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Abstract: A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such,
provides a semi-selective barrier between the blood and the interstitial space. Compromise of the
lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is
a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress
syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms
mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group
of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic
regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from
histones. In addition, they can deacetylate many non-histone histone proteins, including those located
in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent
HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC
subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update
on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will
broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in
endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of
their inhibitors for lung injury prevention.

Keywords: lung vascular endothelium; endothelial barrier integrity; zinc-dependent HDACs;
deacetylation; HDAC inhibitors; acute lung injury; acute respiratory distress syndrome

1. Introduction

Acute lung injury (ALI) and its more severe manifestation, acute respiratory distress
syndrome (ARDS), are triggered by a variety of external stimuli, ranging from bacterial or
viral pneumonia and inhalation injuries (direct injury) to sepsis (indirect injury). As a result,
dysfunction of the lung alveolar–capillary barrier, hyper-inflammation, atelectasis, pul-
monary edema, hypoxia, and ultimately death can occur [1–4]. Despite a 27–45% mortality
rate [5], no pharmacological agents have been shown to improve outcomes in clinical trials
in ARDS [1,6]. The current treatment guidelines rely on supportive management, including
conservative use of fluids and airway maintenance, while controlling or resolving the
inciting factor [1,2,7]. New therapies targeting epithelial–endothelial barrier preservation
may reduce vascular leak and have profound clinical benefits.

Endothelial cells (ECs) form the lining of all blood vessels and create a semi-selective
barrier between blood and interstitium. Endothelial dysfunction has been previously
identified as a prominent risk factor in cardiovascular diseases [8] and ALI/ARDS [9,10].
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Given the well-established understanding that SARS-CoV-2 or its spike protein causes
endothelial dysfunction [11], COVID-19 is widely recognized as an endothelial disease
primarily affecting the microvasculature [12]. Overall, preventing EC barrier integrity is a
critical clinical requirement for treating various acute and chronic lung diseases [13–15].

Generally, the regulation of endothelial barrier integrity relies on an equilibrium
between adhesive and contractile forces. Adhesive molecules present at the cell–cell and
cell-matrix junctions provide EC barrier integrity and a scaffold for contractile machinery
based on the actomyosin interaction; alterations at these junctions are primarily responsible
for EC barrier disruption [16,17]. The tight interconnection between the endothelial cells is
provided by the interaction of junctional proteins (occludins, zonula occludens-1 (ZO-1),
catenins, and vascular endothelial cadherin (VE-cadherin), which are linked to the actin
cytoskeleton of cells in its vicinity [18,19]. Consequently, any alterations in the dynamics
of the actin cytoskeleton or/and the activation state of the EC contractile machinery can
influence the stability of cell–cell junctions and may result in barrier dysfunction. Hence,
the dysregulation of the endothelial barrier function is crucial (reviewed in [20,21]) in
lung-related pathologies.

The tensegrity model proposed by Ingber and coworkers [22] highlights how the
interconnected cytoskeletal components experience tension and compression, allowing
cells to sense mechanical forces via specialized mechanoreceptors. Such mechanoreceptors
can be found in the lungs and are known as rapidly adapting receptors [23]. Various
mechanosensors, such as ion channels, integrins, focal adhesions, and cytoskeletal com-
plexes, enable cells to respond to both external and internal mechanical perturbations.
This mechanism is crucial in cell functions like spreading, migration and overall cellular
responses. For instance, endothelial cells in the microvasculature receive mechanical stretch
through integrins from the capillary wall, while focal adhesions link the actin cytoskeleton
to the cell’s interface with the extracellular matrix. They are vital players in regulating the
integrity of the EC barrier as they provide additional tethering forces. ECs require cell–cell
contact and enrolment of VE-cadherin-based junctional protein complex to convert the
stretch into signals that promote their proliferation [24] and to initiate mechanosensitive
signaling cascades in the vascular endothelium [25,26].

Epigenetic mechanisms have recently been implicated as a significant regulator of
endothelial barrier function [27–29]. Histone post-translational modifications (PTMs) allow
ECs to respond to intra- and extracellular stimuli [21]. One of the most prevalent reversible
post-translational protein modifications is acetylation, or more correctly, Nε acetylation,
and is governed by two classes of regulatory enzymes: (i) lysine acetyltransferases (KATs),
also known as histone acetyltransferases (HATs). KATs/HATs facilitate the transfer of an
acetyl group to a Lysine (Lys) residue, and (ii) lysine deacetylases (KDACs) or histone
deacetylases (HDACs) catalyze the removal of acetyl groups. In simplified terms, these
enzymes add or remove acetyl groups from histones. Their mode of action is illustrated in
Figure 1. HDACs can be classified into two subgroups: zinc-dependent histone deacetylases
(Class I, IIa, IIb, and IV HDACs) and NAD+-dependent sirtuins (Class III HDACs). It has
been shown that HDACs from both subgroups can regulate EC function at various levels
and by diverse mechanisms [29–31]. Precise functional tuning of HDACs may be achieved
by PTMs like phosphorylation, SUMOylation, etc. [32,33]. In addition to deacetylating
histones, HDACs also deacetylate other non-histone proteins, which regulate cellular
functions such as cytoskeletal polymerization and signal transduction [34,35]. A summary
of the classification, structural features, and role of HDACs in EC function is provided
in Table 1 [36–67]. The structural, functional, and inhibitory aspects of zinc-dependent
HDACs have recently been reviewed by Porter and Christianson [68].
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Table 1. Classification, structural features, and functions of zinc-dependent HDACs in vasculature.

Class Isoform Subcellular
Distribution

Preferential
Expression

A.A.
Length Non-Histone Substrates Activities/Functions in Vasculature

Class I

HDAC1 Nucleus Ubiquitous 482
p53, SHP, MyoD, STAT3,

E2F1, AMPK, NF-kB, RB1,
CtIP, ATF4, SRF [36–39]

Facilitates the impact of external and
environmental stimuli on ECs [40]

HDAC2 Nucleus Ubiquitous 488 YY1, BCL6, GCCR,
STAT3 [37]

Protect against DNA damage response
and the onset of cellular senescence [41],

critical for vascular homeostasis and
endothelial health [42]

HDAC3 Nucleus/
Cytoplasm Ubiquitous 428

YY1, SHP, p65, GATA1,
MEF2D, STAT3, ATF4,
SUMO-LXR [37–39,43]

Preserves endothelial integrity [44];
Controls lung alveolar macrophage
development and homeostasis [45]

HDAC8 Nucleus/
Cytoplasm Ubiquitous 377 Actin, SMC3 [37]; KMT2D,

NCOA3, TUBA1A [39] Culprit in hypertension [46]

Class IIa

HDAC4 Nucleus/
Cytoplasm Heart, SM, Brain 1084

HP1, GATA1 [37]; SRF,
ATF4, SUMO-LXR [38];

human transcription factor
HIF-1α [39]

Regulates cellular senescence,
apoptosis and autophagy, acts as

inflammatory mediator [47,48] and a
regulator of vascular endothelial

growth factor D [49]

HDAC5 Nucleus/
Cytoplasm Heart, SM, Brain 1122 HP1, SMAD7 [37]; p53 [39]

Controls activity of KLF2, KLF2
activation in ECs; induces eNOS

expression resulting in
vasodilation [50]

HDAC7 Nucleus/
Cytoplasm

Heart, Placenta,
Pancreas, SM 952 PLAG1, PLAG2 [37];

HIF-1α [38]

Suppresses EC proliferation [51],
controls EC proliferation and

migration [52], maintains vascular
integrity in embryogenesis [53],

promotes promyelocytic leukemia
protein sumoylation [54], Promotes

angiogenesis [55]; involves in E.
coli-induced ALI [56]

HDAC9 Nucleus/
Cytoplasm SM, Brain 1011 NA Inflammatory mediator [57]

Class IIb

HDAC6 Cytoplasm Heart, Liver,
Kidney, Pancreas 1215

HSP90, SHP, SMAD,
α-tubulin [37], G3BP1 [58];
Survivin, AKT, β-catenin,

Peroxiredoxin, MMP-9 [38];
p53, ERK1, human

cortactin [39]

Crucial in EC function [59], Regulates
EC migration and angiogenesis [60],
Important in atherosclerosis [61] and

HSP90-mediated VEGFR
regulation [62]

HDAC10 Cytoplasm Liver, Spleen,
Kidney 669

AKT, β-catenin, MMP-9
[38]; N-acetylputrescine,

N8-acetylspermidine [39]

Accelerates angiogenesis in EC via
PTPN22/ERK axis [63], Pulmonary

hypertension [64], Regulates
HSP90-mediated VEGFR [62]

Class IV HDAC11 Nucleus Brain, Heart, SM,
Kidney, & Testis 347 MyoD [38]; SHMT2 [39]

Compromises the vascular endothelial
barrier function [65], Key player in

atherosclerosis [66], Triggers
caspase-mediated pathways
(NLRP3/caspase-1/GSDMD;
caspase-3/GSDME) causing

pyroptosis [67]

HDAC—Histone deacetylase; A.A.—amino acids; SHP—Src homology 2 domain-containing phosphatase; MyoD—
Myoblast Determination Protein; STAT3—Signal Transducer and Activator of Transcription 3; E2F1—E2F Tran-
scription Factor 1; AMPK—AMP-activated protein kinase; NF-kB—Nuclear Factor-kappa B; RB1—Retinoblastoma
protein 1; CtIP—CtBP-interacting protein; ATF4—Activating Transcription Factor 4; SRF—Serum response factor;
YY1—Yin Yang 1—BCL6—B-cell lymphoma 6; GCCR—Glucocorticoid receptor; GATA1—GATA-binding factor 1;
MEF2D—myocyte enhancer factor 2D; SUMO-LXR—Sumoylation Liver X receptor; SMC3—Structural Mainte-
nance of Chromosomes 3; KMT2D—human histone-lysine N-methyltransferase 2D; NCOA3—human nuclear
receptor coactivator 3; TUBA1A—human tubulin alpha-1A; HP1—Heterochromatin Protein 1; SM—Skeletal
muscle; SMAD7—Small mothers against decapentaplegic homolog 7; PLAG1—Pleomorphic adenoma gene 1;
PLAG2—Pleomorphic adenoma gene 2; NA—Not available; HSP90—Heat shock protein 90; SMAD—Small
Mother Against Decapentaplegic; G3BP1—Ras GTPase-activating protein-binding protein 1; MMP-9—Matrix
metalloproteinase-9; SHMT2—Human serine hydroxymethyl transferase 2; KLF2—Krüppel-Like Factor 2; eNOS—
endothelial Nitric Oxide Synthase; ALI—Acute Lung Injury; VEGFR—Vascular Endothelial Growth Factor
Receptor; PTPN22—Protein Tyrosine Phosphatase Non-Receptor Type 22; ERK—Extracellular Signal-Regulated
Kinase; NLRP3—NLR family pyrin domain containing 3; GSDMD—Gasdermin D; GSDME—Gasdermin E;
LECs—lung endothelial cells.



Biomolecules 2024, 14, 140 4 of 26

Biomolecules 2024, 14, x FOR PEER REVIEW 4 of 26 
 

NCOA3—human nuclear receptor coactivator 3; TUBA1A—human tubulin alpha-1A; HP1—Heter-
ochromatin Protein 1; SM—Skeletal muscle; SMAD7—Small mothers against decapentaplegic hom-
olog 7; PLAG1—Pleomorphic adenoma gene 1; PLAG2—Pleomorphic adenoma gene 2; NA—Not 
available; HSP90—Heat shock protein 90; SMAD—Small Mother Against Decapentaplegic; 
G3BP1—Ras GTPase-activating protein-binding protein 1; MMP-9—Matrix metalloproteinase-9; 
SHMT2—Human serine hydroxymethyl transferase 2; KLF2—Krüppel-Like Factor 2; eNOS—endo-
thelial Nitric Oxide Synthase; ALI—Acute Lung Injury; VEGFR—Vascular Endothelial Growth Fac-
tor Receptor; PTPN22—Protein Tyrosine Phosphatase Non-Receptor Type 22; ERK—Extracellular 
Signal-Regulated Kinase; NLRP3—NLR family pyrin domain containing 3; GSDMD—Gasdermin 
D; GSDME—Gasdermin E; LECs—lung endothelial cells. 

 
Figure 1. The schematic illustrates enzymes responsible for reversible protein acetylation in the reg-
ulation of gene transcription. Two classes of regulatory enzymes, lysine acetyltransferases 
(KATs)/histone acetyltransferases (HATs) and lysine deacetylases (KDACs)/histone deacetylases 
(HDACs), govern the reversible post-translational Nε acetylation of Lys residues in proteins. While 
KATs/HATs facilitate the addition of acetyl group to Lys residues and promote chromatin unfolding 
(relaxed chromatin), thus facilitating the activation of transcription, KDACs/HDACs catalyze acetyl 
group removal from histone and non-histone targets and are responsible for chromatin condensa-
tion (repression of transcription). 

Compelling evidence suggests that dysregulation of protein acetylation can ulti-
mately promote the emergence of several diseases, including ALI. Therefore, maintaining 
the balance between the activities of HATs and HDACs is critical for vascular homeostasis 
[29]. A recent review by Shvedunova and Akhtar explored various dimensions of acetyla-
tion and deacetylation, including their diverse targets, rapid turnover, and sensitivity to 
the concentrations of co-factors like acetyl-CoA, acyl-CoA, and NAD+, highlighting their 
close relationship with metabolism and homeostasis [69]. 

In addition to the direct de-acetylation of histones, HDACs play a role in epigenetic 
regulation as co-factors in many transcriptional processes [70,71]. Specific transcription 
factors mainly enlist them and are essential for maintaining vascular homeostasis and fa-
cilitating the development of blood vessels [72]. The dysregulation of HDAC expression 
and activity has been observed in numerous cardiovascular diseases like chronic obstruc-
tive pulmonary disease (COPD) [73], asthma [74], and cardiac hypertrophy [75]. Conse-
quently, HDAC inhibitors have emerged as potential therapeutic targets to cope with 
these diseases [76]. 

A growing body of evidence indicates that inhibition of zinc-dependent HDACs 
leads to the preservation of EC barrier function and can be beneficial for treating cardio-
vascular and inflammatory diseases [27,77]. However, the roles of individual HDACs in 
EC barrier regulation in vitro and in vivo are largely unspecified. In this review focusing 
on vascular pathobiology (mainly in ALI, ARDS, angiogenesis, and CVD), we discuss and 
highlight the importance of zinc-dependent HDACs in the maintenance and regulation of 
endothelial barrier integrity, mechanisms, and core signaling pathways modulating en-
dothelial cell functions. Further, we provide an overview of current HDAC research, and 

Figure 1. The schematic illustrates enzymes responsible for reversible protein acetylation in the
regulation of gene transcription. Two classes of regulatory enzymes, lysine acetyltransferases
(KATs)/histone acetyltransferases (HATs) and lysine deacetylases (KDACs)/histone deacetylases
(HDACs), govern the reversible post-translational Nε acetylation of Lys residues in proteins. While
KATs/HATs facilitate the addition of acetyl group to Lys residues and promote chromatin unfolding
(relaxed chromatin), thus facilitating the activation of transcription, KDACs/HDACs catalyze acetyl
group removal from histone and non-histone targets and are responsible for chromatin condensation
(repression of transcription).

Compelling evidence suggests that dysregulation of protein acetylation can ultimately
promote the emergence of several diseases, including ALI. Therefore, maintaining the
balance between the activities of HATs and HDACs is critical for vascular homeostasis [29].
A recent review by Shvedunova and Akhtar explored various dimensions of acetylation
and deacetylation, including their diverse targets, rapid turnover, and sensitivity to the
concentrations of co-factors like acetyl-CoA, acyl-CoA, and NAD+, highlighting their close
relationship with metabolism and homeostasis [69].

In addition to the direct de-acetylation of histones, HDACs play a role in epigenetic
regulation as co-factors in many transcriptional processes [70,71]. Specific transcription
factors mainly enlist them and are essential for maintaining vascular homeostasis and
facilitating the development of blood vessels [72]. The dysregulation of HDAC expres-
sion and activity has been observed in numerous cardiovascular diseases like chronic
obstructive pulmonary disease (COPD) [73], asthma [74], and cardiac hypertrophy [75].
Consequently, HDAC inhibitors have emerged as potential therapeutic targets to cope with
these diseases [76].

A growing body of evidence indicates that inhibition of zinc-dependent HDACs leads
to the preservation of EC barrier function and can be beneficial for treating cardiovascular
and inflammatory diseases [27,77]. However, the roles of individual HDACs in EC barrier
regulation in vitro and in vivo are largely unspecified. In this review focusing on vascular
pathobiology (mainly in ALI, ARDS, angiogenesis, and CVD), we discuss and highlight the
importance of zinc-dependent HDACs in the maintenance and regulation of endothelial
barrier integrity, mechanisms, and core signaling pathways modulating endothelial cell
functions. Further, we provide an overview of current HDAC research, and we evaluate
possible therapeutic approaches and treatment strategies involving HDAC inhibitors to
improve EC dysfunction.

2. Zinc-Dependent HDACs: Classification, Functions, Regulations and Modulations

To date, 18 mammalian HDACs have been discovered. Initially, they were divided into
four classes based on their homology to yeast HDACs, but later on they were subdivided
into two major groups: (i) “classical” zinc-dependent enzymes, which require zinc ion
(Zn2+) as a co-factor for their catalytic function (classes I, II, IV) and (ii) sirtuins (class
III), which are nicotinamide adenine dinucleotide (NAD+)-dependent enzymes [78,79].
This review will focus on the role of the “classical” HDACs in endothelial pathobiology.



Biomolecules 2024, 14, 140 5 of 26

For this group, the presence of Zn2+ in the active site of HDAC provides an appropriate
conformation for the catalytic domain, thus facilitating interaction and deacetylation of the
substrate [80]. Zn2+ allows a nucleophilic attack of the H2O molecule on the acetyl group,
thus promoting the removal of the acetyl moiety [81]. Therefore, the presence of Zn2+ is
essential for the proper folding and stability of “classical” HDACs and their enzymatic
activity [78,82]. The main molecular and structural characteristics of Zn-dependent HDACs
are provided in Figures 2 and S1.
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Figure 2. Structural features of zinc-dependent HDACs. The schematic depicts the main structural
peculiarities of zinc-dependent HDACs. See the text for further explanation. Additional information
on HDACs secondary and tertiary structures is provided in Supplementary Figure S1.

In addition to their homology to yeast counterparts, “classical” zinc-dependent
HDACs can be distinguished based on their structural features, subcellular locations and
active mechanisms (Figures 2 and S1; Supplementary Table S1). Class I HDACs (HDAC1,
HDAC2, HDAC3, and HDAC8) have high homology to the yeast RPD3 gene [83–85]
and are characterized by the presence of the conservative catalytic domain with N-and
C-terminal extensions. The latter includes a Nuclear Localization Sequence (NLS) with
regulatory phosphorylation sites (for HDAC1, HDAC2, and HDAC3) (Figure 2). These
HDACs are ubiquitous enzymes that are primarily localized in the nucleus and have high
catalytic activity against histones [85,86]. In addition, they can be involved in chromatin
remodeling as an enzymatically active subunit of multi-protein complexes (functional in-
teractomes), which include other HDACs and transcription factors [86,87]. Class II HDACs
are homologous to the Hda1 gene [85,88] and can be present in both the nucleus and
the cytoplasm. Compared to class I enzymes, they are more spatiotemporally regulated
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with more evident tissue and cell-restricted expression patterns [89,90] (Table 1). They are
subdivided into class IIa and IIb subclasses (Figure 2). Class IIa HDACs (HDAC4, HDAC5,
HDAC7, and HDAC9) are characterized by a unique N-terminal extension, which includes
a binding site for the transcription factor MEF2, NLS, and three conservative phosphory-
lation sites. These sites regulate HDAC critically with a 14-3-3 protein chaperones, and
14-3-3 are responsible for cytoplasmic sequestration [91]. Additionally, class IIa HDACs
have a C-terminal extension, which contains a Nuclear Export Signal (NES) (Figure 2).
Therefore, class IIa HDACs can shuttle between the nucleus and cytoplasm. They primarily
act as co-repressors of transcriptional events in the nucleus and have minimal deacetylase
activity on acetylated histones [92–94]. However, cumulative evidence indicated they can
deacetylase non-histone proteins [39,95] (Table 1). Class IIb HDACs (HDAC6 and HDAC10)
possess two tandem deacetylase domains. However, in the case of HDAC10, the C-terminal
(or Leu-rich) domain is truncated and lacks its enzymatic activity [96–98] (Figure 2). Unlike
HDAC6, which is usually a cytoplasmic deacetylase, HDAC10 resides in both the nucleus
and cytoplasm [97,98] (Table 1). HDAC11 is the only member of class IV HDACs and
has a catalytic core homology with both class I and II enzymes. It is characterized by
short N- and C-terminal extension and a unique ability to deacetylase fatty acids [99].
HDAC11 defatty-acylase activity is about 10,000 times more efficient than its deacetylase
activity [100].

Initially, HDACs were discovered as enzymes that catalyze the removal of ε-N-acetyl
groups from histones, modulating gene transcription (Figure 1). Later research revealed
that HDACs can deacetylate non-histone proteins such as p53, signal transducers and
activators of transcription (STAT3), E2F1, heat shock protein 90 (Hsp90), and NF-κB [101]
(Table 1). The deacetylation process driven by HDACs executes chromatin compaction
and transcriptional repression, while histone acetylation accelerates chromatin accessi-
bility and triggers the activation of gene transcription [76] (Figure 1). The acetylation
and deacetylation of proteins may impact the target proteins’ stability, activity, localiza-
tion, and interactions [102]. The reversible protein acetylation may indirectly affect other
PTMs through mechanisms like crosstalk between PTMs, protein-protein interactions,
recruitment of modifying enzymes, etc. In short, zinc-dependent HDACs are evolution-
ally conserved enzymes that epigenetically regulate gene expression in numerous cellular
pathways (reviewed in [81,103]). Reversible protein acetylation and other PTMs, like phos-
phorylation, methylation, ubiquitination, etc., are the core mechanisms regulating protein
function [104]. A large body of evidence indicates that the vast majority of signaling cas-
cades involved in cell cycle progression, proliferation, apoptosis, survival, differentiation,
development, angiogenesis, and inflammatory actions are regulated by the zinc-dependent
HDACs [82,105,106].

3. Zinc-Dependent HDACs in Endothelial Function
3.1. Class I HDACs: HDAC1, HDAC2, HDAC3, and HDAC8

Emerging evidence implied that zinc-dependent HDACs are actively involved in the
function as well as in the dysfunction of the endothelial lining [107,108]. However, the role
of specific HDAC subtypes remains incompletely defined and somewhat contradictory.
For example, a recent study demonstrated that nuclear class I HDACs—HDAC1 and
HDAC2, but not nuclear/cytoplasmic HDAC3—are involved in lung microvascular EC
barrier dysfunction induced by lipopolysaccharide (LPS) via the suppression of Sox18
gene expression [109]. However, another study demonstrated that the pharmacological
inhibition of HDAC1, HDAC2, and HDAC3 leads to EC barrier dysfunction in mice
and increased lung vascular leak by suppression of EC Roundabout4 (Robo4) receptor
expression [110]. In addition, published data demonstrated that specific inhibition of
HDAC1, HDAC2, and HDAC3 induces F-actin stress fibers in Human Umbilical Vein ECs
(HUVECs) and suggested that down-regulation of these HDACs is involved in Bacillus
anthracis lethal toxin (LT)-induced HUVEC barrier dysfunction [111]. Further, one group
demonstrated that the overexpression of HDAC2 in human aortic ECs mitigated the
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oxidized low-density lipoprotein (OxLDL)-mediated vascular dysfunction induced by
endothelial Arginase 2 (Arg2). This occurred via the direct binding of HDAC2 with the
Arg2 promotor [112], and protects against EC dysfunction and atherogenesis induced by
oxidized lipids in mice [113]. A study from another group indicated that upregulation
of HDAC2 promotes EC dysfunction in mice and humans via repressing the expression
of Manganese superoxide dismutase (MnSOD), thus increasing oxidative stress [114]. In
addition, pro-inflammatory cytokines like TNF-α and IL-1β induce inflammation and EC
dysfunction, at least in part, via down-regulation of RNAse1 in an HDAC2-dependent
manner in HUVECs [115]. Interestingly, the known EC barrier-enhancing lipid mediator,
sphingosine-1-phosphate (S1P) [116], can bind to HDAC1 and HDAC2 and inhibit their
enzymatic activity [117]. Thus, the involvement of class I HDACs in endothelial function
may be agonist- and tissue-specific. Accordingly, a recent review highlighted the regulatory
role of a class I HDAC, HDAC1, as an environmental sensor that drives functions of ECs
like inflammatory and NO signaling, redox balance, and angiogenesis in an agonist-specific
manner [40].

The nuclear/cytoplasmic enzymes HDAC3 and HDAC8 also regulate EC function in
cell- and agonist-specific fashion. In human lung microvascular ECs (HL-MVECs), LPS
modestly but significantly increases HDAC3 activity. Inhibition of HDAC 3 (in tandem with
HDAC6) protects against LPS-induced EC barrier dysfunction in vitro and in vivo, appar-
ently via acetylation and suppression of heat shock protein 90 (Hsp90) chaperone function
and attenuation of RhoA activity [118]. Accordingly, the downregulation of HDAC3 pro-
tects blood-brain barrier (BBB) integrity in oxygen-glucose deprivation/reoxygenation
states by promoting PPARγ activation [119] in brain ECs. It prevents BBB leakage in
type II diabetic mice via activation of the nuclear factor erythroid 2 (NFE2)-related factor
2 (Nrf2) [120], which controls the cellular resistance to oxidants [121]. It has also been
found that the mitigation of HDAC3 combats Type 2 diabetes mellitus-induced endothelial
dysfunction via the Keap1-Nrf2-Nox4 signaling pathway [122].

However, HDAC3 plays a somewhat contrasting role in atherosclerosis development,
which is tightly linked with endothelial dysfunction [123]. While HDAC3 is critical for
maintaining endothelial layer integrity in the areas of disturbed flow in atherosclerosis [44],
its up-regulation is involved in inflammatory responses in HUVECs and pharmacologic
inhibition of HDAC3 mitigates the development of atherosclerotic lesions in mice [124].
Interestingly, distinct roles for class I and IIa HDACs in regulating gene expression and EC
signaling in response to disturbed flow were noted [125], thus highlighting the functional
differences between HDACs.

While the role of HDAC8 in EC function is mainly unknown, emerging evidence
demonstrated the association of this enzyme with cytoskeletal proteins responsible for
smooth muscle contractility, such as α-actin [126] and cortactin [127]. The latter protein
actively participates in EC barrier regulation (reviewed by Bandela et al. [128]). However,
the role of HDAC8-mediated cortactin deacetylation in EC barrier regulation remains to
be elucidated.

3.2. Class IIa HDACs: HDAC4, HDAC5, HDAC7, and HDAC9

These HDACs have a more restricted expression patterns compared to class I HDACs
and some unique structural and functional features (listed in Figure 2), which allow them
to shuttle between the nucleus and the cytoplasm. They are recognized for their involve-
ment in endothelial cell migration, angiogenesis, inflammation, and embryonic devel-
opment [30,129,130]. Recently published data indicated that the pan-class IIa inhibitor,
TMP269, improves EC barrier function in an LPS-induced murine ALI model in vivo and
in HLMVECs in vitro [131]. Since this inhibitor selectively binds to the catalytic site of
class IIa HDACs [132], this data suggested that the catalytic activity of this HDAC group
may play a role in EC barrier regulation despite the minimal activity against acetylated
histones [94]. The effect of TMP269 can be attributed to the activation of the Rho pathway,
which may occur, at least in part, via de-repression of adapter protein ArgBP2 (Arg-binding
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protein 2) transcription [131]. However, the role of individual class IIa HDACs, as well as
the role of nuclear/cytoplasmic shuttling, was not specified.

HDAC4, a “gold standard” in class IIa HDACs research, is linked to early stress
response in pulmonary fibrosis. At the same time, HDAC2 is responsible for chronic pro-
gression, suggesting that these HDACs may regulate gene expression of pro-inflammatory
cytokines and fibronectin in concert [133]. Additionally, by triggering autophagy, HDAC4
regulates vascular inflammation [134]. The activation of HDAC4 prevented endothelial
dysfunction in diabetes [135]. A transcription factor, specificity protein-1, i.e., SP1, re-
duces intestinal barrier dysfunction, oxidative stress, and inflammatory response after
sepsis by upregulating HDAC4 while inhibiting the high mobility group box one pro-
tein (HMGB1) expression [136]. Long noncoding RNA cancer susceptibility candidate 11
(lncRNA CASC11) alleviates ox-LDL-induced injury (inflammation and apoptosis) in coro-
nary microvascular ECs, at least in part, by stabilizing HDAC4 [137]. Therefore, while the
information on the involvement of HDAC4 in EC barrier regulation is limited, published
data suggests that HDAC4 may have an anti-inflammatory and barrier-protective role
in ECs.

Vascular endothelial growth factor and its receptor (VEGF and VEGFR, respectively)
are primary drivers of angiogenesis in ECs [138,139]. There is a direct correlation between
HDAC4 phosphorylation and VEGF signaling. The HDAC4 phosphorylation can improve
the motility of ECs. Insights on phosphorylated HDAC4 in angiogenesis are provided by
Liu et al. [140]. Nox4 oxidizes HDAC4 and enhances its phosphorylation; thus, this cascade
facilitates proper tube formation by ECs [141]. HDAC4, HDAC5, and HDAC6 control
VEGFR-2 expression [142], and its deacetylation in ECs directly impact EC function [143].
In a study conducted by Urbich et al., HDAC5 was recognized as a suppressor of angio-
genic gene expression in HUVECs [144]. Consistently, HDAC5 impairs angiogenesis in
scleroderma ECs [145]. Recent data indicated that HDAC5 may be involved in LPS-induced
inflammatory responses in human pulmonary artery ECs (HPAECs) [146].

The literature suggests that HDAC7 is perhaps the most distinct of all class IIa
HDACs [147]. For example, unlike other class IIa HDACs, it may primarily be local-
ized in the cytosol in specific cell types [148]. Further, the pro- or anti-angiogenic function
of HDAC7 is dependent upon its cellular localization [147]. The role of HDAC7 in endothe-
lial permeability remains controversial. While a recent study implicated the involvement
of HDAC7 in E. coli-induced ALI in mice [56], the classical work of Dr. Olson’s group
demonstrated that HDAC7 maintains vascular endothelial integrity during embryogenesis
via downregulation of the expression of matrix metalloproteinase 10 (MMP-10) [53]. The
small interfering RNA (siRNA)-based knockdown of Filamin B can reduce VEGF-induced
HDAC7 cytosolic accumulation, repressing MMP-10 and NUR 77 genes and inhibiting
VEGF-mediated vascular permeability [149]. A peptide (7A) derived from HDAC7 was
reported as a driver for vascular regeneration through phosphorylation of 14-3-3γ [150].
In addition, the maintenance of the vascular lumen is dependent on the phosphatase
2A/HDAC7/ArgBP2 pathway, which controls the endothelial cytoskeletal dynamics and
cell-matrix adhesion in zebrafish and cultured HUVECs [151]. Data from the literature indi-
cates that dephosphorylation of HDAC7 by myosin light chain (MLC) phosphatase (MLCP)
regulates nuclear import of HDAC7 in thymocytes, suggesting the role of MLCP/HDAC7
crosstalk in cytoskeletal remodeling in non-muscle cells [152]. MLCP plays a vital role in
EC cytoskeletal remodeling, leading to EC barrier strengthening [153,154]. However, the
role of HDAC7 in regulating MLCP activity/EC barrier function is unknown. It was shown
that ectopically expressed HDAC7 complexes with β-catenin and 14-3-3 retain β-catenin
in the cytoplasm, thus inhibiting HUVEC proliferation [51]. On the contrary, a recent
study demonstrated that upregulation of HDAC7 increased β-catenin acetylation at Lys 49
accompanied by decreased phosphorylation at Ser 45, thus facilitating its nuclear import
and proliferation in lung cancer cell lines [155], suggesting a cell-specific role of HDAC7 in
the regulation of cell growth.
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While the role of HDAC9 in lung endothelial function is largely unknown, it was
shown that it can worsen endothelial injury in a cerebral ischemia/reperfusion model
via increasing inflammatory activity and endothelial barrier dysfunction [156]. HDAC9
was identified as a responsible factor since it triggered the IκBα/NF-κB and MAPKs
signaling pathways, leading to the promotion of brain ischemic injury [157], and it was
involved in brain EC injury associated with intracranial aneurism by repressing miR
34a expression [158]. Interestingly, HDAC9 may play a pro- or anti-inflammatory role,
depending on the cell type investigated [159]. Therefore, the role of class IIa HDACs in
endothelial function is complex and apparently tissue- and agonist-specific.

3.3. Class IIb HDACs: HDAC6 and HDAC10

HDAC6 is known for its effects on cytoskeletal dynamics and cell–cell junctions as well
as for regulation of EC mechanosensing and permeability [160–164]. As demonstrated by
studies conducted by Gao et al. [165] and Zhang et al. [166], HDAC6 controls cell motility
by governing tubulin and actin networks. HDAC6 is directly deacetylated α-tubulin at
Lys 40 [167], thus promoting MT disassembly in human pulmonary ECs [168]. However, it
may affect MT dynamics independently from its deacetylase activity [169]. It is also demon-
strated that HDAC6 plays a regulatory role in endothelial cell migration and angiogenesis
via deacetylation of the actin-binding protein cortactin [60]. In addition, HDAC6 stimu-
lates angiogenesis through polarization and migration of vascular ECs in a microtubule
end-binding protein 1 (EB1)-dependent fashion [170]. The involvement of HDAC6 in EC
barrier regulation is well documented due, at least in part, to the discovery of HDAC6-
specific inhibitors (reviewed by Zhang et al., [171]). In many cases, downregulation or
pharmacological inhibition of HDAC6 attenuates the increase in EC permeability induced
by pro-inflammatory agonists or edemagenic microorganisms [118,168,172–175]. How-
ever, mechanisms are varied and may be agonist-specific. They may include microtubule
destabilization accompanied by deacetylation of tubulin [168,173,174] and β-catenin, fol-
lowed by disruption of adherens junctions [168] and activation of Rho-mediated contractile
machinery [118,175]. In particular, Staphylococcus aureus-induced EC inflammation and
barrier dysfunction is mediated by an increased level of reactive oxygen species (ROS),
with subsequent HDAC6 activation followed by MT destabilization, which triggers the ac-
tivation of the nucleotide exchange factor GEF-H1/Rho pathway [175]. In addition, recent
data suggests that HDAC6 may activate Rho by either deacetylation (inhibition) of Rho
GDP-dissociation inhibitor (RhoGDI) or upregulation of ArgBP2 expression [131,176]. ROS-
mediated HDAC6 activation accompanied by HDAC6 phosphorylation at Ser 22 is involved
in the disruption of EC barrier integrity induced by cigarette smoke [174]. Collectively,
this data supported the multifaceted role of HDAC6 in EC barrier dysfunction. However,
recently published data demonstrates that in primary HLMVECs derived from neonatal
lungs and in a neonatal murine model of sepsis, downregulation of HDAC6 exacerbates
LPS-induced pro-inflammatory responses via upregulation of canonical toll-like receptor
(TLR) signaling, suggesting an anti-inflammatory role of HDAC6 in the development of
lung pathology during systemic sepsis [177]. Therefore, the role of HDAC6 in various ALI
models requires further investigation.

Along with HDAC6, HDAC10 plays an essential role in Hsp90-mediated proteasomal
degradation and regulation of VEGF receptors [62]. A recent study demonstrated that
HDAC10 promotes angiogenesis in HUVECs via the PTPN22/ERK axis [63]. In some
cell types, up-regulation of HDAC10 is linked to pro-inflammatory responses [178,179].
However, the downregulation of HDAC10 exacerbates NLRP3-mediated inflammatory
responses in intracerebral hemorrhage (ICH)-induced injury [180]. Further, a newly pub-
lished study demonstrated that nebulized inhalation of HDAC10 attenuates oxidative
stress, inflammation, and pulmonary fibrosis in a murine model of silicosis, suggesting an
anti-inflammatory role of HDAC10 in lung injury [181]. The role of HDAC10 in lung EC
barrier function remains to be elucidated.
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3.4. Class IV HDAC: HDAC11

HDAC11 is the most recently discovered zinc-dependent HDAC [182] and the only
member of class IV HDACs with some unique features (listed in Figure 2). The high ex-
pression of HDAC11 is associated with poor prognosis in non-small cell lung cancer [183].
HDAC11 is also critically involved in metabolic diseases, including obesity and diabetes
(reviewed in [184]). In particular, acetaldehyde and the NF-κB pathways regulate the levels
of HDAC11 in alcoholic liver disease. Further, the downregulation of HDAC11 decreased
IL-10 levels, which increased TNF-α levels, thus promoting inflammation [185]. Accord-
ingly, recent studies demonstrated that TNF-α increases the expression of HDAC11 in
HUVECs, resulting in the activation of NLRP3/caspase-1/GSDMD and caspase-3/GSDME
signaling cascades and culminating in pyroptosis, an inflammatory type of cell death in-
volved in atherosclerosis [66,67]. Proteinase-activated Receptor-2 (PAR2)-induced HUVECs
barrier compromise involves repression of VE-cadherin expression via upregulation of
HDAC11 [65]. This data supported the involvement of HDAC11 in inflammatory responses
and EC barrier compromise. Interestingly, the initial characterization of HDAC11 revealed
that the enzyme co-immunoprecipitates with HDAC6, suggesting the formation of a func-
tional complex [182]. However, the role (if any) of a potential HDAC11/HDAC6 interaction
in EC function requires further investigation.

4. EC-Mediated Central Signaling Cascades and Their Regulation by
Zinc-Dependent HDACs

Zinc-dependent HDACs contribute to vascular pathobiology through multiple mecha-
nisms, such as impairing the production of nitric oxide (NO), increasing oxidative stress,
triggering severe inflammatory cascades, differentiation, proliferation, apoptosis, altering
integrity of ECs, modulating vascular tone and angiogenesis [29,30,186,187]. Broadly simpli-
fied links between HDACs and vascular regulatory mechanisms are presented in Figure 3. The
engagement of class I HDACs in overall cellular proliferation, differentiation, and development
is reviewed by Reichert et al. [188]. Class I and II HDACs were studied in ECs with regard to
inflammation, oxidation, and proliferation-related signaling cascades and mRNA, i.e., gene
expression studies, and interpreted as prominent therapeutic targets in EC dysfunction [125].

In particular, HDACs can epigenetically modulate the activity of regulators (cyclins, cyclin-
dependent kinases, p53, etc.) involved in cell cycle progression and proliferation [189,190].
Under pathological circumstances (e.g., stress, injury, hypoxia, etc.), ECs tend to migrate
and proliferate, thus disturbing EC barrier integrity [191,192]. HDAC1 to HDAC7 are
active participants in these pathomechanisms [107]. Accordingly, HDAC inhibitors, such
as SAHA (suberoylanilide hydroxamic acid, vorinostat) [193], trichostatin A (TSA), api-
cidin [194], and tubacin [195], were reported to overcome barrier dysfunction and restrict
EC proliferation. Interestingly, in cancer cell lines, HDAC3 and HDAC8 downregulate
the expression of SIRT7, thus facilitating proliferation [196,197] and suggesting a pos-
sible crosstalk between zinc-dependent and NAD+-dependent (class III) HDACs in the
regulation of cell proliferation.

In apoptosis and cell survival pathways, HDACs affect the expression of pro-apoptotic
and anti-apoptotic genes, thus maintaining the equilibrium between cell death and survival
signals [198]. Apoptosis has been linked to several cardiovascular diseases, and a positive
correlation between an increased EC apoptosis and the development and progression of
cardiovascular diseases has been established [199–202]. In a HUVEC model of disturbed
flow (atherosclerosis), β-catenin positively regulates endothelial nitric oxide synthase
(eNOS) activity and anti-apoptotic gene expression [203]. In turn, β-catenin activity and
cellular location are controlled by HDAC7 in HUVECs, suggesting the involvement of
HDACs in β-catenin-mediated EC proliferation and survival [51]. HDAC1 and HDAC2
modulate the expression of endothelial VCAM-1 and atherogenesis by mechanisms that
downregulate the methylation of the GATA6 promoter by blocking STAT3 acetylation [204].
HDACs are considered an epigenetic factor in the modulation of vascular endothelium-related
atherosclerosis and flow [28]. MicroRNA-200b-3p can induce EC apoptosis in atherosclerosis
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by encountering HDAC4 [205]. The involvement of HDACs in atherosclerosis, emphasizing
the regulation of endothelial cell function, is reviewed by Chen et al. [107].
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Figure 3. Main endothelial signaling pathways mediated by zinc-dependent HDACs. HDAC1, HDAC3,
and HDAC6 are involved in apoptosis. HDAC1, HDAC6, and HDAC8 are responsible for vascular tone.
HDAC3 and HDAC6 control cell differentiation. HDACs 1 to 7 participate in cell proliferation. Except
for HDAC8, HDAC10, and HDAC11, all other zinc-dependent HDACs drive angiogenesis. HDAC1,
HDAC2, HDAC3, HDAC5, and HDAC6 regulate NO production. Aside from HDAC4 and HDAC10, the
rest of the zinc-dependent HDACs are involved in inflammatory responses. HDACs 3 to 7 and HDAC11
are the key players accounting for the regulation of cell integrity. HDAC2, HDAC3, and HDAC6 are
contributors to oxidative stress. See the text for further explanations and references.

Cellular differentiation, development processes, and angiogenesis (VEGF and its
receptors) are also epigenetically controlled by HDACs [198]. Hrgovic et al. explained that
the anti-angiogenic action of HDAC inhibitors like TSA, sodium butyrate (But), and valproic
acid (VPA) by VE-cadherin-dependent mechanism suppresses VEGFR-2 expression [142].
HDAC1, HDAC4, HDAC5, and HDAC6-mediated suppression is a crucial target for anti-
angiogenic drug development.

Inflammatory events promote injury, vascular dysfunction, and a breach in EC barrier in-
tegrity. Most of the time, the inflammation and its regulation are HDAC-dependent [107,206,207].
In particular, HDACs modulate the expression of genes encoding inflammatory cytokines,
chemokines, and adhesion molecules, thereby affecting the inflammatory cascades, in-
cluding the NF-κB pathway [206,208–210]. In 2019, Bedenbender et al. elucidated how
inflammatory cytokines hindered the equilibrium of endothelial RNase1-eRNA home-
ostasis, which buffers against different vascular pathologies [115]. They reported that the
inflammatory stimulation of ECs facilitates HDAC2 activation, which subsequently leads to
H4 and H3K27 deacetylation (within the promoter region of RNASE1). The vascular archi-
tecture disturbs the vascular inflammation (TNF-α) driven by HDAC1, HDAC2, HDAC3,
HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, and HDAC11 [30,107,211]. The functional
roles of HDACs in CVD-related inflammations are reviewed by Kulthinee et al. [212].

ROS, oxidative stress, and uncoupling of endothelial nitric oxide synthase (eNOS) are the
critical components for inducing endothelial dysfunction [213]. HDAC2, HDAC3, and HDAC6
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are associated with oxidative stress/ROS production [211]. HDAC4/HDAC5-HMGB1 me-
diated signaling, facilitated by the activity of NADPH oxidase, plays a vital role in cerebral
ischemia/reperfusion injury or ischemic stroke [214]. HDACs like HDAC1, HDAC2, HDAC3,
HDAC5, and HDAC6 and their inhibitors were shown to modulate NO production [215].

5. Therapeutic Targeting of Zinc-Dependent HDACs in Lung Injury

The broad relationship between zinc-dependent HDACs and their inhibitors is shown
in Figure 4. A deeper understanding of the structural features, selectivity and capability of
various HDAC inhibitors was reviewed by Roche and Bertrand [216]. These authors have
summarized the advancements made by chemists in designing more specific and effective
compounds and distinguished their behavior within target molecules. Briefly, HDAC
inhibitors are subdivided into four classes based on their chemical structure: hydroxamate,
cyclic peptide, benzamide, and aliphatic acids (Figure 4). TSA, belinostat, panobinostat, and
vorinostat (SAHA) belong to the hydroxamate class. Among these, pan-HDAC inhibitors,
such as TSA and vorinostat, are canonical zinc-dependent HDAC inhibitors that inhibit
HDAC1 to HDAC9 with about equal potency [217]. Depsipeptide belongs to the cyclic
peptide class. Inhibitors classified as benzamides, MS-275 (etinostat) and MGCD0103
(mocetinostat) are usually considered to target HDAC1, HDAC2, HDAC3, and HDAC8
(class I HDACs). 4-Phenylbutyric acid (phenylbutyrate), sodium butyrate (sodium salt of
butyric acid), and valproic acid (valproate) are characterized as aliphatic acids (Figure 4). In
general, zinc-dependent histone deacetylase inhibitors share similar pharmacophores that
consist of three essential components: a cap group, a linker, and a zinc-binding domain.
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Figure 4. Zinc-dependent HDACs and their inhibitors. This figure (made at SankeyMATIC.com)
illustrates four distinct classes of HDAC inhibitors: aliphatic acids, hydroxamate, benzamide, and
cyclic peptide. Among these, trichostatin A (TSA), belinostat, panobinostat, and vorinostat are
hydroxamate inhibitors, with TSA being the most extensively studied. Depsipeptide falls within
the cyclic peptide class. Notably, the inhibitors MS-275 (etinostat) and MGCD0103 (mocetinostat)
target HDAC1, HDAC2, HDAC3, and HDAC8, classified as class I HDACs, and are categorized as
benzamides. Aliphatic acids encompass 4-phenylbutyric acid (phenyl butyrate), sodium butyrate
(sodium salt of butyric acid), and valproic acid (valproate).

The potential role of HDAC inhibitors as therapeutic agents in the treatment of a wide
variety of diseases has been established (reviewed by Li et al. [218] in 2019 and Li et al. [219]
in 2022). HDACs have recently been suggested as promising potential targets for treating
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cardiac diseases [220]. HDAC inhibitors are also reviewed in treating sepsis and inflam-
matory pulmonary diseases [221,222]. Table 2 summarizes broad knowledge of the role
of HDAC inhibitors in lung pathobiology [46,66,142,223–239]. Emerging evidence demon-
strated that ALI/ARDS is regulated (not entirely but at least partially) by HDACs [240–242].
However, the information on the involvement of specific HDAC-mediated signaling path-
ways in ALI/ARDS is limited and based primarily on the effect of semi-selective HDAC
inhibitors on ALI manifestations in murine models.

It was demonstrated that treatment with a broad-spectrum inhibitor of zinc-dependent
HDACs, valproate [243], administrated 30 min or 3 h after Escherichia coli (E. coli) infection
attenuates pro-inflammatory responses in mouse lungs. However, administration of the same
inhibitor at 4 h, 6 h, or 9 h after E. coli did not affect lung injury, suggesting a limited therapeutic
window for this treatment [224,225]. Accordingly, the therapeutic index of valproate is
reported to be narrow in both mice and humans due to side effects and toxicity [244].

Recently, Kasotakis and co-workers [56] reported that TSA can effectively mitigate lung
inflammation and improve the survival rate of mice infected with E. coli. Surprisingly, the
E. coli-induced injury in murine lungs is accompanied by decreased transcription of several
HDAC genes, i.e., HDAC2, HDAC7, and HDAC8, but increased the expression of HDAC7
at the protein level. Further, TSA selectively decreased HDAC7 mRNA after an E. coli
insult and attenuated E. coli-induced HDAC7 at the protein level. These discrepancies are
discussed in more detail in the form of a letter to the editor [245]. Notably, the mechanisms
by which TSA attenuates lung injury in E. coli-induced murine pneumonia are unclear. TSA
was suggested to attenuate lung injury induced by mechanical ventilation/bleomycin insult
in mice via inhibition of HDAC4/Akt signaling. However, TSA selectivity towards HDAC4
has not been described [246]. TSA and SAHA attenuate ventilator-induced lung injury in
rats [247]. In addition, literature data indicated that another broad-spectrum HDAC inhibitor,
sodium butyrate (SB), attenuates LPS-induced lung injury in mice [248]. Both TSA and SB are
effective against intrapulmonary inflammation and promote survival in murine sepsis [249].

The nuclear HDAC1 and HDAC2 participation in the endothelial barrier compromise
in vitro and lung injury in an LPS murine model was recently evaluated [109]. Selec-
tive inhibition of HDAC1 and HDAC2, but not HDAC3, attenuates LPS-induced hyper-
permeability in HLMVECs, likely through the preservation of Sox 18 expression, which LPS
downregulates. Further, the HDAC1 inhibitor, tacedinaline, preserves Sox 18 expression
and attenuates LPS-induced ALI in mice. Therefore, this study suggested that HDAC1
and HDAC2 act as transcription repressors, which drive the downregulation of Sox18
transcription induced by LPS, thus compromising the integrity of the pulmonary EC barrier.
Therefore, selective HDAC1/HDAC2 inhibition may benefit ALI/ARDS treatment.

A recent study suggested that the chemical constituent of Azadirachta indica, Nimbolide,
inhibits LPS-induced ALI in mice via suppression of oxidative stress and inflammatory
responses, at least, in part, via inhibition of nuclear translocation of NF-κB and HDAC3 in
alveolar epithelial cells [250]. Another study reported that selective inhibition of HDAC3
by the RGFP966 compound suppresses the expression of pro-inflammatory cytokines (such
as IL-6, IL-1β, and IL-12β) in macrophages via inhibiting activity of NF-κB and attenuated
lung injury manifestations in murine lung slices treated with LPS/IFNγ [251]. Interest-
ingly, HDAC3 in macrophages may regulate the expression of pro-inflammatory genes
in vitro and in mice in a dichotomous manner, with HDAC3 activity suppressing LPS-induced
signaling. At the same time, the recruitment of HDAC3 by LPS activates the expression of pro-
inflammatory genes independently from HDAC3 catalytic activity [252]. Therefore, specific
precautions should be taken to generate HDAC3-specific inhibitors for treating lung inflam-
mation and injury by targeting HDAC3 enzymatic activity [253]. While combined inhibition
of HDAC3 and HDAC6 (by RGFP-966 and tubastatin, respectively) attenuates LPS-induced
ALI in mice [118], a recent study demonstrated that MS-275 compound (entinostat), inhibits
HDAC1, HDAC2, and HDAC3 activities [254], suppresses Robo4 expression by inhibiting
HDAC3 in ECs and enhances EC permeability and lung vascular leakage in mice [110].
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Table 2. Zinc-dependent HDACs inhibitors in lung pathobiology.

Class Inhibitor Mode of Action Reference/s

Class I

Valproic acid

Attenuate parameters of lung injury like oxidative stress, apoptosis, and
inflammation, enhance HO-1 activity (ALI) [223]

Reduces levels of IL-6 and tumor necrosis factor (ALI) [224]

Reduces neutrophil influx into lungs and local tissue destruction via decreasing
myeloperoxidase activity. Ameliorate pulmonary as well as systemic inflammatory

response (ARDS)
[225]

Antagonizes the inflammatory damage of vascular tissues [226]

Inhibits VEGFR-2 protein expression in angiogenesis [142]

Increases histone acetylation in thrombopoiesis [227]

Sodium butyrate Inhibits VEGFR-2 protein expression in angiogenesis [142]

Trichostatin A

Alleviates HDAC4-mediated vascular inflammatory responses in hypertension [228]

Prevents I/R injury-induced activation of gene programs that include cell death
and vascular permeability [229]

Inhibits VEGFR-2 protein expression in angiogenesis [142]

Trichostatin A
+ 5-Aza 2-deoxycytidine

Inhibits the eNOS-Cav1-MLC2 signaling pathway, enhances acetylation of histone
markers and improves EC permeability (ALI) [230]

Reduce inflammation and promote an anti-inflammatory M2 macrophage by
inhibiting MAPK-HuR-TNF and activating STAT3-Bcl2 pathways (ALI) [231]

miR-23b (HDAC2) Reduces levels of IL-1β, IL-6, and TNF-α and inhibit HDAC2 (ALI) [232]

PCI34051
(HDAC8)

Reduces blood pressure via attenuating a component of the RAS or modulating
nitric oxide signaling pathways (Hypertension) [46]

Class IIa

Valproic acid Same as Class I -

Sodium butyrate Same as Class I -

Trichostatin A Same as Class I -

TMP 195 Limits proinflammatory responses in Atherosclerosis [233]

MC1568 Abolishes NO-induced formation of macromolecular complexes and regulates
downstream gene expression [234]

Tasquinimod
(HDAC4)

Allosterically binds to HDAC4 and prevents HDAC4/nuclear receptor corepressor
(N-CoR); HDAC3 complex formation, which inhibits HDAC4-regulated histone

deacetylation and transcription, thus reduces inflammation in Angiogenesis
[235,236]

Class IIb
Sodium butyrate Same as Class I -

Trichostatin A Same as Class I -

Class IIb
(HDAC6)

CAY10603 Prevent α-tubulin deacetylation, protects against inflammation, blocks IκB
phosphorylation, and reduces caspase-1 activation, particularly in epithelial cells (ALI) [237]

Tubastatin A Inhibit angiotensin II-induced hypertension via protecting cystathionine γ-lyase
protein degradation [238]

Class IV

Trichostatin A Same as Class I -

Hydroxytyrosol acetate Inhibits pyroptosis by possible targeting of HDAC11 in TNF-α-induced
HUVECs (Atherosclerosis) [66]

Quisinostat Aggf1 regulates the pathophysiology of vascular endothelium; therefore, HDAC11
inhibitors restore the expression of Aggf1 in vascular injury [239]

HO-1—Heme oxygenase-1; IL-6—Interleukin-6; ALI—Acute Lung Injury; ARDS—Acute Respiratory Distress
Syndrome; VEGFR-2—Vascular Endothelial Growth Factor Receptor-2; HDAC—Histone Deacetylase; I/R—
Ischemia/Reperfusion; eNOS—endothelial Nitric Oxide Synthase; Cav1—caveolin1; MLC2—myosin light chain
2; EC—Endothelial cell; MAPK—mitogen-activated protein kinase; HuR—Human Antigen R; TNF—Tumor
Necrosis Factor; STAT3—Signal Transducer and Activator of Transcription 3; Bcl2—B-cell lymphoma 2; IL-1β—
Interleukin-1 beta; TNF-α—Tumor Necrosis Factor Alpha; RAS—renin-angiotensin system; NO—nitric oxide;
N-CoR—Nuclear Receptor Co-Repressor; IκB—Inhibitor of κB; HUVECs—human umbilical vascular endothelial
cells; Aggf1—Angiogenic Factor with G Patch and FHA Domains 1.



Biomolecules 2024, 14, 140 15 of 26

Selective HDAC6 inhibition by tubastatin attenuates LPS-induced deacetylation of
α-tubulin and β-catenin in the lung, which was accompanied by reduced pulmonary
edema [168], suggesting the therapeutic value of HDAC6 inhibition in ALI treatment.

The role of zinc-dependent HDACs in managing chronic lung diseases is more com-
plex. Pathological cell type-specific imbalance of class I and II HDAC activities was
observed in idiopathic pulmonary fibrosis (IPF). Positive outcomes have been predicted
in managing IPF through HDAC1 and HDAC2 inhibition by Kim et al. [255]. This group
recently reported HDAC1 as a signature marker in systemic sclerosis-associated inter-
stitial lung disease [256]. However, the pan-HDAC inhibitor, SAHA, is not practical in
the treatment of cystic fibrosis ex vivo [257]. Further, HDAC2 is essential for suppress-
ing pro-inflammatory gene expression in chronic lung diseases like COPD and severe
asthma [258,259].

Zinc-dependent HDACs (mainly HDAC3, HDAC4, and HDAC8) are suggested as po-
tential therapeutic targets in managing hypertension [260]. It was also reported that specific
HDAC6 inhibition with tubastatin A attenuated lung injury in a rat model of COPD [261],
thus offering a promising therapeutic strategy for COPD treatment. Further, there is a
significant demand for the development of isoform-specific inhibitors for the treatment
of lung injury as well as other diseases [262]. As a therapeutic remedy option, it is also
essential to revisit and check the efficacy and selectivity of existing inhibitors. In addition,
drug repurposing can be another therapeutic option to cure lung injury. For example,
it was recently demonstrated that escitalopram, a selective serotonin reuptake inhibitor
(SSRI), can be utilized as a treatment option for ALI. It inhibits the SIK2/HDAC4/NF-κB
signaling pathway and overcomes the lung injury [263]. Combinational therapy, which
includes HDAC inhibitors and DNA methylation modifiers, has been proven to be effective
in murine models of LPS-induced inflammatory lung injury [230]. Further, developing
dual-specificity inhibitors is another promising approach for treating lung injury and co-
morbid pathologies. Thus, a recently designed dual inhibitor of HDACs and the PI3K/AKT
pathway, CUDC-907, effectively treated bleomycin-TGFβ1-induced lung fibrosis as well as
TGFβ1-induced tumor fibrosis [264].

6. Conclusions

As detection methods for post-translational protein modifications improve, the reper-
toire of cellular acylated molecules continues to expand. This necessitates discovering
and validating responsible enzymes involved in these processes, as well as the func-
tions of different targeting sites. Our current understanding of these modifications is
primarily based on studies of a limited number of lysine/histone acetyltransferases and
lysine/histone deacetylases. Additionally, understanding the interplay between epige-
netics, post-translational modifications, and metabolism in different cell types presents a
significant challenge. However, with the advancement of genetic and biochemical tools, fu-
ture research will focus on unraveling the molecular specificity of zinc-dependent HDACs.
This review is primarily focused on the role of zinc-dependent HDACs in the regulation of
EC-mediated lung function, emphasizing that the role of these enzymes can be isoform-
and agonist-specific. However, additional studies are required to further elucidate the role
of specific zinc-dependent HDAC subtypes and individual enzymes in the complex process
of lung function regulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom14020140/s1, Figure S1: Secondary and tertiary structures
of zinc-dependent HDACs derived upon protein data bank and UniProt; Table S1: Molecular and
structural characteristics of zinc-dependent HDACs.
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