data analysis via integration with 
the STRING (Szklarczyk et al. 2022) and KEGG (Kanehisa 
et al. 2016) databases.

2 Methods
2.1 Quality control of sequencing data
All sequencing data from the experiment were preprocessed 
using BBTools (https://sourceforge.net/projects/bbmap/). 
Specifically, adapters and potential contaminants (PhiX) 
were removed, and reads were quality-trimmed and filtered 
using BBDuk. The specific commands used are documented 
on our Methods in Microbiomics webpage (https://methods- 
in-microbiomics.readthedocs.io) and in the mBARq docu
mentation (https://mbarq.readthedocs.io).

2.2 mBARq mapping
Mapping of the barcoded libraries was performed using 
mbarq map command. The specific commands used for each 
dataset can be found in mBARq documentation under 
Workflows (https://mbarq.readthedocs.io). During the map
ping step, for each read, mBARq extracts the barcode and 
host sequence guided by user-provided specifications of 

barcode length and the end sequence of the transposon/con
struct used. If the identified host sequence is 20 nucleotides 
or longer, it is compared to the genome sequence using 
BLAST (Altschul et al. 1990). The BLAST results are filtered 
to keep only the matches with the highest bitscore. 
Analogous to the algorithm designed by Wetmore et al. 
(2015), barcodes mapped to multiple locations (<75% of 
reads map to primary location) are removed and the barcodes 
with an edit distance of <2 and mapped to the same position 
are merged, with the more abundant barcoded assumed to be 
correct. Given an annotation file, mBARq also reports the 
closest feature of interest with attributes specified by the user, 
as well as how close the insertion is to the beginning/end of 
the feature (insertion percentile).

2.3 mBARq counting
Counting of the barcodes in each of the samples was per
formed using mbarq count command. The specific commands 
used for each dataset can be found in mBARq documentation 
under Workflows (https://mbarq.readthedocs.io). During this 
step, mBARq extracts barcode from each read guided by 
user-provided specifications of barcode length and the end se
quence of the transposon/construct used. The frequency of 
each barcode is then summarized into a barcode count table. 
If specified by the user, the counts for barcodes below a spe
cific edit distance can be merged, keeping the more abundant 
one, or the one that appears in the mapping file. The count 
tables from multiple samples can be merged using 
mbarq merge.

2.4 mBARq analysis
Analysis of the data was performed using mbarq analyze 
command. The specific commands used for each dataset can 
be found in mBARq documentation under Workflows 
(https://mbarq.readthedocs.io). The analysis step runs 
MAGeCK algorithm (Li et al. 2014, Wang et al. 2019) to 
identify positively and negatively selected barcodes and genes 
and consists of 4 steps (as described in the original publica
tion): read count normalization, mean-variance modeling, 
barcode ranking, and gene ranking. For the experiments with 
control barcodes, control normalization method was chosen, 
otherwise the default median normalization was performed. 
Gene ranking was performed using MAGeCK’s robust rank 
aggregation (RRA) method. When control barcoded strains 
were used in the experiments (Nguyen et al. 2020), mBARq 
also performed quality control on the samples, as described 
in Nguyen et al. Briefly, a linear regression is made with the 
dilution series of wild-type control strains to verify that 
r2>0.8. If this is not the case, the sample is removed from 
the analysis. The minimum number of control barcodes re
quired is 4.

2.5 The mBARq web-app
The mBARq web-app (https://microbiomics.io/tools/mbarq- 
app) includes all of the data from Nguyen et al. study 
(library map, count table, and results table). The user can 
browse and generate the following visualizations without 
data upload:

� Map genome coverage histogram 
� PCA plot 
� Box plot of barcode abundance for gene of interest 
� Heatmaps of LFC for pathway or genes of interest 
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� LFC for specific KEGG pathway 
� Link to STRING PPI network for the hits. 

Each page contains a “How it works section” that explains 
in detail the data inputs and visualizations available on 
the page.

3 Results
3.1 Implementation of a versatile tool and web app 
for the analysis of barcoded sequencing data
We aimed to develop a versatile tool for the profiling and 
analysis of barcoded transposon insertion libraries. Here, we 
describe the workflow applicable to RB-TnSeq experiments, 
with modifications for other experimental setups discussed 
later. At each step, seamless integration with a user-friendly 
web app allows non-experts to intuitively explore the results 
of individual steps.

3.1.1 Mapping
The first steps of a RB-TnSeq experiment consist of creating a 
transposon mutant library (for details see Wetmore et al. 2015, 
Cain et al. 2020, Nguyen et al. 2020), identifying the insertion 
site of each transposon, and matching the unique barcode that 
is linked to each transposon to its insertion site (Fig. 1A, panels 
i and ii). Experimentally, once the library is created, the bar
coded transposons and adjacent host DNA are PCR-amplified, 
by combining a transposon-specific and random primer, and 
sequenced (Fig. 1A, panel i). Following the sequencing, 
mBARq uses quality-controlled sequencing data together with 
a genome sequence (FASTA format) and annotation file (GFF 
format) for the organism of interest to generate a library map, 
i.e. a table, reporting the specific genomic position of each in
sertion, as well as any overlapping features of interest (gene, 
CDS, etc.) (Fig. 1A, panel ii). The genome sequence and anno
tation files can be either downloaded from public databases, 
for already sequenced genomes, or generated by the researcher, 
when investigating novel strains. The researcher can upload the 
library map to the mBARq web app (https://microbiomics.io/ 
tools/mbarq-app) to interactively assess the insertion coverage 
of transposons across the genome and generate summary statis
tics for the library (Fig. 1A, panel iii).

3.1.2 Counting
In a typical RB-TnSeq experiment, the barcoded mutant li
brary is subjected to a challenge (e.g. drug treatment, culture 
on a specific carbon source, or an in vivo pathogenesis 
model) to identify condition-specific fitness factors (Fig. 1B, 
panel i). After the challenge, a sequencing library is generated 
for each sample, i.e. the input pools (libraries before the chal
lenge) and output pools (libraries after the challenge), by 
PCR using primers targeting the random barcodes. To quan
tify the abundance of each mutant in the input and the output 
pools, mBARq uses the raw sequencing data (FASTQ format) 
generated from this step, alongside the library map (Fig. 1B, 
panel ii). This results in a barcode count table listing the 
abundance of each barcode for the input sample and for each 
of the output samples. This count table can be uploaded to 
the mBARq web app to create an annotated principal compo
nent analysis (PCA) plot and to explore the barcode abun
dances for any gene of interest (Fig. 1B, panel iii).

By default, mBARq is set up to process Tn5-generated li
braries with 17 bp barcodes. However, the entire workflow 

can be customized to the specific transposon used for library 
generation to ensure broad applicability of mBARq to diverse 
library construction methods. More detailed documentation 
and explanation of the steps described above are available 
online (https://mbarq.readthedocs.io).

3.1.3 Statistical analysis
Statistical analysis of the count table allows the identification 
of condition-specific fitness factors, i.e. genes whose loss neg
atively affects organismal growth. The analysis step imple
mented in mBARq allows for comparisons between two 
experimental conditions (control/treatment) using a robust 
statistical framework (MAGeCK (Li et al. 2014, Wang et al. 
2019)). While it was originally developed for pooled CRISPR 
knockout screens, we adapted this method for mBARq due to 
its demonstrated algorithmic advantages (Bodapati et al. 
2020) and the methodological similarities between RB-TnSeq 
and CRISPR knockout screen data. Specifically, the 
MAGeCK framework addresses difficulties in estimating read 
counts with a small number of replicates and varying effects 
of different barcode insertion sites on gene fitness (Li et al. 
2014). It also aggregates information from multiple inser
tions into the same gene. Extending MAGeCK’s functional
ity, mBARq allows for the incorporation of wild-type 
isogenic controls for data quality control and normalization, 
which is recommended for in vivo experiments to account for 
potential population bottlenecks.

The mBARq analysis step requires a previously generated 
barcode count table and metadata specifying the condition 
for each of the samples (e.g. treatment or control; Fig. 1C, 
panel i). Running the analysis step produces the results table 
that includes log2 fold changes (LFC) and adjusted P-values 
for each gene in the library (Fig. 1C, panel ii). This results ta
ble can then be transferred to the mBARq web app (Fig. 1C, 
panel iii) to prioritize hits. User-defined genes of interest, 
based on LFC and adjusted P-value thresholds, can be subse
quently analyzed using a STRING database (Szklarczyk et al. 
2022). Uploading the results to the STRING database allows 
for functional enrichment analyses and may reveal protein– 
protein interactions (PPIs) among the identified fitness factors 
or with other proteins. Additionally, for organisms present in 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (Kanehisa et al. 2016), it is possible to superimpose 
the results onto KEGG metabolic maps to obtain an inte
grated view of the results and facilitate data interpretation.

In the following sections, we demonstrate the flexibility, 
sensitivity, precision, and visualization capabilities of the 
mBARq framework using three different case studies.

3.2 Benchmarking of mBARq using a previous 
Salmonella pathogenesis study extends the list of 
known fitness factors
To evaluate the performance of mBARq on a typical RB- 
TnSeq study, we re-analyzed a recent Salmonella 
Typhimurium mutagenesis screen (Nguyen et al. 2020). In 
this screen, a small Tn5-based library of Salmonella mutants 
(�2000 strains, coverage of 392 insertions per Mb) was used 
to infect mice harboring a low-complexity microbiome. 
The feces were collected on days 1, 2, 3, and 4 post-infection 
(p.i.), and RB-TnSeq was used to identify Salmonella fitness 
factors impacting pathogenesis in this mouse model.

Taking the raw sequencing data from the experiment, we 
have re-created all the steps of the analysis using mBARq. 
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First, a library map was generated. We identified 1794 
unique insertions, resulting in 858 genes with a transposon 
insertion within the coding region, and 773 genes with a dis
ruption within the 5–95% percentile of the coding region. As 
expected, the insertions showed a largely random distribution 
along the chromosome (Fig. 2A). Next, we used mBARq to 
count the barcode abundances in the inoculum, as well as in 
the fecal samples at days 1 through 4 p.i. The count table was 
then uploaded to the mBARq web app for exploratory data 
analysis. We first generated a PCA plot (Fig. 2B), which 
showed a clear separation of samples based on days p.i., sug
gesting continuous selection against unfit mutants through
out the time course of infection. In addition, we observed 
high variability in samples collected on day 4 p.i., which was 
also reported in the original study. This is attributable to pro
nounced bottlenecks, which the host’s immune response 

inflicts upon the gut-luminal pathogen population 
(Hausmann and Hardt 2021).

To assess how well our analysis aligned with the previous 
one, we compared the fold changes computed by mBARq to 
the fitness estimates reported in the original publication. 
Overall, the results were highly concordant between the 
methods with the correlation between the data ranging be
tween r¼ 0.8 and r¼ 0.92 (Fig. 2C, Supplementary Fig. 
S1A). We further used mBARq to identify genes functioning 
as fitness factors on different days p.i. To compare our results 
to the original study, we defined “hits” (i.e. genes with a fit
ness defect) as genes with adjusted P-value < 0.05 and LFC 
(or log2 CI) <−0.6 for days 1 and 2 p.i. and found that 
mBARq was able to identify most of the hits previously iden
tified in the study (26 out of 33) (Fig. 2D). Moreover, 
mBARq reported 21 additional genes with significant defects 

Figure 1. A universal and versatile framework for the analysis of barcoded transposon mutagenesis screens. (A) Mapping. The mapping step determines 
the genomic location of each of the barcoded insertions in the mutant library. On the experimental side, this involves (i) extracting DNA from the mutant 
library, amplifying, and sequencing the barcode, as well as a stretch of the host chromosome. The amplification in this step is accomplished using a PCR 
reaction with a construct-specific primer, and a random primer to allow host amplification. (ii) Using the sequencing data generated in (i), the mBARq tool 
generates a library map, which specifies the genomic position for each barcoded insertion, as well as genomic features associated with it. (iii) Users can 
upload the library map generated in (ii) to the mBARq web app to visualize insertion coverage across the genome, and generate library statistics (i.e. 
number of unique insertions, number of genes with an insertion, etc.). (B) Counting. The experimental setup for the transposon mutagenesis screen 
involves (i) subjecting mutant libraries to a specific challenge (i.e. drug treatment, specific culture conditions). This challenge is followed by DNA 
extraction, barcode amplification, and sequencing steps for each of the samples. The amplification in this case is accomplished using two construct- 
specific primers. (ii) Using the sequencing data from this step and the library map created in A, the mBARq tool quantifies the abundance of each of the 
barcodes across samples and generates a barcode count table. (iii) Users can upload the barcode count table generated in (ii) to the mBARq web app for 
interactive exploratory data analysis. (C) Statistical analysis. (i) mBARq allows the user to identify which mutants were sensitive to the challenge 
administered in (B). This is accomplished by quantifying the differences in abundances of barcodes associated with each gene before and after the 
challenge. Using the metadata about the experiment (i) and barcode counts generated in (B), the mBARq tool can perform statistical analysis of the 
barcode abundances to provide a fitness results table, listing log2 fold changes (LFC) and statistics for each gene that was disrupted in the library (ii). (iii) 
Users can upload the fitness results table generated in (ii) to the mBARq web app for functional analysis with STRING and KEGG databases. Figure 
created with BioRender.com.
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in fitness on days 1 and/or 2 p.i. Functional analysis with 
STRING, showed that “mBARq only” hits from days 2, 3, 
and 4 were functionally enriched in LPS biosynthesis genes, 
which are known fitness factors in this model of infection 
(Supplementary Table S1). No functional enrichment was 

found for day 1 “mBARq only” hits, but these included 
known fitness factors (rfbA, rfbX, aroA, rfaF, rbsR, etc.).

In order to further validate these additional hits, we used the 
web app to submit hits identified by mBARq for day 1 p.i. to 
STRING and inspected the resulting PPI network (Fig. 2E). 

Figure 2. Benchmarking of mBARq using a previous Salmonella pathogenesis study extends the list of known fitness factors. (A) Coverage histogram 
(bins size¼ 49 kbp) of Salmonella barcoded mutant library used by Nguyen et al. Generated with mBARq web app. (B) PCA based on mutant strain 
abundances obtained from mouse fecal samples collected on different days p.i. The original inoculum is shown as d0. Generated with mBARq web app. 
(C) Pearson correlation between log2 CIs reported in the original analysis and LFC values calculated by mBARq for each day after infection. (D) 
Proportions of fitness factors with growth defects that were reported by both analysis methods, mBARq, or original analysis only for each day post 
infection. (E) PPI network generated by STRING using genes with a fitness defect reported by mBARq on day 1 post-infection. Original STRING-db 
network generated with mBARq web app was customized using a node coloring widget. Green: Significant change in fitness detected by both methods, 
blue: significant change detected by mBARq only. (F) Benchmarking precision and recall of mBARq and previously published results using data from 28 
clean gene KO strains competed 1:1 with WT Salmonella in the mouse (Nguyen et al. 2020).
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The easy-to-use interface alleviated the need for dedicated sup
port by a bioinformatician for performing this analysis and 
showed that many of the new hits belonged to the same biologi
cal process as the previously reported ones. For example, in ad
dition to 10 genes belonging to the LPS biosynthesis pathway 
that were originally reported, mBARq identified 5 additional 
hits in the same pathway (Fig. 2E).

Surprisingly, a large proportion of hits on day 3 was identi
fied by original analysis only (Fig. 2D). However, functional 
analysis of these hits revealed no enrichment in protein inter
actors (PPI enrichment P-value .766) and showed no func
tional cohesion. Furthermore, the hits from day 3 were not 
reported in the original study, as the authors did not deem 
them reliable. In contrast to the “mBARq only” hits, no addi
tional functional enrichment was found in “Original analysis 
only” hits. mBARq also identified a variety of genes with 
growth advantage (Supplementary Fig. S1B and 
Supplementary Table S2). STRING analysis revealed that hits 
from each of the days p.i. were enriched in PPI (PPI enrich
ment P-values 7.28�10−5, 1.63�10−6, 5.59�10−5, and .002 
for day 1, 2, 3, and 4 respectively). In addition, day 3 hits 
showed enrichment in genes involved in pathogenesis, and 
day 4 hits contained known hits with growth advantage in 
this model (hilC and hilD). While experimental validation is 
necessary to confirm that these hits confer growth advantage, 
our data suggest that the hits identified by mBARq are bio
logically meaningful. No pathways or processes were identi
fied with functional enrichment on “Original analysis only” 
hits with growth advantage.

To further evaluate the precision of results produced by 
mBARq, we used experimental data from in vivo mutant 
competition experiments (Nguyen et al. 2020) for bench
marking. During the validation stage of the screen, Nguyen 
et al. (2020) generated site-directed knockout strains for 28 
genes. These mutant strains were then competed one-on-one 
against a wild-type strain in the same infection model, and 
fitness values for each gene were obtained on different days 
p.i. (total of 112 observations). We have used these experi
mental data to label genes as positive hits (defined as absolute 
LFC (or log2 CI) > 0.6 and P-value < .05), otherwise, they 
were considered negative. Using these data as the “ground 
truth,” we calculated precision, recall, and balanced accuracy 
(mean of recall values calculated separately for each class). 
The results show that mBARq has a comparable precision 
and accuracy (i.e. does not inflate false positives), and in
creased recall compared to the original method (Fig. 2F).

3.3 mBARq extends functional insights in a 
previous Shewanella amazonensis 
metabolism study
To demonstrate the flexibility of mBARq, we applied it to the 
analysis of a large library (>380 000; 88 372 insertions per 
Mb) of Shewanella amazonensis mutants (Wetmore et al. 
2015). This library was constructed using a different (mari
ner-based) methodology and was used to investigate genes 
important for growth in the presence of different carbon 
sources. To this end, the S. amazonensis library was cultured 
in media containing various compounds as the only carbon 
source and sequencing data was generated as described above 
(Fig. 1). Subsequently, custom scripts and a statistical analy
sis model (hereafter referred to as Feba) was used to identify 
fitness factors for each growth condition.

Re-mapping the S. amazonensis library using mBARq iden
tified a similar number of insertions as previously reported 
(380 770). Furthermore, the high coverage of transposon 
insertions across the chromosome was consistent with the 
published study (Fig. 3A). As above, we used mBARq to 
count barcode abundances and identify genes involved in car
bon metabolism. Using an mBARq web app-generated PCA 
plot, we observed a clear separation of the samples based on 
the carbon source and high consistency between the replicates 
(Supplementary Fig. S1C).

Moreover, the counts and LFC calculated by mBARq were 
highly correlated with those reported in the original study 
(Fig. 3B). To further evaluate the concordance between 
mBARq and Feba, we compared the overlap between the hits 
as identified by the different methods. We defined hits for 
mBARq as described above (absolute LFC > 0.6 and adjusted 
P-value <.05), whereas Feba relies on a custom designed t- 
value, and defined hits as genes with jtj >4. When looking at 
data across 25 different growth conditions, we found that the 
majority of the hits with growth defect (70%) were identified 
by both methods. Across conditions, a mean of 15% were 
only identified by Feba and a mean of 15% only by mBARq 
(Fig. 3C). We performed a functional enrichment analysis on 
“mBARq only” hits and found enriched terms for 3 out of 25 
different culture conditions, which included amino acid bio
synthesis as well as pyrimidine and sulfur metabolism 
(Supplementary Table S3). Functional analysis of “Original 
analysis only” hits identified enriched terms for 5 different 
culture conditions, and cytochrome complex assembly was 
enriched in 3 different culture conditions (acetate, pyruvate, 
and cytidine). The differences in the results are likely to stem 
from different statistical frameworks and cutoffs used by the 
two analysis methods. As with the previous study, mBARq 
also identified many hits with growth advantage 
(Supplementary Fig. S1D). Functional analysis of the 
“mBARq only” hits with growth advantage revealed a large 
number of genes involved in flagella biosynthesis, chemo
taxis, and locomotion across six different culture conditions 
(Supplementary Table S4). Additionally, for conditions that 
showed no pathway or GO term enrichment, the hits were 
still enriched in PPIs, and MCL clustering via STRING web- 
interface revealed meaningful biological PPI clusters (cluster 
size between 5 and 20 genes) with suggested function in dif
ferent biological processes, including chemotaxis and LPS 
biosynthesis. Overall, these analyses show that mBARq iden
tifies biologically meaningful groups of genes as potential 
hits, and thus candidates for experimental validation. 
Functional analysis of “Original analysis only” hits showed 
one GO term enriched for 1 of the culture conditions (5-oxo
prolinase (ATP-hydrolyzing) activity, D-Cellobiose) based on 
2 input genes (Sama_0022, Sama_0023).

To verify our results, we looked at the functional annota
tion of Shewanella amazonensis genes. Rodionov et al. 
(2010) used comparative genomics to predict and experimen
tally validate genes responsible for carbon metabolism in dif
ferent Shewanella species. This study delineated S. 
amazonensis genes that were important for N-acetyl glucos
amine (NAG) and mannoside utilization. We hypothesized 
that mutations in these genes should result in a measurable 
fitness defect when cultured on NAG and D-Mannose, re
spectively. Using the mBARq web app, we generated LFC 
heatmaps for the genes of interest. We observed highly nega
tive LFC for Sama_0944, Sama_0945, Sama_0946, and 
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Sama_0948, when the library was cultured on NAG, but 
not other carbon sources. Furthermore, we observed a similar 
defect in Sama_0561, Sama_0562, Sama_0562, and 
Sama_0563, when S. amazonensis was cultured on either 
D-mannitol or D-mannose, confirming their role in mannoside 
utilization, and validating our analysis (Fig. 3D).

We also explored the PPI of the genes with a fitness defect 
in D-glucose cultures, as mBARq reported a larger number of 
hits compared to Feba for this growth condition. We found 
that, while only hisD and hisC were identified in the original 
analysis, mBARq further identified hisI, hisG, hisA, hisF, 
hisB as having a fitness defect. Similarly, mBARq reported 
additional hits in the tryptophan biosynthesis pathway, 

which were missed by Feba (Fig. 3E). Finally, integration of 
mBARq analysis with STRING revealed the functional rele
vance of the gene Sama_2129, which lacks proper annotation 
in the S. amazonensis genome. A closer examination of 
Sama_2129 homologues revealed that it is likely encoding 
trpE, a key component of the tryptophan biosynthetic path
way. This finding highlights the power of our approach to 
improve the functional annotation of genes and thus help in 
filling pathway gaps in the generation of genome-scale meta
bolic models. Furthermore, we hypothesized that the fitness 
defects of histidine metabolism mutants observed in D- 
Glucose culture should be alleviated during growth on 
Casamino acids. To compare histidine metabolism between 

Figure 3. mBARq extends functional insights in a previous Shewanella amazonensis metabolism study. (A) Coverage histogram of S. amazonensis 
barcoded mutant library used by Wetmore et al. Generated with mBARq web app. (B) Comparison of LFCs reported in Wetmore et al., and LFCs 
calculated by mBARq for S. amazonensis cultured on Tween 20 as a sole carbon source. For mBARq, genes were considered to have a significant 
change in fitness if the absolute LFC was greater than 0.6 and the adjusted P-value was less than .05. Inset shows the Pearson correlation coefficient 
between counts and LFCs reported in the original analysis or calculated by mBARq for each culture condition (n¼ 25). (C) Proportions of fitness factors 
with growth defects that were reported by both analysis methods, mBARq, or original analysis only for each culture condition. (D) Heatmap of LFCs for 
genes predicted to play a role in mannoside utilization (top) or NAG utilization (bottom). Generated using mBARq web app. (E) PPI network generated by 
STRING using genes with a fitness defect reported by mBARq in culture on D-glucose. The PPI network was clustered using the MCL algorithm with 
default parameters. Only the largest cluster is shown. Original STRING-db network generated with mBARq web app was customized using a node 
coloring widget. Green: Significant change in fitness detected by both methods, blue: significant change detected by mBARq only.
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these two conditions, we used the mBARq web app to inte
grate fitness data with the KEGG map of histidine metabo
lism and were able to confirm the differential requirement for 
histidine biosynthesis between these two culture conditions 
(Supplementary Fig. S2).

3.4 mBARq recapitulates the evolutionary 
trajectories of barcoded isogenic Escherichia coli 
strains over 420 generations
Having demonstrated the precision and specificity of mBARq 
on RB-TnSeq experiments, we sought to demonstrate its util
ity beyond mutagenesis screens. Neutral genetic tags have 
become a powerful tool to decipher the dynamics of host- 
microbe interactions, as well as evolutionary trajectories of 
bacterial populations. While these studies were initially lim
ited to a small number of barcoded tags, whose abundances 
could be quantified using qPCR, recent advances have simpli
fied the generation of large barcode-tagged populations 
(Ba et al. 2019, Jasinska et al. 2020). In one such study, the 
authors generated >400 000 distinct E. coli strains, each car
rying a unique barcode inserted in a fitness-neutral location 
on the chromosome, using a method based on Tn7 transpo
son (Jasinska et al. 2020). This barcoded E. coli population 
was repeatedly passaged in the presence of different antibiotic 
concentrations to better understand the evolutionary dynam
ics under antibiotic stress.

Here, we used the raw sequencing data from the original 
study to quantify the abundance of each barcoded strain in 
each of the bacterial passages. We then used the barcode 
count data to plot the abundance of individual strains across 

420 bacterial generations (Fig. 4A). Our analysis results in 
evolutionary trajectories that are almost identical to those 
reported by the authors (Jasinska et al. 2020). In addition, us
ing data provided by the authors for the 20 most abundant 
lineages, we demonstrate the mean lineage frequencies, as 
well as the final frequencies (at generation 420), calculated 
by mBARq are virtually the same as those reported in the 
original study (Fig. 4B and C). Overall, this demonstrates 
mBARq’s broad applicability beyond barcoded mutagenesis 
experiments.

4 Discussion
Here we present mBARq, a versatile platform for the process
ing and analysis of barcoded sequencing data. We show that 
mBARq can readily accommodate different experimental set
ups and generate functional insights from RB-TnSeq and 
other barcode-based experiments, making these technologies 
accessible to a broad range of experimental scientists. With 
this in mind, we have developed documentation and walk- 
throughs along with test data that would allow non-expert 
users to recreate our analysis and to adapt mBARq for their 
own use (https://mbarq.readthedocs.io).

By introducing a novel statistical methodology (Li et al. 
2014) to the analysis of barcoded sequencing data, mBARq 
not only reproduces previous results, but also identifies a 
larger number of significant hits in RB-TnSeq experiments, 
which were independent from barcode sequence properties 
between the different methods (Supplementary Table S5). 
This increased sensitivity allows for the investigation of 

Figure 4. mBARq recapitulates the evolutionary trajectories of barcoded isogenic E. coli strains over 420 generations. (A) Each panel shows the 
frequency trajectories for barcoded E. coli populations cultured without an antibiotic over 420 generations. Each colored band corresponds to a unique 
lineage, with its vertical width indicating its frequency at a particular time point. Only the 20 most abundant lineages are shown. (B) Correlation between 
average frequencies for the 20 most abundant lineages from each of the replicates as calculated from mBARq generated counts and the original analysis. 
(C) Final frequencies (i.e. at generation 420) of the 20 most abundant barcodes as calculated from mBARq counts and in the original analysis.
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previously undetected fitness factors, with no significant loss 
in precision (i.e. higher rates of false positives). To the best of 
our knowledge, this is the first study that benchmarks RB- 
TnSeq analytical pipelines using knockout strains. In this 
regard, mBARq represents an improvement over existing 
methods, and highlights the importance of “ground truth” 
data. The generation of additional “ground truth” datasets, 
in particular ones containing more data on true negatives 
(i.e. genes with no fitness effect) and continued benchmark
ing, as done in this work, will contribute to better consensus 
on the statistical methods used for the analysis of RB-TnSeq 
data. In addition, the performance accuracy can also be im
proved by robust experimental design, such as increasing the 
number of replicates and including spike-in control barcodes 
to better estimate the variance in data.

mBARq was designed to be versatile and agnostic to the 
details of the library design or screening protocols. Thus, it is 
not only compatible with diverse transposon mutagenesis ex
perimental setups, but also applicable to any barcoded se
quencing data, including studies on site-specific mutants, as 
well as recently designed systems for genome editing in bacte
rial communities. One example is the DART (DNA-editing 
all-in-one RNA-guided CRISPR-Cas Transposase) system 
(Rubin et al. 2022), which relies on barcoded transposon 
constructs, and should therefore be fully compatible with 
mBARq for analysis and visualization.

We showed that inspecting fitness data in the context of 
metabolic pathways or PPI networks often reveals pheno
types that are not apparent at the individual gene-level. In ad
dition, we demonstrate that the re- analysis of published data 
using mBARq can also help to annotate genes that otherwise 
remain functionally uncharacterized. Finally, the integration 
of screening results with information stored in functional 
databases remains a common stumbling block for many 
researchers. Here, mBARq’s web app will empower biologists 
with little computational background to translate large 
amounts of screen data into biological insights.

5 Conclusions
In conclusion, we show that mBARq contributes to the stan
dardization and ease of data analysis for transposon insertion 
libraries, isogenic strain populations, and other barcoded se
quencing data. The lack of user-friendly and flexible software 
for barcoded sequencing data analysis often results in 
researchers requiring bioinformatic expertise to analyze the 
data. In addition, variations in data processing and statistical 
methods often render cross-study comparisons difficult. In 
this study, re-analysis of public RB-TnSeq datasets with 
mBARq demonstrated the increased sensitivity of the tool 
and the user-friendly web app facilitated data interpretation 
and visualization to yield novel biological insights. 
Consequently, a tool such as mBARq is a major step forward 
toward the analysis, reuse, and cross-study comparisons of 
barcoded sequencing studies.
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