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Here we present, to our knowledge, the first modelling platform that enables simulations of three-
dimensional (3D) motion of multicilia arrays at a detailed level. It consists of three building blocks:
(1) geometric equations for tracking the 3D motion of the cilia, (ii) a hydrodynamic description of the
ciliary system, and (iii) model equations for the internal bend generating based on the 9 + 2 structure.
The model generates seemingly realistic 3D beat patterns and demonstrates metachronal coordination
that evolves autonomously as a result of the hydrodynamic coupling between the cilia. We study the effect
of the twisting motion within the cilia and propose a conjecture on a possible role of the radial spokes

system.
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1. INTRODUCTION

Cilia and flagella are tiny hair-like cell appendices. They
are responsible for many essential biological functions in
the respiratory, digestive and reproductive systems and for
micro-organisms’ locomotion and feeding. Their study is
important in biology and medicine and has attracted a
great deal of research effort for some 250 years. Theore-
tical research in this area is mainly orientated towards
understanding how the ciliary internal structure produces
the complex motion we see, how it is controlled, how it
responds to external load and how cilia synchronize with
their neighbouring cilia (Hines & Blum 1978; Gueron &
Liron 1992, 1993; Murase 1992; Gueron & Levit-Gurevich
1998, 1999).

Typically, ciliary beat patterns consist of two phases:
(1) the effective stroke, where a cilium moves approxi-
mately as a straight rod, and (ii) the recovery stroke,
where it bends and rolls back to its original initial state.
Metachronal coordination between cilia is a situation
where large numbers of cilia beat together with a
constant phase difference between adjacent neighbours,
their tips forming a moving wave pattern. The reason
why and how arrays of cilia beat in a metachronal
pattern is not understood. Membrane voltage and
calcium levels may affect the direction of the metachronal
wave and also the directions of the effective and recovery
strokes (Machemer 1972). It has also been proposed that
the metachronism phenomenon may be the result of
hydrodynamical coupling between the cilia through the
viscous fluid (Sleigh 1974; Gheber & Priel 1989). Our
work has, to our knowledge, provided the first theoretical
model that supports this conjecture. In Gueron et al.
(1997) we developed a model which treats a cilium as a
slender body 1n order to describe the motion of the cilium
within the flow field generated by all other cilia, given
the cilium’s ‘internal engine’. We constructed an ‘internal
motor’ in order to mimic the motion of a single cilium of
the ciliated protozoan Paramecium. To avoid hypothesizing
a biologically unmotivated internal clock we used a
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geometric switch hypothesis—a switching mechanism
that governs the transition from effective to recovery
stroke and back, based on the configuration of the cilium
(see also Gueron & Levit-Gurevich 1998). Simulating
single- and multicilia configurations led to results surpris-
ingly consistent with experimental observations: beat
frequency decayed logarithmically with increased fluid
viscosity, two adjacent cilia initially out of phase phase-
locked within a few cycles and arrays of cilia performed
coordinated beats resembling metachronal waves. In
Gueron & Levit-Gurevich (1999) we computed the
energy consumption of a cilium during its beat cycle
which reflects an existing paradigm on the basics of the
mechanochemical cycle.

All of these results were obtained for cilia having
planar beats, but some research was also directed towards
three-dimensional (3D) ciliary beating. Here we mention
a few related references, namely Hines & Blum (1983),
Sugino & Machemer (1987, 1988), Mogami et al. (1992),
Gueron & Liron (1993), Teunis & Machemer (1994) and
Wooley & Vernon (1999).

In this report we extend our research to 3D beats,
which are shown by most real cilia. We present the first
modelling platform for simulations of 3D motion of
multicilia arrays at a detailed level that accounts for the
9 + 2 internal structure.

2. A COMPLETE MODELLING FRAMEWORK FOR
SIMULATING THREE-DIMENSIONAL CILIARY
MOTION

(a) The body coordinate system

We consider the model cilium as an inextensible elastic
cylindrical sheath of radius « and centre line
r(s,t) = (x(s,1)),9(5,8)), 2(s,t)), where 0<s<1 1is the
arc-length parameter, ¢ is time and the representation is
related to some fixed coordinate system whose axes are x,
y and z. At each point A(s, ) = (x(s,¢)), (s, 8)), 2(s, t))
along the inextensible centre line, the normal plane
I (s, t) is the plane passing through A(s, ¢) and perpendi-
cular to the tangent direction to #(s, £). We assume that,
for all 0<s<1 and ¢>=0, the ciliary cross-section remains
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Figure 1. A schematic representation of the body coordinate system of cilium. (a) Bent, untwisted cilium, () twisted and
bent cilium, (¢) the body coordinates at the cross-section, (d) the geometric description of the cross-section, and (¢) filament

interconnection due to attached dynein arms.

planar and circular and, therefore, lies in I1(s, ¢). At each
point along #, we define an orthonormal right-handed
coordinate system called body coordinates which is defined
by the three unit vectors X = X(s,¢), ¥ = ¥ (s5,¢) and
Z = Z(s,1). The unit vector Z points in the direction of
the tangent and X and Y lie in the plane II(s,?) (see
figure la). To define X, we observe the two filaments of
the central pair, denoted by #,(s, ), #9(s, ). At s = 0, the
central pair filaments are located symmetrically at a
distance b from the centre line. We assume that b/a < 1,
which is reasonable in our context (e.g. for the cilium of
Paramectum bla =~ 0.15-0.2) (see Sleigh 1962). At a
distance ~ a from the centre we have the nine doublets
(microtubule filaments) denoted by R (s,?)), Ry(s, 1)),
..., Ry(s,t) arranged symmetrically around at the centre
line. These 11 filaments are connected to each other by
dynein arms, nexin links and radial spokes. Since 6/a < 1
we assume that [I(s, ¢) contains the end-points of #»; and
7, and define the X-axis as the unit vector pointing in the
direction of the line connecting the end-points of #, and
ry (which also passes through the corresponding end-
point of 7). The 7-axis is defined by ¥ =Z x X (for a
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right-handed system). This body coordinate system is
shown schematically in figure la—c.

Here we shall use the following convention. The
subscripts X, ¥ and < denote the components of vectors
in the body coordinate system, the subscript s denotes
differentiation with respect to s and the superscript dot
denotes differentiation with respect to ¢.

The centre line moves at velocity V = V(s,¢) and
rotates (with the whole cross-section) about its longitu-
dinal axis Z(s,¢) at angular velocity Q= Q(s,1)
= Q(s, 1) Z(s,1).

(b) The curvature in body coordinates

The unit vectors X (s, ¢), ¥ (s,¢) and Z(s, ¢) change as a
function of s at rates we denote by Ky = Ky(s, ) and
Ky = Ky(s, 1) and Kz = Kz(s, 1), respectively. These rates
have the following geometric interpretation: if the infini-
tesimal change from body coordinates at s to body coordi-
nates at s + ds is represented as successive rotations by the
angles 0y = 0y(s, 1), 0 =0y (s,¢) and 0> = 0-(s, ¢) about
the X-, V- and Z-axes, respectively, then xy = 06y/0s,
Ky =00y/0s and kz=005/0s. Thus, Ky and £y
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represent rotation about the X- and Y-axes (in the 7=
and X< planes), respectively, and £ represents rotation
about the {-axis, i.e. a longitudinal twist. We define
K = Kk(s,t) = (Kx, Ky, z). The centre line’s curvature is
k=+/Kk%+ K> and, if k#0, the torsion is
T=—K;— (kyky — KyKy)/K® (see Gueron & Liron
(1993) for details).

It can be shown that there exists a unique vector
w = (wx(s,1)),wy(s, 1)), wz(s, ) such that differentiation
with respect to ¢ of an arbitrary vector = = (s, t) is
expressed by u = (u), 4, +w X u in the body coordinate
system. The components w = (wy (s, {), wy (s, 1)), wz(s, 1))
describe the rates of change (in time) of the orientation of
the unit vectors X (s,¢), Y(s,¢t) and Z(s,¢). Note that
wz(s, 1) is not equal to the angular velocity (s, ) and an
appropriate relationship between these quantities appears
in proposition 1.

(c) The three components of the dynamic model

(1) Geometric equations for the dynamics of a 3D inextensible

Sfilament as a function of a given velocity distribution along its centre line
To track the dynamics of a 3D rod we use a newly devel-

oped system of partial differential equations, which is valu-

able in a variety of other contexts as well. The (lengthy)

derivation is detailed in Gueron & Levit-Gurevich (2000).

Proposition 1

Let 7(s5,¢), 0<s<1, be an inextensible curve of length
1, moving in space at velocity V' = V (s, {) and rotating at
angular velocity Q = Q(s, t)Z (s, t). The time-evolution of
its local coordinates curvature is determined by the
following equations:

F‘LX = Hy&)z — I/r‘m —_ 2/‘1351/‘\"Y + Q/Q)(I/zr — /‘iz; VX
+hx Ve —kykyVyx + (K% + /{%)VT —kypkzVz, (1)

Ry =—kyws+ Vy = 26-Vy + 26V — k2 Vy

+ Ky Ve +bysyVy — (k3 + né) Vy+6xkzV2 (2)
Kz =wz +kx(Vy, —k:Vy) + 6y (Vi +6:Vy), (3)
Wy =Q —ky(Vy —kVy) = by (Vy +EVy). (4)

Inextensibility, i.e. no velocity changes occurring along
the centre line in the tangent direction, imply

Z X [,_Y = VZr — K’TVX + K/XVY = 0. <5>

Thus, the motion of the inextensible curve is determined
by the velocity components Vy and V) and the twisting
velocity Q.

Reconstructing # from ky, Ky and £z, suppose that xy,
Ky and K are known at some time ¢, as well the location
and orientation of the anchor, #(0, ¢,), X (0, ¢), Y (0, #)
and Z(0, {y). The centre line curve #(s, ¢,) can be recon-
structed by integrating

S

r(5,10) = #(0, 1) + / Z(6,1)d, (6)

and the body coordinate system X (s, #y), Y (s,¢), Z(s, {y)
is obtained by integrating

X =rY—KZ, (7)
Y =—r:X+kKyZ, (8)

Proc. R. Soc. Lond. B (2001)

Z =k X —KkyY (9)

with respect to s.

(1) Relating the drag force exerted by the surrounding fluid to the
local velocity

The hydrodynamic description we use here was devel-
oped by Gueron & Liron (1992). It accounts for 3D flow
fields and enables simulations of multicilia configurations
while taking the hydrodynamic interactions into account.
This relationship in body coordinates is

¢y =—CxVy+gyx, (10)
¢y =—CyVy+gy (11)
and

¢,z = _Csz + 4z (12)

where ¢ (s, ) is the drag force per unit length exerted by the
cilium on the surrounding fluid of viscosity p, gy = CyGy,
gr = CyGy and g- = (G and G = (Gy, Gy, G7) denotes
the velocity field induced at s by ‘far segments’ of the
cilium, neighbouring cilia or external flow. The compo-
nents of G are expressed in terms of singular solutions of
Stokes’ equations. The tangential (C>) and normal (Cy,
Cy) resistance coeflicients are

8
[ . R— (13)
v =2+ 4In(2g/a)
and
8
Cy = Cy s (14)

~ 1+ 2In(2g/a)

for any ¢ such that ¢ <« ¢ and ¢ < 1. These are not the
Gray—Hancock resistance coefficients and their ratio
Cy|Cr =~ 1.43 is lower than the value 2 used in the Gray—
Hancock approximation (detailed discussion is given in
Gueron & Liron (1992) and Gueron & Levit-Gurevich
(1998)). The expression for G is

Gl )= [ (el ) 1), = @l 1)k

+/0< LGN
+ Vdi<r<s03 t): 1"(5, t): - (ﬂ2/4ﬂ)¢(% l‘>>}dY

+ U,(r(sp, 1), r(s, 1), — p(s,1))ds,

0<s<l1
neighbouring cilia

(15)

where U,(r, v, ¢) is the velocity induced at » by a
Stokeslet with intensity ¢ located at »y, V(r, vy, @) is
the velocity induced by the image system of the Stokeslet
alone and V; is the velocity induced by the image system
of the doublet alone.

The mechanical equilibrium at which the cilium is
found implies the balance F, = ¢ which reads, by
components,

(ZSX:FXS—K,sz'i‘K/}sz, (16)
Gy =Fy + Ky — kyF> (17)
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and

¢z:F7 _K/]"FX‘FK/XF]”. <18)

s

From equations we rewrite

equation (5) as

(10)-(12) and (16)-(18)

F. =(1+Cx)k,Fy, + C@Y(ng + K3) + F-6y Fy
- “.\;Fr - (I+ CzX)KXFT; - sz[’frFr + “.\'E\']Kz

+ CoxlBxgr — Krgxl + g2, (19)

where C>y = C-/Cx.

The components of the internal shear force in the X
and 1" directions are modelled as the sum of elastic and
active shear forces. Using the balance of moments
(M, =Z x F) and the assumption that the filaments are
linearly elastic, we model the internal shear forces by

Fy = Epky + (Ep — Er)kykz + 5, (20)
Fy=—Egky + (Ep — Er)kykz + P (21)

Here, Ep and E; are the bending and twisting resistance
coeflicients and S = S(s,¢) and P = P(s,t) represent the
respective components of the shear force. The angular
velocity is related to the active mechanism by (Gueron &
Levit-Gurevich 2000)

CoQ(s,t) = Eqkiz (s, 1) + R(s, 1), (22)

where Cp = 4mua® is the rotation resistance coefficient
and R denotes the active twisting moment per unit
length.

(ii1) A new model for the 9 + 2 internal mechanism

Our new three-state ‘ready—duty—rest’ model for the
reactivation process of the dynein arms by ATP molecules
that diffuse through the cilium is described below.

3. MODELLING THE CILIARY INTERNAL MECHANISM:
MECHANICAL CONSIDERATION

Let M ,(s) be the moment induced by the active system
at the centre line point s and let M;(s) be the portion of
the moment due to filament : (we use a cyclic modulo 9
notation for the index 7). The force per unit length
contributed by filament ¢ is denoted by f, (s) and the total
force due to filament : is therefore

F(s) = — / £ (€)de. (23)

Our goal here is to reduce the ciliary motion modelling
problem to determining model equations for f,, which
are derived in § 4.

We denote the vector connecting the centre line with
the ¢th doublet or filament by L,(s), where

Li(s)=a [Cos(%r (1— z))X(s) + sin(%r (1-— z)) Y(S):l ,
(24)
and define e;(s) and b;(s) by

ei(s) = Lip (s) — Li(s), (25)
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b,(s) =e;(s) X Z(s). (26)

An illustration is presented in figure 1d.

In order to model the active shear forces, the bending
and twisting moments, we consider three types of links
between the filaments: dynein cross-bridges, radial spokes
and nexin links. The dynein arms undergo a periodic
mechanochemical process of attachment—detachment and
are classified as an active component of the system
(Sleigh & Barlow 1982; Hines & Blum 1983; Satir 1994).
The nexin links connect two adjacent doublets in a
permanent link and may be considered to be playing a
passive role, contributing to the axoneme’s bending resis-
tance (Hines & Blum 1983). The role of the radial spokes
is not completely clear, in particular whether they are to
be considered as an active or passive component (see
Sleigh & Barlow 1982; Hines & Blum 1983; Satir 1994).
Here we use our model to suggest that the radial spokes
must actively contribute to the twist along the cilium. To
that end, suppose that the dynein cross-bridges are the
only active part of the internal mechanism. As filament ¢
is influenced by filaments ¢ — 1 and ¢ itself (see figure le),
we write

M.(5) = —L,(s) / Lf,(6) —f, (). (27)

Therefore, the total moment due to the dynein arms is

9 9

M,(s) =) M, (s) =Y Lis) x (Fy(s) = F_(s))

=—) els) x Fy(s). (28)

=1

Relating the shear force to the active moment (via
balance of moments), we obtain

oM, ? J
§=— :n;(ez- x F,) —Z:(nx F,)

=1

9

xei—ZeinL,f. (29)

=1

(a) Conclusion

From equation (29) we can see that, if > # 0, then the
{ component of the shear force M, x Z =k e
xF,, does not vanish, as it is supposed to, by mechanical
equilibrium. Therefore, there must be another active
system, in addition to the dynein arms, which balances
the twist occurring in the X—1" plane, in order to prevent
distortion of the axoneme and to keep the cross-section
circular. This motivates our speculation that the twist
resistance 1s at least partly due to the radial spokes
system. Denoting the active moment due to the dynein
arms by M, and the active moment due to the radial
spokes by M, we write

M,=M,+M,=M, X+M,Y+M_Z+MZ

where (from equation (28))
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9

My =M, ==Y (efs) x Fy(5) x X,

=1

9

My =M, == (els) xF,(s)) x ¥, (32)
i=1
M-=M, + M, (33)
Differentiating M, with respect to s gives
Ma, = (MX\ - K/zM}f" + H)Mz)X
+ My + k2 My — KxM-)Y
+ (Mz, —kyMy+ KExMy)Z, (34)
and by using M, x Z = 0 we obtain
sz —K}’Mx+leMy=O. (35>
On the other hand,
Mz =M, +M, =M;xZ) + M,
= (Md\ X Z) + (Md X Zr) + Mr‘
9
=Kz Z (e, x Fy)+ryMy —kyMy+ M, , (36)
=1
and, therefore,
[ 9
1.0 = [ 56D (e€) x Fu©)de. (57)

=1

This implies that the radial spokes contribute to the
twisting moment only when the cilium is out of plane, i.e.
when k> # 0. Combining equations (28), (33) and (37)
and using equation (26) we obtain

9

M(s) =) (Bils) x Fy(s) + / K26 (ele)

=1
x F, (&))dE.

We now denote the X and 1" components of the active
shear forces by S(s, ¢) and P(s, t), respectively, and denote
the active twisting moment per unit of length by R(s, ¢).
This leads to the following model equations for the
internal ciliary engine:

(38)

S(J,t)ZMa;X Y:MI"fY_‘_KzMX_KXMZ; (39>
P(S, t) = _Md.r x X = _MXr + KJzM} — K}”Mz, (4’0)
R(s,t) = (M, x Z), = kyMy — iy My. (41)

4. MODELLING DYNEIN ARMS’ MECHANOCHEMICAL
CYCLE

We now use equations (31), (32) and (38)—(41) to relate
the active shear forces and the bending and twisting
moments to f,. We first note that, knowing which dynein
arms are active at a given instance, we can compute the
components of the moments from equations (31), (32) and
(38) and then compute the active shear forces and
twisting moment per unit length by using equations (39)—
(41). We now assume that each dynein arm is found at one
of the following three states (see Satir 1994).
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(1) The duty phase, where the arm is reactivated by an
ATP molecule and attaches to the adjacent doublet.
The duration of this phase 1s denoted by 7, -

(ii) The rest phase, which follows the duty phase, is a
period of duration 7, before the dynein arm can be
reactivated.

(111) The ready phase is the state before the next duty phase,
where the dynein arm is ready to hydrolyse an ATP
molecule.

The dynein arm can therefore start a new reactivation
cycle only after a time-interval T e = Tauy + Tres- We
assume here that the dynein arms are distributed
uniformly along the filaments and denote the number of
dynein arms per unit length by N =2[/(d x[) =2/d
where [ is a cilium’s length, 4 is the distance between two
adjacent dynein pairs and the factor 2 accounts for the
outer and inner arms (note that the inner and outer
dynein arms have different functions (see Brokaw 1999),
but for simplicity we are treating them as if they were
identical for the purpose of this model).

We denote the numbers of dynein arms per unit length
along the ith filament found at the duty, ready and rest
states by Nauy, (55 8); Nrcaay, (5, 1) and Ny, (s, 1), respec-
tiVCIY’ haVing Nduty, (57 t) + Nreadyl» (57 t) + ‘Nresti (‘Y) t) =N
The active force per unit length contributed by the acti-
vated dynein arms along the :th filament can be modelled

by (see figure 1d,e¢)

V2 1

S, (5) = == S0 Nauyy, (5) [— els) —2Z (S)]; (42)

2 lle:ll

where S is the magnitude of the force due to a single
arm. In order to model Ny, we denote the reactivation
rate of the ready dynein arms by Ncady—duy, (5, £) and
propose

Nauny, (55 ) = Nocadysauny, (55 1) = Nycadysauey, (5 1 = Ta)

Nrest, (5,8) = NMeady—sduty, (5>t = To) = Nrcady—dury, (5, L= T4)

Nready, (55 1) = Nready—duty, (55 = Te) = Nready—dury, (55 8)
(43)

where Naay—dury, 18 modelled by

Nready—)duty{ (j" t) = kC(.&" t) ‘Nready, (‘Sa t) . (44->

Here, ¢(s,¢) denotes the local ATP concentration and
k= ky x P(s) = ko(1 — s*), where k, is a parameter and P
is the reactivation probability in the presence of an ATP
molecule near a ready dynein arm. To account for the
diffusion of ATP from the cell body throughout the cilium
(see Raff & Blum 1968), we write (using equation (44))

9
(s, t)
= - Nreadv%dutv (55 t) + D "
; ’ ’ 0s?
9

Oc(s, 1)
ot

¢ O%c(s,t
= _k6<\f, t) Z‘Nreadyl <S7 t> + D 6<52 ) ’

=1

(45)

where D denotes the diffusion coefficient.
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Figure 2. A single model cilium beating in water. A ‘wire frame’ display.

5. BOUNDARY CONDITIONS AND CHOICE
OF PARAMETERS

(a) Boundary conditions

The model cilium is free at its distal end and clamped
rigidly in an erect position at the anchor. At the free end
all forces and moments vanish and we can write

F(l,1) =0, (46)
S(1,6) =P(1,1) =0 (47)
and

ky(1,0) = Ky (1,t) = k2(1,2) = 0. (48)

At the basal end we have

K:X<07 t) = H’I’(Oa t) = 0> (49)
Kz (0,1) =0, (50)
V(0,0) = V,(0,8) = ¢(0,1) = ¢,(0,1) =0 (51)
and

Q(0,1) = 0. (52)

The body coordinate system at the anchor is stationary:

X,(0,¢) =0, (53)
Y,(0,t)=0 (54)
and
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Z,(0,) =0, (55)

and we therefore have w~ (0, ¢) = 0.
We assume that the concentration of ATP at the basal
end is fixed and it does not change at the distal end:

¢(0,1) = ¢ (56)
and
de(1,1)

5 =0 (57)

No dynein arms at the ciliary base (see Murase 1992)
lead to

8‘Nreadyl»<07 t)
Nreadyl<07 t) = ‘Nduty,(oa t) = a
A
8‘]Vdutv <0> t) .
=T, 1<i<9 (58)
Os

The initial conditions we use here are

¢(s,0) = ¢, (59)
‘Nrea(lyi (j’ O) =1 (60)
and

Ny, (5,0) = 0, 1<i<4, (61)

and Nyeagy, (5, 0) = Nyuyy, (5, 0) = 0 for the rest filaments.
For complete details of the numerical procedure see
Gueron & Levit-Gurevich (2000).
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Figure 3. The beat of a 3 x 3 ciliary array. The interciliary distance in both directions is half a ciliary length.

(b) Choice of parameters

In our simulations we used the following parameters:
[=10"m (a cilium’s length), ¢ =10"%m, a=10""m,
Ey=E; =25x 10" kgm?s™, 1 =0.00lkgm™"'s7!,
w=25Hz, S, =10""2N—typical shear force. In non-
dimensional form, these yield Cy = 0.01438, C> = 0.01
and Cq = 0.00314. These parameters are suitable for the
cilium of Paramecium beating in water (see Gueron &
Liron 1992). In our numerical implementation we used
N =100 discretization points along the curve and the
time-step d¢ = 0.0001 s.

For the engine equations the parameters were chosen in
the following manner: d=24nm, 1, =33ms and
T, = 3ms (see Satir 1994). The ATP concentration at the
base is ¢y =0.3mM = 5.68 x 10° moleculem™' (see
Brokaw 1975). The coefficient in the calculation of the
translation rate from ready state to duty state is
ky = 200ms~!. The diffusion coeflicient is chosen to be
D=0.3x10"%m?s"".

o

RESULTS

Figure 2 shows diagrams of the beat cycle of an isolated
model cilium beating in water. The cilium is illustrated
with its nine doublets and nexin links ‘skeleton’ (the
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radius is not to scale). The resulting beat duration and
beat frequency are 22 ms and 45 Hz, respectively.

Our 3D model was used for checking the effect of
increased viscosity which, as expected, changed the beat
pattern and frequency. The new feature of the model is
that the cilium autonomously changes its effective stroke
plane. For example, when the viscosity was set to ten
times that of water, the effective stroke plane rotated by
A 12° with respect to the plane of the effective stroke at
the viscosity of water (simulations not shown). Such
capability in changing the plane of beating is important
for ciliary function and was indeed observed by
Machemer (1972). It also indicates a possible source for
different types of metachronal coordination other than
anti-plectic metachronal patterns (Sleigh 1962; Machemer
1972; Murase 1992) which occur in rows of cilia having a
planar beat (Gueron & Levit-Gurevich 1998).

Figure 3 displays diagrams of the beat pattern of a
3 x 3 rectangular ciliary array. Although the model cilia
are 1dentical and are started with the same initial
conditions, phase shifts evolve autonomously due to the
hydrodynamical coupling. Figure 4 shows displays
diagrams of the beat pattern of a 5 x 5 rectangular
ciliary array. The top lines show diagrams of the cilia.
The bottom lines illustrate the ‘waveform sheet’ that is
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Figure 4. The beat of a 5 x 5 ciliary array. The interciliary distance in both directions is half a ciliary length. (a) 3D view of the
array. (b) The sheet formed by the tips of the beating cilia at the same time.

formed by the tips of the cilia, which resembles a meta-
chronal pattern.

7. DISCUSSION

Our modelling platform first allows simulations of 3D
motion of multicilia arrays at a detailed level related
directly to the internal structure. Here we have only
treated cilia having a 9 4 2 internal structure, trying to
speculate on the role of the radial spokes. Our model for
the internal engine is a simplified approach. It is based on
knowing the state and geometric positions of the dynein
arms without presuming additional details concerning the
behaviour of the radial spokes and the nexin links.
However, other structures such as 1240, 940 and
6 + 0, which have no central pair and perhaps no radial
spokes, also exist. These need to be treated differently.
Our internal engine model is, to our knowledge, the first
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that accounts for the dynein kinetics in such a detailed
manner. Nevertheless, due to the absence of a more
detailed biological description of the processes experi-
enced by real dynein (e.g. the distortion of the dynein
molecule), we avoid incorporating comprehensive
mechanochemical details and, thus, use a simplified
model. Further modelling work is still needed to extend
the model.

In order to tackle the 3D geometrical problem, we
approximated the cilium as an elastic cylinder that
maintains a fixed planar and circular cross-section. This
assumption may be too crude since initially planar cross-
sections experience distortions during motion. A
geometric model that takes these distortions into account
1s our next challenge.

We hope that the proposed modelling platform will
help experimenters and
understanding of the puzzle of ciliary beating.

theoreticians increase their
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