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Prey scan at random to evade observant predators
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Anti-predator scans by animals occur with very irregular timing, so that the initiation of scans resembles
a random, Poisson-like, process. At first sight, this seems both dangerous (predators could exploit the
long intervals) and wasteful (scans after very short intervals are relatively uninformative). We explored
vigilance timing using a new model that allows both predators and prey to vary their behaviour. Given
predators that attack at random with respect to prey behaviour, constant inter-scan intervals minimize
predation risk. However, if prey scan regularly to minimize their risk from randomly attacking predators,
they become more vulnerable to predators that initiate attacks when the inter-scan intervals begin. If, in
order to defeat this tactic, prey choose extremely variable inter-scan intervals, they become more
vulnerable to predators who wait for long intervals before launching attacks. Only if predators can
monitor the variability of inter-scan intervals and either attack immediately (if variability is too low) or
wait for long intervals to attack (if variability is too high) does the empirically observed pattern of
Poisson-like scanning become the optimal prey strategy.
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1. INTRODUCTION

Research on anti-predator vigilance represents one of the
most successful combinations of theoretical and empirical
work in behavioural ecology. A particular focus of
attention has been the role of vigilance behaviour in
explaining grouping. However, the theory on which much
of the work relating vigilance and group size rests
(Pulliam 1973) is based on a number of assumptions (see
Bednekoff & Lima 1998a). First, predators are assumed to
rush from cover at random times. Second, attacking
predators that remain undetected for a certain critical time
are assumed to be certain of catching their prey. Third,
anti-predator scanning by individual prey is presumed to
follow a Poisson process, so the frequency distribution of
inter-scan intervals follows a negative exponential. As
argued by Bednekoff & Lima (1998a), the validity of these
assumptions requires further investigation. The first and
second assumptions appear at best insufficiently general
and at worst unrealistic (FitzGibbon 1989). The third
assumption, while supported by considerable empirical
evidence, 1s puzzling and is the focus of this paper. We
develop a model of the relationship between the pattern of
anti-predator scans and predation risk. This allows us to
determine how prey should scan to minimize their preda-
tion risk, how the optimal solution depends on predator
behaviour and how predator strategy, in turn, should
respond to prey scanning patterns. This arms-race
approach simulates the evolutionary game played between
predator and prey (e.g. Stewart-Oaten 1982).

2. THE NEGATIVE EXPONENTIAL DISTRIBUTION OF
INTER-SCAN INTERVALS: THEORY AND EVIDENCE

Most of the work on vigilance focuses on adaptive
variation in vigilance with factors such as group size (see
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Elgar 1989; Roberts 1996a for reviews). Such work
typically uses summary measures such as mean scanning
rate. However, the way in which any given scanning rate
is achieved is also important. Pulliam’s (1973) assumption
that scanning should be a Poisson process is at first sight
surprising. Safety-critical vigilance by humans tends to be
systematic, with the inspection schedule optimized for the
risk profile between inspections and the relative cost of
inspection versus failure to detect adverse events. When
instantaneous risk increases with time (or use), long inter-
vals are disproportionately dangerous and inspections
should be regular (e.g. maintenance inspections of
aircraft engines). When instantaneous risk decreases with
time (e.g. in a patient recovering from heart surgery),
examinations become progressively less frequent.

Randomly timed anti-predator vigilance gives a
mixture of long and short intervals. Long intervals may
be disproportionately dangerous (Desportes et al. 1989),
while during short intervals, risk is unlikely to change
and there may be little opportunity for other useful
activity. The assumption of a negative exponential distri-
bution of inter-scan intervals was originally made simply
for mathematical convenience (Pulliam 1973); it has only
later been given a functional justification on the grounds
that a random distribution will make scanning unpredict-
able (Bertram 1980). According to this theory, predators
will be unable to predict when randomly scanning prey
will next raise their heads, and will therefore be unable to
exploit this information in timing their attacks.

The theory appears to be borne out by evidence that
inter-scan intervals do approximate a negative exponen-
tial. A number of authors have tested inter-scan interval
distributions against a negative exponential and failed to
detect a significant difference (Bertram 1980; Caraco
1982; Studd et al. 1983). Later work demonstrated that
while inter-scan intervals did approximate a negative
exponential, there was a time-dependent element, such
that the probability of scanning increases with the time
since the previous scan (Lendrem et al. 1986). The conse-
quence of this is a distribution in which there are fewer
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very long and very short intervals (see also Hart &
Lendrem 1984). Nevertheless, the evidence is that vigi-
lance scans are closer to being initiated at random
(resembling a Poisson process), than to being initiated at
regular intervals (Lendrem 1983; Sullivan 1985).

Examining the frequency distribution of inter-scan
intervals
However, a separate problem is whether there are any
predictabilities in the sequencing of intervals. The ques-
tion of whether scanning is a sequentially random process
has been considered elsewhere (Desportes et al. 1989,
1994; Roberts 1994, 19964; Suter & Forrest 1994; Ferriere
et al. 1996; Ruxton & Roberts 1999).

informs us about instantaneous randomness.

3. MODELS

Here we develop models of the relationship between
the pattern of anti-predator scans and predation risk. The
models apply to individuals that can reduce their
predation risk by scanning, whether they be solitary or in
groups. We let predators initiate attacks at random or
time their attacks in relation to the prey’s inter-scan inter-
vals. The probability of an attack by a predator
succeeding given a time ¢ between the start of the attack
and the end of the inter-scan interval (i.e. the next
anti-predator scan) is the interval-dependent risk func-
tion, r(f). In general, the less time between the start of the
attack and the end of the inter-scan interval, the lower
the risk to the prey. For consistency with the vigilance
literature (Pulliam 1973), we start by considering a step
function for r(¢), termed r,(¢). Here, risk increases from 0
to 1 when the time between the start of the attack and the
end of the inter-scan interval exceeds the threshold ¢
(figure la; equation (1)).

1 when ¢> ¢
rs<t>_{0whent<ts. (1)

Later, we represent the risk function as an exponential
7.(), that rises steeply at first and then asymptotes
(figure la; equation (2)):

r(t)y=1—e". (2)

We have also explored sigmoidal risk functions such as
function r(f), where ¢ is the point of inflection and para-
meter £ governs the slope (figure la; equation (3)):

1

=T

(3)
Sigmoid and exponential functions are likely to be more
realistic than the step function because the risk of prey capture
1s likely to be a smooth and continuous function of time.
Nevertheless, the precise form of the risk function does not
substantially alter any of the results presented in this paper.

To vary the pattern and rate of vigilance, we represent
the inter-scan interval as a gamma-distributed random
variable with a mean of y and a variance of o. We call
this distribution 7. Intervals lasting time ¢ are drawn
from the distribution of intervals, 7. The probability
density of an interval lasting time ¢ is

1

(W?)a*) =1 =t/ (@* /)
) T o) ’ ' o
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The gamma distribution has a number of attractive prop-
erties. First, the exponential distribution, assumed for
inter-scan intervals by classical vigilance models, is a
gamma distribution in which p?=02 Second, empirical
data on inter-scan intervals, with the property that scan-
ning probability increases with time since the last scan
(see above) resemble a gamma distribution in which p? is
slightly greater than o> Figure 16 shows probability
density functions for 7, using a range of values of o with
w fixed at 1.

The details of the model vary with the tactics of prey
and predator. However, in general, if we know r(f) and
J{t), we can compute an instantaneous risk function, /(¢),
the probability that an attack will succeed at time ¢ after
its launch (figure le,d):

I(t) = r(t) x f(1). (5)

We can integrate I(f) over time to compute ¥, the
expected or average risk from an attack:

Y= /OOO I(0)dt. (6)

Predators should maximize ¥ by adjusting their tactics
and/or by identifying and attacking prey with the least
effective vigilance behaviour. Prey should minimize ¥ for
any mean inter-scan interval by adjusting the variance of
their intervals.

We first consider predators that behave like those in the
classical model. They attack at random times and succeed
in capturing their prey if the interval persists longer than
a critical time, { (i.e. the risk function is the step function
7(t), equation (1)). However, unlike the classical model we
let prey vary the mean and variance of their inter-scan
interval, to see how this influences predation risk. The
probability density function for inter-scan intervals, f (),
can be used to compute F,(f), the probability density func-
tion for interval survival times encountered by predators
that arrive at random times ¢, (figure 2q):

Fult) = / F(+ 1), 7)

The expected risk from randomly timed attacks, ¥, is
computed by integrating equation (6) over all times
greater than the critical time £ at which the risk function
7,() steps from O to I:

Y = / h F.(t)dt. (8)

s

Figure 26 shows that risk ¥, decreases with decreasing
interval variance. In fact, ¥, declines monotonically with
interval variance to the limiting case when o2 =0:

Bk 2
P — I when p>t¢, and 0 =0 (9)

0 when p<t, and o = 0.

Therefore, prey should choose regular inter-scan intervals
when faced with predators whose attacks are not corre-
lated with the timing of scanning behaviour. This result
highlights an internal inconsistency in the classical model.
The exponential distribution of inter-scan intervals that
the classical model assumes is a bad prey strategy when
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Figure 1. The basic model: (a) shows how the interval-dependent risk functions vary with the time, ¢, that the inter-scan interval
persists after the attack is launched. We show three risk functions, r,(f) (step function, where ¢ = 1; solid line), 7.(¢) (exponential,
dotted line), and 7,(¢) (sigmoid, dashed line). (b) Probability density functions from which inter-scan intervals are randomly
drawn. The y-axis shows f(¢) and the x-axis shows time, ¢. All lines represent gamma distributions with a mean inter-scan interval
of p=1. The solid line shows o> = > = 1, which is an exponential distribution; a special case of the gamma distribution. The
dashed line shows a distribution with a variance of 02 =0.25, and the dotted line shows a distribution with a variance of 0> =2.
(¢) The instantaneous risk function, 1 (¢, d) (y-axis) at time ¢ after the launch of an attack (x-axis) when the attack is launched at
the start of the inter-scan interval (¢=0). The variances of inter-scan intervals are 2 (dots), 1 (solid), or 0.25 (dashes), with p=1
and the risk function 7.(¢). () The instantaneous risk function, / (¢, d) at time ¢ after the start of the interval when d=1. The
attack is launched only if the inter-scan interval persists for more than one time unit. The variances of inter-scan intervals are 2

(dots), 1 (solid), or 0.25 (dashes), with y =1 and the risk function r.(¢).

faced with predators that attack at random. However, prey
that adopt regular scanning to beat random predators
become vulnerable to predators that can monitor prey
vigilance and launch attacks at the start of intervals
(figure 2¢). Conversely, prey that adopt highly irregular
scanning to beat predators that launch attacks at the start
of inter-scan intervals become vulnerable to predators that
wait for long intervals before attacking (figure 2¢). The
relationship between prey and such observant predators is
considered in more detail below.

What if predators can watch the prey, monitor their
vigilance behaviour and use this information to time their
attacks? The predator’s flexible tactics are described by
parameter 4, the delay between the start of the inter-scan
interval and the start of the attack. We illustrate this

Proc. R. Soc. Lond. B (2001)

argument with the analytically convenient exponential
risk function, 7.() (see equation (2)), although almost
identical results were obtained with the step and
sigmoidal risk functions (equations (1) and (3), respec-
tively). The instantaneous risk from an ‘observant’
predator, I, (t,d) 1s

L)(tjd)zw (10)

) XS
7 .
1 — / S(o)de
0
The denominator in equation (10), 1 — f:f(t)dt, corrects
1,(t,d) so that we only consider inter-scan intervals that

survive until the attack is launched after the delay, 4. This
normalizes the results to the number of attacks launched,
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Figure 2. Risk when predators attack at random with respect to prey scanning. () Probability density F,(¢) of interval survival
times, ¢, encountered by a predator that initiates attacks at random times. Interval variance is ¢>=1 (solid line), 2 (dashes), or
0.25 (dots). Mean interval is g =1 for all three curves. () Expected risk ¥, to randomly timed attacks as the variance, o2, of
the inter-scan interval varies, while {,=1. Mean intervals are =1 (solid line), 2 (dashes) and 0.5 (dots). For any mean
inter-scan interval, risk increases monotonically with variance. Therefore, prey should adopt regular scanning when faced with
randomly attacking predators. (¢) Predator fails to maximize success by attacking at random. The solid line shows expected risk
to randomly timed attacks ¥,. When interval variance is low (6 < p?), this is less than the expected risk from attacks launched
at the start of inter-scan intervals (¥ with =0, dots). When variance is high (¢? > p?), random attacks are less effective than
attacks launched after a delay (¥ with d =2, dashes). In all cases, mean interval is g =1, and the classical step risk function,
7,(t), is used.
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Figure 3. Risk when predators time their attacks. Lighter shades indicate higher risk. (a)—(¢) were computed with the risk
function 7.(¢), but virtually identical results were obtained with r,(¢) and r,(¢). (a) The expected risk, ¥ (d), from an attack as
inter-scan interval variance (o2, y-axis) and predator delay (d, x-axis) vary. The mean inter-scan interval is g =1. When o2 =1
(since 02 =1 = 2, this corresponds to an exponential distribution of inter-scan intervals) the predator cannot improve its success
by adjusting d, the timing of its attacks. However, an exponential distribution of inter-scan intervals is not optimal for any single
attack timing strategy, d. (b) The expected risk from attacks, ¥ (d), by a predator that adjusts its timing to maximize its success
as mean, 4 (r-axis), and variance, 62 (y-axis), of inter-scan interval vary (equation (12)). When p? > o2 the predator chooses to
attack immediately the interval starts. When p? < o the predator chooses to wait for an interval that persists for d=2 time units
before attacking. For any given mean scanning rate pu, the prey is safest when p? =02, corresponding to an exponential distribu-
tion of inter-scan intervals (dotted line). (¢) Risk per unit time, I', when the predator can adjust its timing to maximize its
success, as mean, {4 (x-axis), and variance, o2 ( y-axis), of inter-scan interval vary (equation (13)). It is always best for the
predator to attack at the start of intervals (¢=0). When intervals are short, the prey should scan regularly (¢2=0). When inter-
vals are long, the prey should use highly variable scanning (62 > p?). An exponential distribution of inter-scan intervals (dotted
line) is not an effective prey strategy against a predator maximizing risk per unit time.

and not the time that a predator must wait before
launching an attack (which is considered later). Irom
equation (10), we can calculate the expected, or average,
risk from an attack by an observant predator, ¥, ):

v, (d) = /OOO 1, (t,d)dt. (11)

Figure 1¢,d shows the instantaneous probability of attack
success, I, (t,d), when the predator attacks immediately an
interval begins @=0) and when the predator attacks
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after a delay of d=1. Waiting before attacking reduces the
chance of prey capture when the variance of inter-scan
intervals is low (02 < p?), increases the chance of prey
capture when the variance is high (0 > p?), but has no
effect when inter-scan intervals are drawn randomly from
an exponential distribution (o2 = u% figures l¢,d and 3a).
Figure 3a shows the expected risk, ¥, (@), as the timing
of the attack, d, and the variance of the inter-scan
intervals vary. Suppose that this represents a system
inhabited by a predator (or predators) that can use only a
single timing strategy but that can learn or evolve to
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optimally time attacks. Furthermore, suppose that the
predator prey that have evolved with
randomly attacking predators, so have consequently
evolved regular inter-scan intervals in which ¢? = 0; see
figure 3a4. Over time, the predator will optimize its
success by attacking at the start of intervals (d=0, 02 =0;
figure 3a). However, the prey will respond to this strategy
by increasing the variability of their intervals (d=0,
02=4; figure 3a). In turn, the predator will improve its
success by attacking after a delay (d=3, o2 =4; figure 3a),
prompting the prey to adopt regular scanning @=3,
0?=0; figure 3a) and bringing us back to the starting
conditions. In such a system, predator behaviour will
‘pursue’ prey behaviour around the surface shown in
figure 3a. The exponential distribution of intervals
(62=1), observed in a wide variety of real systems (or,
indeed, any single prey strategy) does not appear to be
stable when faced with predators that adopt a single
timing strategy.

Now consider a more sophisticated predator that can
observe prey, can measure the mean and variance of their
inter-vigilance intervals, and can choose to attack imme-
diately or after a delay. If this predator encountered prey
that scanned at regular intervals, it would choose to
attack at the start of intervals (=0, 02=0). Prey should
then adjust their behaviour to increase variability and
reduce risk. However, if variability moves beyond an
exponential distribution of intervals (o2=1, d=0), then
the predator can switch behaviour and attack after a
delay (@>>0). The ability of the predator to switch tactics
forces the prey to adopt scanning intervals drawn
from the empirically observed exponential distribution
(although such intervals are suboptimal for any single
predator strategy).

Figure 34 shows the risk to prey when a predator can
select its timing (either d=0 or d =2) to optimize risk, for
a range of % and p (equation (12)).

encounters

¥,(0) when ¥, (0)>¥,(2)
Pold) = { ¥, (2) when ¥, (2)> ¥, (0). (12)
This illustrates the principle that risk to prey is minimum
when o2 = 2 (corresponding to intervals selected from an
exponential distribution) provided that predators can
adapt the timing of their attacks depending on the beha-
viour of the prey.

The discussion has considered risk per attack, but the
waiting strategy (@ > 0) leads predators to avoid attacks
in intervals with a lifetime of less than d, so such a
strategy leads to a lower overall attack rate. When prey
scans are more variable than the exponential (0% > pu?),
the theoretically optimal predator maximizes risk per
attack by waiting an infinitely long time before attacking.
Clearly, this is unrealistic. Therefore, we have used more
modest delays of d=1 or 2 (figures 1-3), which would
yield attack rates of one attack per e (2.7) and e? (7.4)
time units, respectively, given prey with mean scanning
rate and variance of p=1 and o%?=1 (where e is the
exponential constant). However, we were interested to see
if prey should behave differently given predators that
maximize the chance of prey capture per unit time,
rather than prey capture per attack. Risk per unit time,
I, is given by equation (13):

Proc. R. Soc. Lond. B (2001)

/mrew xS (4 d)de
r,d =2 ; . (13)

Figure 3¢ shows risk per unit time, I';, to predators that
can adjust their timing to maximize I',. It was computed
with the same parameters as figure 36. The figure shows
that optimal interval variance, ¢ depends on mean
interval, ;1. When g is small, prey minimize risk with low
variability scans. When p is large, prey minimize risk
with high variability scans. Against both prey tactics,
predators maximize success by attacking immediately
@=0). However, an exponential distribution of intervals
(dotted line, where p?=0?) is not optimal for any mean
interval length.

4. DIVERGENCE FROM THE EXPONENTIAL
DISTRIBUTION

Our models suggest that the best response by prey to
an observant predator is to select inter-scan intervals
randomly from an exponential distribution. However,
empirical data on the distribution of inter-scan intervals
tend to show fewer very short and fewer very long inter-
vals than the exponential (Lendrem et al. 1986). In other
words, they resemble a gamma distribution where p? is
slightly larger than o2 There are several possible explana-
tions for this discrepancy.

First, prey could face a mixture of timed attacks and
random attacks. However, when faced with a proportion £
timed attacks and (1—£) random attacks whose expected
outcomes are ¥, and Y, respectively, the optimum
interval variance o? will minimize k¥, +(1—k) ¥, A
minimum in k¥, + (1—£) ¥, when 0 < 0% < p? is possible,
but such a minimum only occurs within a narrow range of
k. Therefore, in almost all mixtures of random and timed
attacks, the safest variance o2 will be either 0 or p.

Second, our model an exponential risk
function, 7,(¢), a step risk function, 7(), or a sigmoid risk
function, 7,(¢). However, many other risk functions could,
in principle, apply, and the function may vary with both
predator species and habitat features. The sigmoid risk
function seems particularly realistic; risk is small initially,
rises steeply and then asymptotes. Compared with the
exponential risk function 7. (¢), where risk decelerates with
¢, the sigmoidal risk function shows ‘risk acceleration’
when ¢ <, and ‘risk deceleration” when ¢ > ¢; (figure la).
This could produce a switch in optimum prey strategy as
the mean inter-scan interval p changes with respect to .
When p is less than ¢, prey should adopt more regular
scanning to keep all intervals below ¢ (just as regular
scanning 1s best with the step risk function when p <),
since in the risk acceleration phase, reducing ¢ causes a
greater than proportional reduction in risk. However,
when p 1s greater than ¢, the effect of the early ‘low risk’
phase becomes negligible, and so, as with the exponential
risk function 7.(¢), the prey should adopt an exponential
distribution of intervals. At some scanning rate between
the extremes (1.e. p < ¢ and p 3> ¢;), an optimal scanning
pattern may exist that is neither regular nor exponential.
However, this is unlikely to account for the empirically
observed behaviour, because the optimum is likely to be

assumes
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unstable and will shift to the regular or exponential
pattern given very small changes in mean scanning rate.

Third, in real environments, predators can only sample
prey behaviour for a finite time, and so have sample
mean interval, % and sample interval variance s’ on
which to base their decisions. Therefore, the ‘signal’ given
out by prey is not their true mean and variance, but
rather the joint probability density of sample mean and
sample variances, p(x,s*). This is a function G of u, o2
and the length of time, ¢, for which the predator samples
the prey’s behaviour.

PR, 5% = Gu, 0%, t,). (14)

Prey should minimize ¥, the expected risk over the
entire joint sampling probability density function, p(%, s*).

Y = /OOO/OOO[W, s2) x W, (%, 5%)]dwds?. (15)

Analytical integration of functions such as equation 15 is
difficult, so we have examined the effect of finite sampling
by the predator using an extensive series of Monte Carlo
simulations. The simulations show that sampling error is
unlikely to ‘push’ prey towards distributions of inter-scan
intervals that are less variable than an exponential. In
fact, sampling error may slightly increase interval
variance. Therefore, finite sampling by the predator does
not explain the difference between an exponential distri-
bution of intervals, predicted by the model, and the
empirical data.

Fourth, perhaps the empirical distribution of intervals
reflects sampling from a distribution that is exponential
in the short term, but in which the mean rate varies with
time? However, the sum of any set of negative exponen-
tials produces a distribution that declines monotonically
with time. Therefore, this cannot be the explanation for
the observed pattern.

Two likely reasons remain for the difference between
the empirical data and the predictions of our model.
First, very short inter-scan intervals may provide the prey
with very little opportunity to do anything useful.
Second, vigilance is necessary both to detect predators
and to see if the overall risk level has changed (for
example, by the arrival of a number of predators or a
reduction in group size). By reducing the number of very
long intervals, prey reduce their chance of ‘under-
sampling’ changes in risk that could trigger a change in
vigilance rate.

5. DISCUSSION

Our results have a number of implications for the study
of vigilance. First, they highlight an internal inconsistency
in the classical model in which predators attack at random
times and prey scan randomly (Pulliam 1973). Second, our
model shows that inter-scan intervals that are randomly
selected from an exponential distribution are an effective
prey strategy when faced with observant predators that
maximize their success per attack by measuring vigilance
behaviour and using that information either to wait for a
long interval before attacking (if prey scans are too
variable) or to attack at the start of intervals (if prey scans
are too regular). This finding comes from treating vigilance
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as an arms race between predators and prey, with prey
vigilance being determined by the best response to flexible
predator behaviour (see equation (12)). Third, our results
suggest that an exponential (or near exponential) distribu-
tion of intervals will arise when predators seek to maximize
success per attack, and not success per unit time. This
suggests that in real systems with exponential (or near
exponential) distributions of intervals, success per attack
and not success per unit time is the primary driver of
predator behaviour. This may be a consequence of the
costly nature of attacks: if a predator can only launch a
limited number of attacks per day, it needs to maximize its
success on each attack.

We suppose that predator—prey interactions will drive
prey to produce overt vigilance scans that are a signal to
potential predators. Predators that detect the signal will
avoid attacking vigilant prey, and prey whose signals are
detected will deter attacks. That predators are responsive
to prey vigilance has been shown by FitzGibbon (1989),
who observed that cheetahs biased their attacks towards
less vigilant gazelles. Given predators that cannot time
their attacks or cannot recognize prey vigilance, regular
scanning 1s more effective for prey. This might occur, for
example, for raptors attacking nocturnal, or partly
hidden, rodents, or for fish prey, whose vigilance
behaviour is difficult to detect. We therefore predict that
inter-scan interval distributions will vary between
predator—prey systems (see also Hart & Lendrem 1984)
and our results illustrate the need to know more about
such systems (see also Bednekoff' & Lima 19985).

Different assumptions may affect the predictions of the
models. We assume scanning is entirely for predator
detection, whereas it may serve other functions. We also
assume that inter-scan interval duration is determined
solely by maximizing predator detection, whereas there
may be important foraging or other constraints (e.g. there
may be a minimum inter-scan interval representing a
constraint on how rapidly the bird can raise or lower its
head: Elcavage & Caraco 1983; Lendrem 1983; Sullivan
1985). Also, we do not consider the consequences of
grouping: if group members did not scan independently,
this could either increase or decrease the probability of
detection by the group (Lazarus 1979; Ruxton & Roberts
1999; Ward 1985).

The assumption that animals feeding with their heads
down (i.e. in a non-vigilant state) cannot detect
approaching predators is too simplistic. Birds are not
blind to other stimuli while feeding (Davis 1975), and
have a considerable ability to detect approaching preda-
tors even when not overtly vigilant (Lima & Bednekoff
1999). Furthermore, they may increase attention to
predator stimuli towards the end of an inter-scan interval,
as known for motivational changes preceding other
behavioural switches (Culshaw & Broom 1980; Broom
1981). As a result, prey will have an increased probability
of surviving even if they do not scan within the predator’s
attack time.

We have shown that the exponential, or near exponen-
tial, distribution of inter-scan intervals found in prey
animals in nature minimizes risk from observant preda-
tors that flexibly and adaptively time their attacks.
Further work on flexible predator tactics of the kind
pioneered by FitzGibbon (1989), and comparative work
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on the vigilance patterns of prey with flexibly and
randomly attacking predators, will be required if we are
to understand the adaptive nature of vigilance scheduling.

We are grateful to two referees for their helpful comments on
the paper.
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