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Abstract: We review emerging preclinical and clinical evidence regarding brain-derived neurotrophic
factor (BDNF) protein, genotype, and DNA methylation (DNAm) as biomarkers of outcomes in
three important etiologies of pediatric acquired brain injury (ABI), traumatic brain injury, global
cerebral ischemia, and stroke. We also summarize evidence suggesting that BDNF is (1) involved in
the biological embedding of the psychosocial environment, (2) responsive to rehabilitative therapies,
and (3) potentially modifiable. BDNF’s unique potential as a biomarker of neuroplasticity and neural
repair that is reflective of and responsive to both pre- and post-injury environmental influences
separates it from traditional protein biomarkers of structural brain injury with exciting potential to
advance pediatric ABI management by increasing the accuracy of prognostic tools and informing
clinical decision making through the monitoring of therapeutic effects.
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1. Introduction

Pediatric acquired brain injury (ABI) is a leading cause of death and disability in
children [1–4]. Traumatic brain injury (TBI) comprises the majority of pediatric ABI, with
an incidence of 14.8 per 100,000 children per year in the United States. ABI also includes
non-traumatic brain injury due to infection (4.3 per 100,000), stroke (2.4 per 100,000), and
global cerebral ischemia due to cardiac arrest (1.3 per 100,000) [3]. In an international point
prevalence study of children aged 7 days to 17 years old with ABI admitted to a pediatric
intensive care unit, the most common were due to cardiac arrest (23%) and TBI (19%) [4].
Notably, children with cardiac arrest and children with TBI had the highest mortality (24%)
and morbidity (49% unfavorable outcomes), respectively.

The breadth and quality of evidence available to guide clinical management after
pediatric ABI are disproportionately low relative to its medical and societal burden, which
is driven by long-term neurobehavioral impairments [5–9]. Recovery from pediatric ABI
is determined by the interaction of a multitude of dynamic biological, psychosocial, and
therapeutic factors. This complexity results in a marked heterogeneity in outcomes and
is cited as the most critical barrier to the development of accurate prognostic models and
effective therapies [10–12].

The field has turned to biomarkers as one potential tool to explain this heterogeneity;
however, the focus to date on protein biomarkers of structural brain injury (e.g., glial
fibrillary acidic protein [GFAP], S100 calcium binding protein B [S100B], ubiquitin C-
terminal hydrolase-L1 [UCH-L1]) will likely be inadequate to fully capture the complexity
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of factors that influence recovery [13–15]. The discovery of dynamic and potentially
modifiable biomarkers that (a) reflect the child’s psychosocial environment (e.g., social
determinants of health) and (b) respond to injury progression and recovery processes over
days to months post injury would provide critical information about the biologic complexity
underlying recovery. In the future, this information could revolutionize pediatric ABI
management by identifying novel targets for therapy development, improving prognostic
tools, and aiding therapeutic clinical decision making.

Brain-derived neurotrophic factor (BDNF) may be such a biomarker. BDNF is a
well-studied member of the neurotrophin family of growth factors. Released pre- and post-
synaptically from neurons, it mediates apoptosis, neuronal differentiation, cell survival,
and synaptic strengthening [16,17]. Thus, in contrast to traditional ABI biomarkers of
structural brain injury, BDNF is a biomarker of neuroplasticity and repair, essential to brain
development, neuronal survival, and complex cognitive functions [18–25].

While biomarker studies often measure BDNF protein concentrations in the brain
or periphery, upstream genetic and epigenetic influences on BDNF expression are also
potentially informative. A single nucleotide polymorphism (SNP) producing a valine-to-
methionine substitution at codon 66 (Val66Met; rs6265) in the BDNF gene is associated
with the reduced activity-dependent secretion of BDNF [26]. Val66Met allele status, and
especially possession of the Met allele, is associated with variations in brain structure
and function, including smaller brain volumes [27–30] and lower connectivity [31,32],
poorer neuropsychological functioning [33,34], and an increased risk for psychiatric and
neurological conditions, in non-brain-injured individuals [35,36].

Epigenetics, in contrast, involves potentially heritable biochemical processes that
regulate gene expression without altering the corresponding primary DNA sequence [37].
What is unique about epigenetic biomarkers that has great potential ramifications for ABI is
that, through epigenetic processes, the biological and social environments of an individual
impact when and to what extent genes are expressed within each cell type. The most
investigated epigenetic modification is DNA methylation (DNAm), which involves the
addition of a methyl group to cytosine–guanine dinucleotides (CpG). Higher DNAm in
CpG rich promoters or gene regulatory regions is usually (but not always) associated with
lower gene expression [38]. While epigenetic modifications in BDNF have been frequently
investigated in association with brain-related phenotypes [39], the study of their potential
as biomarkers of ABI recovery is just beginning to emerge.

Thus, herein, we review evidence from both preclinical and clinical studies of BDNF
in pediatric ABI, focusing on three key insults, namely, TBI, global cerebral ischemia, and
stroke, suggesting that peripheral BDNF concentrations, genotype, and DNAm may be
markers of survival and recovery. We also review emerging evidence suggesting that BDNF
is (1) involved in the biological embedding of the psychosocial environment, (2) responsive
to rehabilitative therapies, and (3) potentially modifiable. These features support BDNF’s
unique potential as a biomarker of neuroplasticity and neural repair that is reflective of and
responsive to both pre- and post-injury environmental influences with exciting potential
to advance pediatric ABI management by increasing the accuracy of prognostic tools
and informing therapeutic decision making through its use as an intervention response
biomarker of therapeutic effects (i.e., a pharmacodynamic response biomarker).

2. BDNF in Preclinical Models of Pediatric ABI

Preclinical studies of brain injury provide unique insight into the role of BDNF in
neuroplasticity and repair (see Table 1). In animal models, the BDNF response to brain
injury is dynamic in the days and weeks after injury and can vary by age, sex, and type
of ABI (Figure 1). Most studies of TBI in juvenile rats have found greater BDNF protein
concentration and BDNF mRNA expression up to 7 days after injury relative to sham or
control animals [40–42]. In adult models, rats with TBI had higher BDNF expression acutely
(within 6 h of injury) compared to shams, suggesting an upregulation of BDNF in the
acute period, but similar or even lower BDNF expression compared to the sham group
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chronically after injury [43–47]. BDNF expression in adult models of ABI is associated
with recovery in many of these studies [46,48,49]. Similarly, preclinical studies in adult
models have shown therapeutic effects of BDNF treatment. Administering BDNF mimetics
(7,8-dihydroxyflavone, R13) that better permeate the blood–brain barrier than native BDNF,
or tropomyosin-related kinase B (TrkB) agonists that mimic the effects of BDNF at the
TrkB receptor improve neurogenesis, metabolism, synaptic plasticity, and neurobehavioral
recovery after TBI in adult rats [50–54]. In pediatric models of ABI, early work similarly
demonstrates a likely association of BDNF with recovery. Juvenile rats with TBI had
lower BDNF expression in the injured hippocampus at 14 days post injury relative to
sham, corresponding with poorer cognitive functioning [55,56]. Most of these preclinical
experiments limited their population to male rodents only. However, one study found
region-dependent differences in BDNF expression after TBI with higher BDNF expression
in the ipsilateral frontal cortex for males and higher BDNF in the contralateral hippocampus
for females compared to sham [45]. Preclinical work evaluating the therapeutic effects
of BDNF in models of TBI in immature animals of both sexes across the age spectrum
is needed.
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after injury, with some studies showing higher BDNF expression up to 7 days after TBI vs. sham 
followed by lower BDNF expression at 14 days post injury vs. sham. In pediatric models of global 
ischemia produced by cardiac arrest (aqua), BDNF is higher than that of sham animals at 4 days 
after injury, followed by lower BDNF expression vs. sham at 7 days after injury. BDNF then in-
creases to near-sham concentrations at 30 days post injury. Pediatric stroke models (orange) have 
higher BDNF expression vs. sham animals at 7 and 14 days after injury. Missing sections indicate a 
lack of available preclinical studies in models of ABI in developing animals during these time peri-
ods. 

Finally, there is also preclinical evidence that increases in brain tissue expression of 
BDNF in ABI result from the differential modulation of BDNF after the insult [61], likely 
due to early changes in the methylome in response to injury. Preclinical studies in TBI 
models suggest the re-localization of DNA methyltransferase 1 (an enzyme that adds or 
removes methyl groups at cytosine residues) within reactive astrocytes and microglia as 
a likely mechanism [79,80]. Initial preclinical [79,81] studies show differential DNAm both 
acutely and months after TBI in adult models, but studies in pediatric preclinical models 
are lacking. Similarly, the dynamic temporal responses of BDNF in the injured brain war-
rant further study. Though most studies find that the spike in BDNF expression in the 
brain attenuates quickly following ABI, with some studies showing a return to control 
concentrations by 24 h [58,82] to one week post injury [83], changes in BDNF expression 
can continue for up to 20 weeks post ischemia [83].

Figure 1. Brain-derived neurotrophic factor (BDNF) expression after acquired brain injury (ABI)
in preclinical models in developing animals. Animals with traumatic brain injury (TBI, blue) have
higher BDNF expression compared with animals with the sham operation (gray) on the first day
after injury, with some studies showing higher BDNF expression up to 7 days after TBI vs. sham
followed by lower BDNF expression at 14 days post injury vs. sham. In pediatric models of global
ischemia produced by cardiac arrest (aqua), BDNF is higher than that of sham animals at 4 days after
injury, followed by lower BDNF expression vs. sham at 7 days after injury. BDNF then increases to
near-sham concentrations at 30 days post injury. Pediatric stroke models (orange) have higher BDNF
expression vs. sham animals at 7 and 14 days after injury. Missing sections indicate a lack of available
preclinical studies in models of ABI in developing animals during these time periods.

In ischemic brain injury, BDNF responses depend largely on both the nature of injury
(global cerebral ischemia following cardiac arrest vs. focal ischemia in pediatric stroke) and
age [57]. In adult rats, global ischemia produced by either bilateral carotid artery occlusion
or cardiac arrest (i.e., with total body ischemia) resulted in higher BDNF expression in the
hippocampus compared to sham or controls in the 24 h after injury [58–62]. In pediatric
models, however, a seminal study in juvenile (post-natal day 20–25) mice found lower
BDNF expression 7 days after global ischemia due to cardiac arrest compared to the
sham operation group. Critically, memory recovery and long-term potentiation in the
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hippocampus in that study were associated with an increase in BDNF expression from
7 days to 30 days in rats after cardiac arrest, not with neurogenesis, suggesting a potentially
important role for BDNF in recovery [63]. In gerbils with global cerebral ischemia following
transient bilateral carotid artery occlusion, BDNF expression was higher in injured animals
relative to sham at 4 days after the insult in juveniles but not adults [64]. Notably, ischemic
injury results in greater brain damage in gerbils than in rats, due in part to the lack of a
circle of Willis in gerbils, which may explain the differences between animal models [65].
While there are few studies of pediatric ischemic injury after cardiac arrest, these initial
studies suggest neuroprotective responses of BDNF in the post-ischemia stages of recovery
and potentially key age-related differences for BDNF in the brain post injury.

While cardiac arrest in children results in global cerebral ischemia, pediatric stroke
results in either focal or multi-focal ischemic injury. In stroke models, BDNF in the brain
generally increases after injury. Most studies in adult stroke models found a greater BDNF
concentration, BDNF mRNA, and uptake of BDNF by astrocytes acutely from 2 h to 7 days
post injury compared to sham-operated rats [59,66–68]. In juvenile rats, greater BDNF-
positive cells are found in the injured brain at both 7 and 14 days post-ischemic injury
compared to rats with the sham operation [69]. However, future studies evaluating focal
cerebral ischemia in juvenile rats at more acute time points are needed. Like TBI, evidence
suggests therapeutic effects of BDNF in adult models of cerebral ischemia. Inhibiting
BDNF blocks AMPA receptors and AMPA-mediated motor recovery following stroke in
a mouse model compared to controls [70]. BDNF administration can have neuroprotec-
tive effects [71–75] and is associated with improvements in functional and behavioral
outcomes [76–78], suggesting the importance of BDNF in recovery from ischemic brain
injury in addition to TBI.

Finally, there is also preclinical evidence that increases in brain tissue expression of
BDNF in ABI result from the differential modulation of BDNF after the insult [61], likely
due to early changes in the methylome in response to injury. Preclinical studies in TBI
models suggest the re-localization of DNA methyltransferase 1 (an enzyme that adds or
removes methyl groups at cytosine residues) within reactive astrocytes and microglia as
a likely mechanism [79,80]. Initial preclinical [79,81] studies show differential DNAm
both acutely and months after TBI in adult models, but studies in pediatric preclinical
models are lacking. Similarly, the dynamic temporal responses of BDNF in the injured
brain warrant further study. Though most studies find that the spike in BDNF expression in
the brain attenuates quickly following ABI, with some studies showing a return to control
concentrations by 24 h [58,82] to one week post injury [83], changes in BDNF expression
can continue for up to 20 weeks post ischemia [83].
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Table 1. BDNF in preclinical models of ABI.

Reference
Type of Injury (TBI,
Global Cerebral
Ischemia, Stroke)

Brain Region from
Which Sample
Was Taken

Model
BDNF Concentration,
Expression, Mimetics,
or Genotype

Time Post Injury, Results

Dyck et al., 2018 [40] TBI Motor cortex, prefrontal
cortex

Juvenile rats post-natal
day 27 Concentration 4 days

Rats with TBI had higher BDNF
concentration in right and left motor
cortex vs. sham

Griesbach et al., 2002 [41] TBI Hippocampus and
occipital cortex

Juvenile rats post-natal
day 19

Concentration, mRNA
expression 24 h, 7 days, and 14 days

Rats with TBI had higher BDNF
expression vs. sham at 24 h and 7 days
in contralateral hippocampus and
occipital cortex; higher BDNF
concentration in occipital cortex and
ipsilateral hippocampus at 7 and
14 days post TBI vs. sham

Rostami et al., 2014 [43] TBI Frontal cortex,
hippocampus Adult rats Concentration, mRNA

expression
24 h, 3 day, 2 weeks,
8 weeks

Lower BDNF expression in ipsilateral
hippocampus and higher BDNF
expression in contralateral
hippocampus at 1 day, 3 days, and
2 weeks after TBI vs. sham; higher
BDNF concentration in frontal cortex
on days 1, 3, and 14 post TBI vs. sham

Hicks et al., 1997 [44] TBI Hippocampus Adult rats mRNA expression 1, 3, 6, 24, and 72 h

Higher BDNF bilaterally in dentate
gyrus for 1 to 72 h post TBI vs. sham
and in CA3 at 1, 3, and 6 h post TBI
vs. sham

Chen et al., 2005 [45] TBI Hippocampus, frontal
cortex Adult rats Concentration 4 weeks

Higher BDNF expression in ipsilateral
frontal cortex for males vs. sham;
higher BDNF in contralateral
hippocampus vs. sham

Griesbach et al., 2009 [46] TBI Hippocampus, parietal
cortex Adult rats Concentration 21 days

Rats with TBI had lower BDNF in
ipsilateral hippocampus and injured
parietal cortex vs. sham, but higher
BDNF in contralateral parietal cortex
vs. sham

Madathil et al., 2017 [47] TBI Hippocampus, cortex Adult rats Concentration 1 h, 6 h, 1 day, 2 days,
3 days, 1 week, 2 weeks

BDNF was higher in rats with TBI in
the hours after injury vs. sham

Corne et al., 2019 [48] TBI
Parietal lobe,
hippocampus, amygdala,
medial prefrontal cortex

Adult mice mRNA expression 3 weeks
BDNF was lower in animals with TBI
at exon IV vs. sham in injured
parietal lobe
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Table 1. Cont.

Reference
Type of Injury (TBI,
Global Cerebral
Ischemia, Stroke)

Brain Region from
Which Sample
Was Taken

Model
BDNF Concentration,
Expression, Mimetics,
or Genotype

Time Post Injury, Results

Thapak et al., 2023 [50] TBI Hippocampus Adult rats

Mimetics, protein
concentration (both
mature BDNF and
pro-BDNF, a precursor to
mature BDNF)

8 days

Animals with TBI had lower mature
BDNF vs. sham; rats treated with
BDNF mimetic (R13) had greater
mature BDNF and better cognitive
function after TBI vs. controls

Agrawal et al., 2015 [51] TBI Hippocampus Adult rats Mimetics, concentration 6 days

Rats treated with BDNF mimetic
(7,8-dihydroxyflavone) had less
cognitive behavioral deficit and fewer
cellular changes after TBI vs. controls;
treatment group had similar cortical
BDNF levels vs. controls

Wu et al., 2014 [52] TBI Parietal cortex Adult mice
Mimetics, mRNA
expression, and protein
concentrations

1 day, 4 days

Mice treated with BDNF mimetic
(7,8-dihydroxyflavone) had higher
BDNF concentrations, improved
survival, and reduced cell death after
TBI vs. controls

Zhao et al., 2016 [53] TBI Hippocampus Adult mice Mimetics 2 weeks

Mice that received
7,8-dihydroxyflavone for 2 weeks after
TBI had improved neurogenesis and
dendrite arborization in the ipsilateral
hippocampus vs. controls

Smith et al., 2023 [54] TBI Whole brain MRI scans Adult rats Mimetics Up to 7 days post injury

Rats that received R13 had greater
functional connectivity, and cellular
and behavioral outcomes after TBI vs.
controls

Schober et al., 2012 [55] TBI Hippocampus (ipsilateral) Rat pups post-natal
day 17

Concentration and mRNA
expression 1, 2, 3, 7, and 14 days Rats with TBI had lower BDNF

protein vs. sham at 14 days

D’Cruz et al., 2002 [58] Global cerebral ischemia Hippocampus Adult rats Concentration 12 and 24 h Rats with ischemia had higher BDNF
concentrations vs. sham

Tsukahara et al., 1998 [59] Global cerebral ischemia Hippocampus, cortex Adult mice mRNA expression 2, 4, 8, 16, or 24 h
Mice with ischemia had higher BDNF
mRNA in the hippocampus and
cerebral cortex vs. controls
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Table 1. Cont.

Reference
Type of Injury (TBI,
Global Cerebral
Ischemia, Stroke)

Brain Region from
Which Sample
Was Taken

Model
BDNF Concentration,
Expression, Mimetics,
or Genotype

Time Post Injury, Results

Dietz et al., 2018 [63] Global cerebral ischemia Hippocampus Juvenile mice post-natal
day 20–25 Concentration 7 days, 30 days

Lower hippocampal BDNF
concentration vs. sham at 7 days in
mice with cardiac arrest; no difference
in BDNF in TBI vs. sham at 30 days

Yan et al., 2012 [64] Global cerebral ischemia Hippocampus Juvenile gerbils and
adult gerbils Concentration 4, 7 days

BDNF expression was higher in
injured animals vs. sham at 4 days
after ischemia in juveniles but
not adults

Li et al., 2020 [61] Global cerebral ischemia Hippocampus Adult rats Concentration transcript
expression 48 h

Higher BDNF concentration vs. sham
in CA3 and dentate gyrus; lower
BDNF concentration vs. sham in CA1;
higher BDNF mRNA vs. sham in CA1,
CA3, and dentate gyrus at BDNF
transcripts I, II, VI, and XI

Miyake et al., 2002 [66] Stroke Hippocampus Adult rats Concentration, mRNA
expression 1, 3, 7 days BDNF concentrations were higher in

rats with ischemia vs. sham

Grade et al., 2013 [67] Stroke Striatum Adult mice mRNA expression 1, 2 weeks Higher BDNF in ischemic striatum 1
week post injury vs. naïve mice

Lindvall et al., 1992 [62] Global cerebral ischemia Hippocampus Adult rats mRNA expression 10 min, 30 min, 2 h, 4 h,
24 h

Higher BDNF in dentate gyrus from 2
to 24 h in rats with ischemia vs. sham

Kokaia et al., 1996 [60] Global cerebral ischemia Hippocampus and
parietal cortex Adult rats Concentration, mRNA

expression

1, 2, 4, and 18 h (mRNA),
and 6, 12, 24 h, or 1 weeks
(protein)

Higher BDNF concentration at 6 h vs.
sham in dentate gyrus and at 1 week
in CA3; higher BDNF mRNA
expression at 2 h in CA3 vs. sham

Madinier et al., 2013 [68] Stroke Cortex and hippocampus Adult rats Concentration, mRNA
expression 4 h, 24 h, 8 days, 30 days

Higher mature BDNF in cortex vs.
control; higher mature BDNF in
hippocampus at 30 days vs. control

Cheng et al., 2020 [69] Stroke Ischemic penumbra Juvenile rats (matured for
6–7 weeks)

Concentration, mRNA
expression 7, 14 days

Higher BDNF concentration at 7 days
vs. sham; higher BDNF expression in
ischemic penumbra at 7 and 14 days
post injury vs. sham

Clarkson et al., 2011 [70] Stroke Periinfarct cortex Adult mice Inhibition of BDNF 7 days
Mice with BDNF blocked have less
AMPA-mediated motor recovery
vs. controls
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Table 1. Cont.

Reference
Type of Injury (TBI,
Global Cerebral
Ischemia, Stroke)

Brain Region from
Which Sample
Was Taken

Model
BDNF Concentration,
Expression, Mimetics,
or Genotype

Time Post Injury, Results

Zhang and Pardridge
2001 [71] Stroke Cortex Adult rats Mimetics 24 h

Rats treated with BDNF conjugate
with a monoclonal antibody have
smaller infarct size vs. controls

Zhang and Pardridge
2001 [72] Stroke Cortex Adult rats Mimetics 24 h, 7 days

Rats treated with BDNF conjugate
have lower stroke volume at 24 h or
7 days after ischemia vs. controls

Shabitz et al., 2000 [73] Stroke Cortex Adult rats Mimetics 24 h
Rats with BDNF treatment have less
neurological deficit and less stroke
volume vs. controls

Yamashita et al., 1997 [74] Stroke Cortex Adult rats Mimetics 24 h
Rats with BDNF have lower infarct
volume vs. controls; no differences in
physiological measures vs. controls

Wang et al., 2023 [75] Stroke Cortex, cervical spinal
cord Adult rats Mimetics, mRNA 28 days

BDNF-treated rats have better
behavioral outcomes and greater
corticospinal connections vs. controls

Zhang and Pardridge
2006 [76] Stroke Cortex Adult rats Mimetics 24 h

Animals treated with BDNF conjugate
had greater motor outcomes and
lower infarct volume vs. rats treated
with BDNF alone

Ramos-Cejudo et al.,
2006 [77] Stroke Cortex, serum Adult rats Mimetics, concentration 4 h, 7 days, 28 days

Recombinant BDNF-treated rats had
better functional recovery and white
matter repair markers at 28 days
vs. controls

Alam et al., 2020 [78] Stroke Cortex Young rats (3 months) Concentration 6 weeks

Rats treated with p38
mitogen-activated protein kinase had
higher BDNF after ischemia and
greater functional recovery vs. controls

Kokaia et al., 1995 [82] Stroke Frontal and cingulate
cortex, hippocampus Adult rats Concentration, mRNA

expression 30 min, 2 h, 4 h, 24 h
Higher BDNF expression from 30 min
to 4 h post ischemia vs. controls; no
difference vs. controls at 24 h

Uchida et al., 2010 [83] Stroke Substantia nigra Adult rats mRNA expression 1, 2, 6, 20 weeks

Higher BDNF at 1 week and 20 weeks
after ischemia vs. sham in neurons;
greater BDNF released by astrocytes at
20 weeks vs. sham
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3. BDNF in Clinical Studies of Pediatric ABI
3.1. BDNF Concentrations

Similar to both preclinical and clinical studies in adults [84,85], clinical studies in
pediatric patients (see Table 2) show an initial increase in BDNF concentrations in plasma
and cerebrospinal fluid (CSF) ~2 h after TBI, followed by a decrease in CSF BDNF con-
centrations at 24 h [86–88]. Two of the pediatric TBI studies failed to show a statistically
significant association between BDNF concentration and dichotomized functional outcome.
However, neither study was powered to appropriately test the hypothesis of an association
(n = 14 children with TBI, n = 27 children with TBI in the two reports, respectively) [87,88].
In more recent studies of children with TBI and children with neurocritical-care-related
conditions, higher BDNF plasma concentrations on day 1 (n = 177 children) [89] and BDNF
serum concentrations at day 3 (n = 44) [90] were associated with better functional recovery,
respectively.

Consistent with the pediatric TBI and neurocritical care studies above, two studies in-
volving pediatric stroke in children with sickle cell disease also found higher BDNF plasma
concentrations acutely after brain injury compared to other children with sickle cell disease
or healthy controls (n = 8 with stroke, n = 40 with stroke, respectively) [91]. Importantly,
preclinical studies in rats report conflicting evidence regarding whether BDNF concentra-
tions in the periphery mimic cortical concentrations after stroke, when the blood–brain
barrier remains largely intact with ischemia [92,93]. Thus, peripheral BDNF concentrations
may not be correlated with CSF concentrations of BDNF, and assessments of both serum
and CSF BDNF concentrations should be evaluated specifically in children after stroke. In
pediatric cardiac arrest, an initial exploratory study of 42 children found no statistically
significant associations of serum BDNF concentration at between 12 and 96 h post insult
with dichotomized outcomes at six months [94]; however, once again, more extensive
investigations with larger sample sizes are needed.

3.2. BDNF Genotype

Only a handful of studies examining BDNF genotype have been conducted in pediatric
ABI, with mixed results. In a concurrent cohort study of children with moderate-to-severe
TBI or orthopedic injury but no TBI (OI; comparison group), the Val66Met met allele
was associated with poorer longitudinal behavioral adjustment [95] and poorer long-term
neuropsychological functioning [96] in children with TBI (n = 69) but not OI (n = 72). These
results suggest that the Met allele—associated with reduced activity-dependent secretion
of BDNF—may confer a risk for poorer neurobehavioral recovery from pediatric TBI. In
contrast, the Met allele was associated with fewer internalizing problems (n = 145) [97] and
better quality of life (n = 159) [98] in a cohort of children studied at 6 months after mild
TBI, suggesting a protective effect. Reasons for these mixed results are unclear and require
further investigation in larger cohorts and other etiologies of pediatric ABI.

Given the limited pediatric ABI studies, the adult ABI literature examining BDNF
genotype merits discussion. There is a relatively extensive literature of candidate gene
studies suggesting that the BDNF Met allele is associated with recovery from ABI in adults,
especially following ischemic stroke [99]. Genome-wide association studies (GWASs),
however, have not confirmed BDNF’s association with stroke recovery [100]. Similarly,
the single GWAS of TBI recovery to date did not identify any genetic variants reaching
genome-wide significance and BDNF was not included among the 13 genes with variants
that reached a lower pre-specified sub-genomic statistical threshold [101]. The strengths
and limitations of candidate genes vs. GWAS approaches in ABI are discussed below.
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Table 2. BDNF in clinical studies of pediatric ABI.

Reference

Type of Injury (TBI,
Cardiac Arrest, Stroke,
Brain Mass, CNS Infection,
or Inflammation)

Groups Time Post Injury BDNF Concentration,
Genotype, or DNAm

Tissue (CSF, Serum,
Plasma, Saliva) Results

Tylicka et al., 2020 [86] TBI

Children with mild
concussion
(−)LOC (n = 12); children
with severe concussion
(+)LOC (n = 17); and
healthy controls (n = 13)

2–6 h Concentration Plasma

Higher plasma BDNF in children
with mild head trauma (−)LOC
and children with severe
concussion (+)LOC 2–6 h post
injury vs. healthy controls; BDNF
concentration did not differ
between children with mild vs.
children with severe concussions

Chiaretti et al., 2003 [87] TBI

Children with severe head
injury (n = 14) vs. children
with obstructive
hydrocephalus (n = 12)

2 and 24 h Concentration CSF and plasma
Decrease in CSF BDNF
concentration from 2 h to 24 h
post injury

Chiaretti et al., 2009 [88] TBI
Children with severe head
injury (n = 32) vs. healthy
controls (n = 32)

2 and 48 h after admission Concentration CSF

Higher CSF BDNF concentration
in children with severe head
injury vs. healthy controls; BDNF
concentrations decreased in
children with severe head injury
from 2 to 48 h after admission

Pinelis et al., 2015 [89] TBI Children with TBI (n = 177)
1–3 days, 7–8 days,
14–15 days, 20–23 days,
and 11–12 months

Concentration Plasma

Decrease in BDNF concentration
between days 1 and 3 post injury
among mild and severe TBI;
lowest BDNF concentration found
at 1 day post injury in children
with severe TBI and
fatal outcomes

Madurski et al., 2021 [90]
TBI, cardiac arrest, stroke,
brain mass, or CNS
infection, or inflammation

Children with acquired
brain injury (n = 44)

Admission days 0, 1, 3, 5,
and day closest to
hospital discharge

Concentration Serum

Lower serum BDNF in children on
day 3 of admission, day 5 of
admission, and day closest to
hospital discharge associated with
greater functional impairment

Mahmoud et al., 2023 [91] Stroke
Children with Sickle cell
disease (n = 40) vs. healthy
controls (n = 40)

During hospital
admission Concentration Serum

Higher serum BDNF in children
with SCD vs. healthy controls;
higher serum BDNF in children
with sickle cell disease associated
with elevated transcranial
doppler velocities
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Table 2. Cont.

Reference

Type of Injury (TBI,
Cardiac Arrest, Stroke,
Brain Mass, CNS Infection,
or Inflammation)

Groups Time Post Injury BDNF Concentration,
Genotype, or DNAm

Tissue (CSF, Serum,
Plasma, Saliva) Results

Kernan et al., 2021 [94] Cardiac Arrest Pediatric cardiac arrest
patients (n = 42)

Twice within a 24 h
period between 0 and 96 h
and once at 196 h

Concentration Serum
BDNF serum levels not found to
be significantly associated with
6-month neurologic outcome

Treble-Barna et al., 2022 [95] TBI Children with TBI (n = 69)
vs. OI (n = 72) 18 months Genotype Saliva

Allele status x injury group
interactions associated with
behavioral adjustment outcomes;
within-group non-significant
trends of poorer behavioral
adjustment in Met carriers

Treble-Barna et al., 2022 [96] TBI Children with TBI (n = 69)
vs. OI (n = 72) 18 months Genotype Saliva

Poorer verbal fluency functioning
in Met carriers vs. Val/Val in the
TBI group

Gagner et al., 2021 [97] TBI

Children with mild TBI
(n = 47), OI (n = 42), and
typically developing
children (TDC) (n = 56)

Any time point within 18
months Genotype Saliva

Val/Val mTBI associated with
more internalizing problems vs.
Met mTBI at 6 months post injury;
Val/Val and Met mTBI groups
associated with more internalizing
problems vs. OI and TDC at
18 months post injury

Tuerk et al., 2020 [98] TBI

Children with mild TBI
(n = 52), OI (n = 43), and
typically developing
children (TDC) (n = 64)

Any time point within 18
months Genotype Saliva

Higher quality of life at 6 months
post injury in Met carriers vs.
Val/Val among TBI
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3.3. BDNF DNAm

An important consideration, and frequent criticism, for clinical studies of DNAm in
ABI is the relevance of DNAm measured in peripheral tissues (most frequently blood)
to brain function given that DNAm patterns are tissue-specific and reflect the local en-
vironment of each cell type. However, for clinical studies of BDNF in ABI, in particular,
the use of peripheral leukocytes for DNAm measurement is justified. Although DNAm
in brain tissue may provide more direct insights into the biology of brain function and
pathology, acquiring in vivo brain tissue samples is not feasible outside of extraordinary
circumstances—such as with resection of a cerebral contusion to treat severe intracranial
hypertension. Further, to be useful as a clinical biomarker, it is essential that markers
be identified in readily accessible tissues or cells, such as blood samples. A comparative
analysis of genomic signatures of TBI revealed homology between the rodent hippocampus
and peripheral leukocytes at gene, methylome, pathway, and network concentrations re-
lated to vascularity, cell integrity, and immune response [102]. Notably, BDNF was among
the highest pathways with a shared homology between tissues. Further, rodent gene
signatures showed a significant overlap with human genes of brain disorders identified
by GWASs. These homologous changes across hippocampus and peripheral leukocytes
likely reflect disruption of the blood–brain barrier in TBI, associated systemic inflammation,
and potential changes in cell type composition in the systemic circulation mediated via the
glymphatic system [102,103]. That study strongly supports the development of DNAm
biomarkers of TBI using easily accessible peripheral blood leukocytes, as well as a focus
on BDNF. Finally, taking an approach that collects DNAm data across the genome has the
added advantage of being able to adjust for cell type heterogeneity, reducing potential
confounding related to cell type–phenotype associations, which can help provide a greater
biological understanding of ABI [39].

To date, all candidate gene studies of BDNF DNAm in ABI have been conducted in
adults. BDNF DNAm in blood was associated with adult stroke outcomes, including global
outcome, physical disability, cognitive dysfunction, anxiety, and depression, in several
candidate gene studies [39,104–107]. Most studies reported hypermethylation in BDNF
promoter regions in blood, suggesting lower BDNF expression, associated with poorer
outcomes. In our study targeting BDNF DNAm in CSF over the first five days after severe
TBI in 112 adults, trajectory analysis revealed low- and high-DNAm groups at two BDNF
sites with suggestive associations with long-term neurobehavioral outcomes [108]. In
contrast to the adult stroke studies, membership in the high-DNAm group was associated
with better outcomes after severe TBI. The opposing direction of associations of DNAm with
outcomes in this study as compared to the stroke studies may be explained by differences
in the timing of sample collections (weeks to months post stroke vs. the first five days
post TBI) as well as evidence for a negative correlation between CSF and peripheral
BDNF levels [84]. Beyond candidate studies, three epigenome-wide association studies
(EWASs) have been conducted in adult TBI [109–111]; however, BDNF DNAm did not reach
epigenome-wide significance in any study. While there are no published candidate BDNF
DNAm studies in pediatric ABI, two published studies using an EWAS approach have
examined DNAm in association with recovery from mild TBI [112,113]. In a blood-based
EWAS of 17 children with mTBI vs. 18 healthy controls, one CpG site in the BDNF gene was
among the 449 differentially methylated (hypomethylated) sites reaching epigenome-wide
significance [112]. In a larger saliva-based EWAS of 110 children with mTBI and 87 healthy
controls, BDNF DNAm was not significantly associated with quality of life or persistent
post-concussive symptoms [113]. A candidate study of BDNF DNAm in association with
neurobehavioral recovery following moderate-to-severe pediatric TBI is ongoing [114].

4. The Potential of BDNF as an ABI Biomarker Responsive to Environmental Influences

The unique potential of BDNF as a biomarker of recovery from pediatric ABI is un-
derscored by its responsiveness to environmental influences, especially as mediated by
changes in DNAm. It is well established that environmental factors influence recovery
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from ABI, though their underlying mechanisms are poorly understood. One of the most
significant examples is the well-documented outcome disparities (i.e., poorer neurobe-
havioral recovery) among children facing greater psychosocial adversity, including low
socioeconomic status and greater family dysfunction, even after adjusting for pre-injury
functioning [7,115–122]. A second major environmental factor with potential to alter re-
covery trajectories is the quality and quantity of rehabilitative therapies, though research
into these effects remains in its infancy [123–125]. As we review below, given the role
of BDNF DNAm in the biological embedding of the psychosocial environment, and its
responsiveness to interventions, we posit that BDNF DNAm may confer risk or protective
effects on recovery after pediatric ABI by regulating the neuroplastic and repair functions
of BDNF (see Figure 2).
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Figure 2. The potential role of brain-derived neurotrophic factor (BDNF) DNA methylation (DNAm)
in neurobehavioral recovery from acquired brain injury (ABI). Pre-injury environmental factors (e.g.,
psychosocial adversity) may downregulate BDNF by increasing BDNF DNAm. ABI itself alters
BDNF DNAm, leading to an increase in BDNF after injury. Post-injury factors (e.g., rehabilitation)
can also decrease BDNF DNAm, leading to an increase in BDNF expression. This pre- and post-
ABI epigenetic regulation of BDNF may influence neuroplasticity and ultimately neurobehavioral
recovery after injury.

4.1. Psychosocial Environment

Preclinical and clinical studies in non-brain-injured animal models and individuals
suggest that BDNF DNAm is involved in the biological embedding of the psychosocial
environment with downstream effects on brain function. Preclinical models of early-life
caregiver maltreatment have shown alterations in BDNF DNAm in the medial prefrontal
cortex, amygdala, and hippocampus [126]. These changes in methylation have been
identified within 24 h of caregiver manipulation, can persist through adolescence and into
adulthood, and have been associated with cognitive dysfunction [126–128]. Psychosocial
environmental factors examined in association with BDNF DNAm in human studies have
included a multitude of trauma/stress exposures [129–133], as well as neighborhood-level
socioeconomic disadvantages [133]. Of these, both candidate studies and EWASs report
differential BDNF DNAm [39], as well as associated effects on downstream neurobehavioral
outcomes such as depression and anxiety [134,135]. While several studies have begun to
examine DNAm in clinical studies of ABI (reviewed above), no published studies to date
have examined BDNF DNAm in association with both the psychosocial environment
and recovery.

4.2. Rehabilitative Therapies

Emerging evidence suggests that BDNF is responsive to rehabilitation interventions
after ABI. These studies are largely in animal models and most commonly evaluate physical
activity as an intervention via voluntary wheel running or treadmill training (forced exer-
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cise that is more tightly controlled under experimental conditions). Early studies showed
that voluntary wheel running following TBI upregulated BDNF expression and had corre-
sponding improvements in cognition, but suggested a therapeutic window of rest following
injury [136–140]. More recent studies, however, have shown favorable improvements in
behavioral and neurobiological responses to injury (including BDNF response) with exer-
cise starting early after TBI, but have also found that the intensity and duration of exercise
matter early in recovery [141–148]. Several studies have shown that BDNF mediates this
association between physical activity and TBI recovery [137,138,149]. In animal models,
physical activity decreases BDNF DNAm, upregulates hippocampal BDNF, and initiates
synaptic plasticity pathways to ultimately improve neurobehavior [138,150]. In preclinical
models of stroke, aerobic exercise improves neurobehavioral symptoms, such as depression,
by regulating BDNF expression in both adult and juvenile animals [69,151–158]. A recent
study evaluating aerobic exercise in rats with global cerebral ischemia found that exercise
promoted neuron repair and survival, mediated in part by BDNF [159]. Furthermore, some
studies have shown that pre-conditioning, or exercising prior to brain injury, can improve
BDNF concentrations post injury and improve recovery after ABI, as well [160,161]. In
initial clinical studies of adults post stroke, individuals who performed physical exercises
had increased BDNF concentrations compared to pre-intervention [162,163] and, in one
study, BDNF serum concentrations were associated with cognitive recovery [163]. In other
non-brain-injured adult populations, cognitive improvements found with physical activity
are mediated in part by epigenetic changes in BDNF expression, demonstrating the impact
of BDNF on rehabilitation and recovery [20,104,164,165].

Similar rehabilitation techniques, such as task-specific training [166] and enriched
environments that mimic clinical rehabilitation environments, have also been shown to
improve recovery from experimental ABI in animal models [167–169]. Early environmental
enrichment counteracted the detrimental effects of prenatal alcohol exposure on behavior,
potentially mediated by the fourfold increase in BDNF expression seen with environmental
enrichment [167]. Several papers in preclinical stroke studies have found that BDNF plays
an integral role in the relationship between rehabilitation and recovery [170]. After stroke,
mice in an enriched environment have higher BDNF concentrations and improved cognitive
performance compared to mice housed in a standard environment [171]. Importantly,
blocking BDNF for 28 days after stroke in rats negated the effects of rehabilitation on
functional recovery, suggesting the key role of BDNF in stroke recovery [172]. These
findings suggest that BDNF expression could inform therapeutic decision making through
the monitoring of therapeutic effects for children with ABI [166].

5. BDNF DNAm as a Modifiable Therapeutic Target

Finally, the therapeutic potential of BDNF DNAm is further highlighted by the fact that
DNAm is modifiable. The pharmacologic inhibition of DNAm provided neuroprotective ef-
fects against ABI in adult animal models [173–175]. Similarly, non-pharmacologic [165–169,176]
therapies, such as environmental enrichment and physical activity designed to mimic re-
habilitation settings, ameliorated changes in DNAm and BDNF expression after neonatal
ABI and in adults with post-traumatic stress disorder. Drugs targeting the methylome
are already used in different diseases, such as cancer [177–179], suggesting the therapeu-
tic potential of DNAm modification. Though small peptide BDNF mimetics, such as
7,8-dihydroxyflavone and R13, have shown therapeutic potential in animal models, the
studies of pharmacokinetics and bioavailability are still in initial stages of preclinical test-
ing [180]. Given that there are currently no neuroprotective therapies proven to improve
recovery from pediatric ABI, the identification of potential therapeutic targets, such as the
methylome, in this population is critical.

6. Discussion

We summarize existing evidence from both preclinical and clinical studies suggest-
ing that BDNF holds significant potential as a biomarker of survival and recovery from
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pediatric ABI. Preclinical and clinical studies converge to show alterations in BDNF con-
centrations, gene expression, and DNAm after ABI and associations of these changes with
neurobehavioral recovery. Moreover, we review emerging evidence in ABI and non-brain-
injured populations suggesting that BDNF is involved in the biological embedding of
the psychosocial environment, is responsive to rehabilitative therapies, and is potentially
modifiable. These unique features set BDNF apart from traditional biomarkers, suggesting
that BDNF may be reflective of and responsive to both pre- and post-injury environmental
influences. The discovery of such a biomarker holds the potential to revolutionize pedi-
atric ABI management by identifying novel targets for therapy development, improving
prognostic tools, and aiding therapeutic decision-making.

There remain many gaps and opportunities for additional research. While it appears
that there are alterations in BDNF after ABI, the timing and direction of the BDNF response
vary across studies, possibly related to age, type of brain injury, time since injury, tissue,
genetics, or other confounders. Additional studies are needed to clearly understand these
dynamics. As is the case in many conditions, knowledge of the role of BDNF in ABI in
the pediatric literature lags behind what has been reported after ABI in adults. It will be
important to study the potential of BDNF as a biomarker in pediatric ABI, specifically as
adult findings cannot be generalized to children given differences in etiologies, mechanisms,
and biological responses to brain injury, ongoing and rapid brain development, and the
unique psychosocial environments of children. Additionally, many of the existing studies
had relatively small sample sizes often due to the lower prevalence of ABI in single-
center studies of children versus adults. Multicenter studies will be essential to obtain
sufficiently large sample sizes for more rigorous and appropriately powered analyses.
Finally, while several candidate gene studies have identified significant associations of the
BDNF genotype and DNAm with ABI recovery, several GWASs/EWASs have not confirmed
this association. GWASs/EWASs are rigorous approaches that may be used to discover
genes with the largest main effects in association with a phenotype, but these approaches
have their own limitations, especially in investigations of complex behavioral phenotypes
influenced by environmental and developmental factors [181], like recovery from ABI.
Candidates and EWAS/GWAS investigations should be completed concurrently with
deep phenotyping and in vivo physiological and intermediate phenotype measurements
to understand biological mechanisms [181]. In addition, while EWASs are essential for
the discovery of DNAm sites with the largest effects, EWAS approaches are currently
impractical for the clinical setting primarily due to cost and time constraints. To aid in
the clinical translation of EWAS results, the most compelling DNAm signals from EWASs
should be tested for consistency using targeted pyrosequencing, which measures DNAm
from a select number of sites rather than the wider methylome, enhancing the potential
for clinical point-of-care application. Collaborative, large-scale investigations will be
essential for the translation of significant genetic and epigenetic findings into biomarkers
for clinical use.

The potential of BDNF as an ABI biomarker responsive to the psychosocial environ-
ment has yet to be explored in clinical studies of pediatric ABI. As has been demonstrated
in non-brain-injured animal and human studies, BDNF DNAm is involved in the bio-
logical embedding of the psychosocial environment. Investigation of the associations
among pre- and post-ABI psychosocial environments, BDNF DNAm, and recovery could
reveal a biological mechanism to partially account for the unexplained heterogeneity in
ABI recovery and the neurobehavioral outcome disparities associated with psychosocial
adversity. Targets for such studies could also include other genes with dual roles in the
biological embedding of the psychosocial environment and response to TBI, including
interleukin-6 (IL-6), interferon-gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α),
among others [182,183].

Similarly, most studies evaluating the response to rehabilitation (e.g., physical activity
or environmental enrichment) are preclinical studies, with a few clinical studies in adult
stroke populations [162,163]. Studies evaluating associations between physical activity
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or rehabilitation and BDNF in pediatric ABI are critical to provide a biomarker to track
the response to interventions and aid in developing new interventions to improve ABI
recovery. Other growth factors may also play a role in rehabilitation and recovery after
brain injury, often interacting closely with BDNF. Insulin-like growth factor-1 (IGF-1), glial-
derived growth factor (GDNF), and vascular endothelial growth factor (VEGF) have also
been implicated in mediating the effects of rehabilitation after injury [64,184,185]. Similar
to BDNF, IGF-1 also plays an important role after brain injury [186] and studies have
shown that IGF-1 may mediate the exercise-induced regulation of BDNF and cognitive
improvements after brain injury [185,187,188]. Identifying the key molecular pathways
involved in brain injury and recovery and their roles in rehabilitation will be critical to
guiding and optimizing current and future therapies after ABI.

There are limitations that can complicate data interpretation when comparing studies.
A factor that can contribute to the variation in concentrations of BDNF in blood or CSF
relates to differences in assays used between studies. BDNF concentrations in biological
samples are commonly assessed using ELISA, multiplex assays, or Western blot. Differences
in the epitope targeted by the detecting antibody across these assays can vary, as can the
accessibility of the antibody to the epitope. For example, linearization of the BDNF protein
as assayed by Western blot can enhance antibody binding compared to assessment of the
native BDNF molecule in blood. Similarly, cross-reactivity with other analytes in multiplex
assays can in some cases be observed and can impact concentrations. Differences in
concentrations of other molecules, such as TNFα, between ELISA and multiplex assays have
been well described [189]. Finally, if tissue samples are assessed for protein concentrations
using immunohistochemistry, further variability can be produced, once again related to
the accessibility of the antibody to the epitope and cross-reactivity. And similarly, if ELISA
is used to assess homogenates of tissue samples, the method of tissue processing and
solubilization can also impact levels [189].

There are many potential clinical and research implications of BDNF as a dynamic
and potentially modifiable pediatric ABI biomarker. Accounting for the additional hetero-
geneity in ABI outcomes via a biomarker that is reflective and responsive to environmental
influences could result in the provision of more accurate prognostic information for patients
and families, as well as more powerful studies of intervention efficacy. Additionally, BDNF
could serve as a therapeutic target for future interventions, both pharmacological and non-
pharmacological (e.g., physical activity). Finally, the responsivity of BDNF to rehabilitation
suggests the potential for aiding in therapeutic decision making by monitoring a child’s
recovery and response to therapies.

7. Conclusions

BDNF holds exciting potential as a pediatric ABI biomarker that could revolutionize
pediatric ABI management. It will be important for future work to build upon the founda-
tional evidence reviewed here, integrating knowledge gained across preclinical and clinical
studies (adult and pediatric) from different etiologies of ABI, and in relevant fields outside
of ABI.
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