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How does the long-term behaviour near equilibrium of model food webs correlate with their short-term
transient dynamics? Here, simulations of the Lotka—Volterra cascade model of food webs provide the first
evidence to answer this question. Transient behaviour is measured by resilience, reactivity, the maximum
amplification of a perturbation and the time at which the maximum amplification occurs. Model food
webs with a higher probability of local asymptotic stability may be less resilient and may have a larger
transient growth of perturbations. Given a fixed connectance, the sizes and durations of transient
responses to perturbations increase with the number of species. Given a fixed number of species, as
connectance increases, the sizes and durations of transient responses to perturbations may increase or
decrease depending on the type of link that is varied. Reactivity is more sensitive to changes in the
number of donor-controlled links than to changes in the number of recipient-controlled links, while
resilience is more sensitive to changes in the number of recipient-controlled links than to changes in the
number of donor-controlled links. Transient behaviour is likely to be one of the important factors affecting

the persistence of ecological communities.
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1. INTRODUCTION

Stability has been considered a major constraint on eco-
logical communities (May 1972, 1973; Yodzis 1981, 1989;
Pimm 1982, 1984; Cohen & Newman 1984, 19854, 1988;
Cohen et al. 1985; Paine 1988; Lawton 1989; Pimm e/ al.
1991) but the definition and measurement of ecological
stability remain controversial (Lewontin 1969; Holling
1973; Auerbach 1984; Haydon 1994).

Studies of local asymptotic stability conventionally
calculate the probability of local asymptotic stability in
an ensemble of stochastically generated community
matrices of Lotka—Volterra models. The ecological use of
local-asymptotic-stability analysis has been challenged for
several reasons (Lewontin 1969; Connell & Sousa 1983;
DeAngelis & Waterhouse 1987; Paine 1988; Hastings
1988, 1996; Haydon 1994). One reason is that local
asymptotic stability provides no information about the
short-term transient behaviour of a system. A perturba-
tion may be temporarily amplified, despite local stability
(Neubert & Caswell 1997). Frequent perturbations may
keep ecological systems far from equilibria (DeAngelis &
Waterhouse 1987). Frequently perturbed food webs with
locally asymptotically stable equilibria might not persist if
their return times are long and perturbations are tran-
siently amplified. Theories of food-web structure based on
the asymptotic behaviour near equilibrium need to be re-
examined in the light of transient dynamics.

To our knowledge, this study is the first to investigate
whether the transient behaviour of food webs at locally
stable equilibria and the probability of long-term
asymptotic stability have similar relationships with web
complexity.
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2. MODEL AND METHODS

(a) The Lotka—Volterra cascade model
We use the Lotka—Volterra cascade model (LVCM) (Cohen
et al. 19906b):

xl:xi(eﬂtz:/%),x,,(0)>o,z':1,..., n, (1)
J=1

where x; is the abundance or biomass of species 7, ¢; is the
intrinsic rate of change of species ¢ and p;; is the interaction coef-
ficient between species ¢ and species j. System (1) has an equili-
brium at x;=0, t=1, . . ., n called the trivial equilibrium. The
nxn matrix P = (py); ., is called the community matrix. We
assume that system (1) has a positive equilibrium, i.e. that a

constant n x 1 vector Q = (¢;)"_, exists such that

¢+ Y pyg; =0, with ¢;>0 for all i. (2)

J=1

The LVCM specifies the trophic structure of the community
by the cascade model: for each pair of species 7, j=1, ... n
with ¢ <, species ¢ never eats species j, while species j has prob-
ability ¢/n (0 < ¢ <n) of eating species ¢ (Cohen e/ al. 1990a).
One of four dynamic effects occurs between each pair of species

i j=1,.. . nwithi<j.

(1) Species j has a negative effect on species ¢ but species ¢ has
no effect on species j (recipient-controlled or r links), i.e.
_ py<Oandp=0 o
(i1) Species j has no effect on species ¢ but species ¢ has a posi-
tive effect on species j (donor-controlled or s links), i.e.
(iii) Species j has a negative effect on species ¢ and species ¢ has
a positive effect on species j (consumer—victim or ¢ links),

ie p; <0andp;>0.
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(iv) Neither species has a dynamic effect on the other or there
are no trophic links between species ¢ and species j, i.e.

p;=0and p;=0.

A t link is a bidirectional link equivalent to a coupled pair of
unidirectional links. Events (1)—(iv) are assumed to occur, inde-

pendently for each pair of species 7, j=1, . . ., n with ¢ < j, with

probabilities:

Pr{p; <0 and p; = 0} = r/n; (3a)
Pr{p; = 0 and p;; >0} = s/n; (3b)
Pr{p; <0 and p; >0} = t/n; (3¢)
Prip; =0 and p; = 0} = 1 — (r+ s + 1) n; (3d)

where 7, 5, and ¢ are non-negative constants with r+s+¢<n
and all species are self-limited, i.e. Pr{p,; < 0} =1 for all 7.

(b) Measures of transient dynamics

Monte Carlo simulations of randomly assembled LVCM food
webs will be discussed in §2(c). For each sample web, the local
asymptotic stability and four characteristics of the transient
dynamics are measured.

(1) Local asymptotic stability

An equilibrium is said to be locally asymptotically stable if
and only if all eigenvalues of its Jacobian matrix, 4, are negative
or have a negative real part, i.e. Re(4;(4)) <0 for all i. (The
Jacobian matrix, 4, is defined in equation (12), §2(c).) We define
system (1) to be locally asymptotically stable if it has a positive
equilibrium that is locally asymptotically stable. If system (1)
has a positive equilibrium that is locally asymptotically stable
then that positive equilibrium is unique.

(i1) Resilience

Resilience describes how fast the state of a locally asymptoti-
cally stable system returns to its (unique) positive equilibrium
following a perturbation away from that equilibrium (Pimm &
Lawton 1977, 1978; Pimm 1982, 1984; DeAngelis et al. 1989). It is
calculated as the absolute value of the largest real part of any of
the eigenvalues of the Jacobian matrix, 4, at equilibrium:

., nyl. 4)

resilience = [max{Rek;(4); i =1, . .

The short-term transient growth of a perturbation is charac-
terized using three measures: the reactivity, the maximum
amplification and the time at which this maximum amplifica-
tion occurs (Neubert & Caswell 1997).

(ii1) Reactivity

Reactivity is the maximal instantaneous rate at which pertur-
bations (away from the unique positive equilibrium) can be
amplified and is defined as follows:

1 d
reactivity = max {(—M) }; (5)
%0 0

Iy Iyl de
where y represents the perturbation away from equilibrium of

system (1). The perturbation y is governed by dy/dt=A4y. The
norm, || y||, is the Euclidean norm

n 1/2
Il = {Zy?} : (6)
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The reactivity is calculated by
reactivity = max{4; (4 +[4]")/2);i=1, ..., n} (7)

where the eigenvalues, 4;, in equation (7) are all real because
A+ 41T is symmetrical. We define the equilibrium of a system
to be reactive if and only if reactivity, computed by equation (7),
is strictly positive. We define system (1) to be reactive if and only
if the system is locally asymptotically stable and its positive equi-
librium is reactive.

(iv) Maximum amplification

The maximum amplification, or the largest possible relative
growth of a perturbation, is the maximum over time, ¢, of the
amplification envelope, p(f). The amplification envelope at time
t=0 is the maximum possible growth that any perturbation
could have, i.e.
ol Lol ®)

= max ,
ol20 || ol

and is calculated by

p(t) = Il I, (9)

where |||l denotes the matrix Fuclidean norm. The maximum
amplification is then

Prmax = max p(l). (10)

t=0

(v) The time at which the maximum amplification occurs
The time at which the maximum amplification occurs is
determined by

Tmax = min{t e (O7w)|p(t) = pmax}' <1 1)

When system (1) is reactive, perturbations from its positive
equilibrium are amplified in the short term but decay in the

long term. Then p,,. and 7T ., represent the largest possible

X
amplification and the earliest time it is achieved, respectively,
while resilience and reactivity are the slopes of In[p()] as
t— oo and (— 0, respectively (Neubert & Caswell 1997).

Figure 1 illustrates these measures.

(c) Simulations

Numerical simulations are conducted on LVCM food webs
with differing numbers of species and differing connectances.
The connectance, C, is defined as the fraction of possible links
that actually occur in a food web with 7 species. If bidirectional
non-cannibalistic links or pairs of unidirectional non-canniba-
listic links are counted by L, then undirected connectance is
C,=L[[n(n—1)/2], and the expected value of C,, 1s (r + s+ ¢) /n. If
unidirectional links are considered then directed connectance is
C,;=L/[n(n—1)] and the expected value of C,is ¢+ s+ 2t)/2n.
The probabilities 7/n, s/n and t/n represent the partial connec-
tances of 7 links, s links and ¢ links, respectively. 1o investigate
the effect of variations in connectance, model food webs of ten
species were assembled and each probability (/n, s/n or t/n) was
incremented 1in steps of 0.05 from 0 to an upper bound deter-
mined by r/n+s/n+t/n=1.

To investigate the effect of the number of species, model food
webs were assembled and the number of species was incre-
mented in steps of 2, from 2 to 30, for several different combina-
tions of 7/n, s/n and t/n. For each combination of r/n, s/n and ¢/n,
the total probability of unidirectional links was 0.4. A bidirec-
tional link (¢ link) counted as two unidirectional links.
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Figure 1. (a) Resilience, reactivity, p,,, and 7,

max

the slope of In[p(¢)] as t = 00; P and T, show the position
of the maximum of p(t). (6) The time trajectory of the same
system. Each solid line represents the relative abundance of

one species.

For cach configuration of r/n, s/n, ¢t/n and n, a community
matrix P = (p;)} ;_; was generated according to the rules of the
LVCM. First, a uniformly distributed random number, ¥, was
drawn from (0, 1) independently for all pairs of 4, j (1 < j):ify €
[0, 7/n] then p; <0 and p;=0; if Yy€@/n, ¢ +s)/n] then p;=0
and pj; > 0y if ye((r+s)/n, (+s+1)/n] then p; <0 and p; > 0;
ifye(+s+1)/n, 1] then p;=0 and p;;=0.

Then each non-zero element of P=(p;) was independently
assigned a uniformly distributed random value, with p;; and p;;
in (=1, 0) and pj; in (0, 1). We also generated a positive vector of
equilibrium, Q= (¢;)7_,, with each ¢; uniformly distributed in
0, 1.
e+ E;;l p;q; = 0 for all 4, j. E is required for numerical simula-
tions of trajectories. The Jacobian matrix of the LVCM at the
equilibrium @ is then

Then a vector E={(¢);_, was chosen so that

g prege D12Gn
baqi P2age D2uGn

= . . . (12)
bt Puaqo DPunn

If Q is locally asymptotically stable then so is system (1); if Q
1s reactive then so is system (1).

For each configuration of n and r/n, s/n and ¢/n, 10 000 such
stochastic systems were sampled. We estimated the probabilities of
locally asymptotically stable systems and reactive systems as well
and 7, for an

as the average values of resilience, reactivity, max

pmax
appropriate set of sample systems. The probability of local asymp-
totic stability was estimated as the relative frequency of locally

asymptotically stable systems across all 10 000 sample food webs.
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The mean resilience was calculated over the set of locally asymp-

totically stable systems. The mean values of reactivity, and

pmax
T 1ax Were calculated over reactive systems.

The random sampling errors of these statistical estimates
were represented by the standard deviations of the means. The
standard deviation of the probability of local asymptotic stability

was bounded above by 0.005, given 10 000 simulations.

3. RESULTS

(a) Local asymptotic stability and resilience

The probability of local asymptotic stability decreases
monotonically with increasing numbers of species
(figure 2a). With fixed probabilities for the three types of
links (r/n, s/n and ¢/n), the mean resilience of stable systems
decreases monotonically as the number of species increases
(figure 2b). Systems with a higher probability of ¢ links are
significantly more likely to be locally asymptotically stable
and have a greater mean value of resilience than systems
with a lower probability of ¢ links (figure 24,6). This
pattern is consistent across different numbers of species
and for other similar sets of configurations sharing a
common total probability of unidirectional links.

With the number of species fixed, the mean resilience
may increase or decrease with increasing connectance,
depending on the types of links varied. When the prob-
ability of ¢ links is increased, with fixed probabilities of r
links and s links, the mean resilience increases and then
declines as ¢/n increases (figure 3a,b). The mean resilience
also increases when s/n is increased, for small 7/n and ¢/n
(figure 3¢). In contrast, the probability of local asymptotic
stability —apparently decreases monotonically with
increasing probabilities of any type of link (Chen &
Cohen 2001). Resilience may change differently from the
probability of local asymptotic stability when connectance
increases.

To compare the effect of one consumer—victim
link (# link) with that of an uncoupled pair comprising
one recipient-controlled link ( link) and one donor-
controlled link (s link) where the r link and the s link
involve distinct species, suppose that two sets of food webs
have the same number of species and that their commu-
nity matrices have the same number of negative super-
diagonal and positive sub-diagonal elements. In one set of
webs, all links are ¢ links, i.e. if p; < O then p; > 0, always
assuming ¢ <j. In the other set of webs, all links are
either r links or s links with r =y, i.e. if p;; <0 then p;=0
and if p; > 0 then p;=0. Model food webs with only ¢
links have a larger mean resilience than those with only 7
links and s links (r=s) (figure 3a).

In two sets of model food webs with the same total
numbers of 7 links plus s links, webs having more s links
than 7 links are, on average, more resilient than webs
having more 7 links than s links (figure 36—f). The differ-
ence in mean resilience between the two sets of webs
increases with the difference between the numbers of r
links and s links (figure 3¢—f).

(b) Reactivity

With fixed probabilities for each type of link, the prob-
ability of reactivity and the mean reactivity of reactive
systems increase monotonically with increasing numbers

of species (figure 2¢,d). With a fixed overall probability of
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Figure 2. Probabilities of (a) local asymptotic stability and (¢) reactivity and the mean () resilience and (d) reactivity in relation
to the number of species for different combinations of the three parameters r, s and ¢ in Lotka—Volterra cascade model food webs.
I,tin=04and rjn=s/n=0; 11, tjn=r/n=s/n=0.2; 111, t/n =0, r/n =5/n=10.4. In all three cases (r/n+s/n+2t/n)/2=0.4. Each
point represents mean £ 1 s.d. of the mean; the error bars are not visible for most points since the standard deviations of the

means are smaller than the size of the markers on the curves.

unidirectional links (counting a ¢ link as a pair of unidirec-
tional links), systems with a larger proportion of ¢ links
are, on average, less reactive than those with a smaller
proportion of ¢ links (figure 24). This pattern is general for
other similar sets of configurations. When there are ten or
more species, the probability of reactivity 1s almost 1.

With a fixed number of species, the mean reactivity
usually increases with increasing probability of trophic
links (figure 4). However, contrary to this general
pattern, when the probability of s links 1s large, as the
probability of 7 links increases, the mean reactivity appar-
ently decreases to a minimum and then increases
(figure 4f).

Different types of links affect the mean reactivity in
different ways. Webs with only ¢ links have a smaller
mean reactivity than webs with only 7 links and s
links when r=s (figure 4a). When r+s+¢ is constant,
webs having more s links than r links are, on average,
more reactive than webs having more r links than s
links (figure 46—f). The difference between the effects
of 7 links and s links increases with r —s (figure 4¢—/f").

Reactivity and resilience respond differently to r links
and s links. Reactivity is more sensitive to changes in the
number of s links than to changes in the number of 7 links,
while resilience is more sensitive to changes in the number
of r links than to changes in the number of s links.

(c) Maximum amplification and the time of
maximum amplification
The mean maximum amplification (p,,,,) and the
mean time of maximum amplification (7,,,,) typically

Proc. R. Soc. Lond. B (2001)

increase with the number of species (figure 5). However,
for model webs with a high proportion of ¢ links, the
mean 7, decreases slightly at first and then increases
with increasing number of species (figure 54). Both p, ..
and 7., are smaller for systems with a larger proportion
of ¢ links (figure 5a,b). This pattern is general for other
similar sets of configurations.

When n=10, the mean values of p,,, and 7, may
increase or decrease in diverse ways as the number of
links increases, depending on which type of link is varied

and the configuration of the other links (figure 6).

(1) Average p,.. and T, .. increase monotonically with
connectance. This exemplified by
increasing ¢ with the value of r being close to that of s
(figure 6a,g, black diamonds), increasing r with s
being zero or very small and ¢ being large
(figure 6d,j, black diamonds) or increasing s with
and ¢ being zero or very small (figure 6¢,e,i,k, open
squares).

(i1) Average p,.. and T,.  decrease monotonically as
connectance increases. This situation typically occurs
when increasing 7 with s being large and ¢ being
small (figure 6f,/, black diamonds) or increasing ¢
with 7 or s being large (figure 64,4).

(ii1) Mean p,,,. increases monotonically but mean 7,

increases then decreases as connectance increases.

Examples of this situation are found when increasing

r and s with r=s and ¢=0 (figure 6a,g, open

squares) or increasing s with » zero or very small and

t large (figure 64,j, open squares).

situation 1s
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size of the markers on the curves.

Mean 7,,,, increases monotonically but mean p, .
increases then decreases as connectance increases.
This situation is exemplified by increasing r with s
and ¢ being zero or very small (figure 6¢,e,7,k, black
diamonds).

Average p,.. and 7. do not vary very much or
do not show an obvious pattern as connectance
increases, as exemplified by increasing s with r
large and ¢ zero or very small (figure 6f,/, open
squares).

(iv)

Different combinations of 7/n, s/n and t/n also give rise
to differences in the relative magnitudes of p,,,, and 7 ..,
aside from the differences in the qualitative patterns. As
with reactivity, mean p,,,, and 7, . are smaller for webs
dominated by ¢ links than for webs dominated by the
same total number of r and s links (figures 5 and 6a,g),

indicating that ¢ links contribute less to the transient

Proc. R. Soc. Lond. B (2001)

growth of a perturbation than do r and s links. When the
probabilities of ¢ links are fixed, food webs having more s
links than 7 links have, in most cases, larger mean p,,,
but smaller or equivalent mean 7, than webs with more
r links than s links (figure 6b,¢,e, f,h,1,k,0).

Mean p,.. can have an accelerated increase and
reach very large values (figure 6¢,¢,i,k, open squares) as
the probability of links increases, unlike mean 7, ,,.
Mean p,,,, increases convexly when s/n —r/n increases,
while it increases concavely or approximately linearly
when r/n — s/n increases (figure 64, and figure 6¢,e,i,k,
black diamonds).

4. DISCUSSION AND CONCLUSION

To our knowledge this study is the first to display the
diverse behaviours of different measures of long-term and
transient behaviour using an integrated model of food-
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web structure and population dynamics. The conclusions
need to be examined using other dynamic models of
ecological communities.

The probability of local asymptotic stability declines
monotonically as the number of species or connectance
increases in the LVCM (Chen & Cohen 2001). By contrast,
transient behaviours of LVCM food webs, measured by
resilience, reactivity, maximum amplification and the time
of maximum amplification, may vary with increasing web
complexity in different ways. Average resilience may
increase with increasing partial connectance of consumer—
victim or donor-controlled links, at least within certain
ranges of partial connectance. Average reactivity typically
increases with complexity but may decrease as the number
of recipient-controlled links increases. The maximum
amplification of a perturbation and the time at which the

Proc. R. Soc. Lond. B (2001)

maximum amplification occurs may decrease as connec-
tance increases, depending on the partial connectances.
Some ensembles of model food webs that are more likely
than others to persist in a constant environment may be
less likely to persist in an environment with frequent
perturbations.

A food-web regularity from both empirical data
(Cohen & Newman 19855; Cohen et al. 1990a) and theo-
retical studies of the local asymptotic stability of dynamic
models of ecosystems (May 1972; Cohen & Newman
1984, 19854, 1988) is the hyperbolic connectance law.
This states, empirically and at the frontier of local asymp-
totic stability, that the product of the number of species
(n) and the connectance (C) is approximately constant. If
food webs are constrained by the frontier of dynamic
stability measured by local asymptotic stability then webs
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number of species for different combinations of 7, s and ¢ in
Lotka—Volterra cascade model food webs. I, {/n=0.4 and
rin=s/n=0; 11, t/n=r/n=s/n=0.2; 111, {/n =0 and
r/n=s/n=0.4. In all three cases, (r/n+s/n+2t/n)|2=0.4.
Each point represents mean £ 1 s.d. of the mean. The error
bars are not visible for most points since the standard
deviations of the means are smaller than the size of the
markers on the curves.

with more species are expected to have, on average, lower
connectance than smaller webs. However, this frontier of
stability, based on the probability of local asymptotic
stability, may not separate persistent from non-persistent
food-web configurations, as the persistence of food webs
in fluctuating environments may also be constrained by
their transient behaviour.

As transient behaviours may vary with food-web
complexity in different manners from local asymptotic
stability, a frontier of stability that considers transient
behaviours may show a C-n relationship that deviates
from the hyperbolic connectance law. Environmental
variability may contribute to variation in the relationship
between C and n (Briand & Cohen 1984).

Other empirical relationships between ¢ and n have
been proposed in addition to the hyperbolic connectance
law. One alternative is that C is independent of n (Warren
1990); another is that C increases with n (Winemiller
1989; Martinez 1992). While selection of data has been
considered a major explanation of these different patterns,
it might also be beneficial to examine the transient beha-
viours and habitat conditions of the food webs that yield
these patterns.

Some food-web configurations may be more likely than
others to persist in certain habitats, while being less likely
to persist in some other habitats. This sensitivity provides
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a possible mechanism whereby habitat conditions, such as
the frequency and amplitude of perturbations, produc-
tivity and the rate of nutrient cycling, could strongly
influence food-web configurations. A topic for empirical
and theoretical study is the selection by habitats of food-
web configurations. The complexity—stability argument
based on local asymptotic stability is probably only a
small part of the whole story of community persistence.

Our simulations show that the three different types of
links have different effects on both the probability of local
asymptotic stability and the transient dynamics. For
example, model food webs dominated by consumer—
victim interactions are usually more likely to be locally
asymptotically stable and are, on average, more resilient,
less reactive, have smaller maximum amplifications of
perturbation and shorter times at which the maximum
amplification initially occurs than webs dominated by
recipient-controlled and donor-controlled interactions,
provided that the two configurations have equivalent
signed directed connectance. Selection for dynamic
stability would favour consumer—victim links in complex
food webs. LVCM food webs with more donor-controlled
links are, on average, more resilient than webs with more
recipient-controlled links and are also more reactive, i.e.
a perturbation grows at a greater initial rate. Food webs
with more donor-controlled links also have a larger
amplification of a perturbation than webs with more
recipient-controlled links, but the maximum amplifica-
tion is reached in a shorter time.

In general, webs rich in donor-controlled links respond
to perturbations by comparatively sharp, quick and large
amplifications of the perturbations but the transients die
out quickly. Comparable perturbations are likely to cause
milder, slower, more slowly decaying transients in webs
rich in recipient-controlled links.

From a mathematical point of view, this study of the
transient behaviour of a dynamic system with a linear
term plus a nonlinear term has striking parallels with
recent studies of the transition to turbulence in fluid
mechanics (Baggett ef al. (1995) and citations therein). In
both cases, the linear part of the dynamics is non-normal,
meaning that its eigenvectors are not mutually ortho-
gonal. The nonlinear term involving the community
matrix in system (1) is analogous to a nonlinear term that
represents complex convective effects in fluid-mechanical
models. This ecological study and the study of Baggett et
al. (1995) use some of the same measures of transient
behaviour and a similar approach, through numerical
simulation, to investigate the dynamic (short- and long-
term) consequences of randomly varying parameters. The
common mathematical properties shared by ecological
and fluid-dynamic nonlinear models merit further investi-
gation.

A question related to this study is whether and how
often ecosystems rest at their steady states. In ecosystems
of small spatial scale, spatial dynamics and time delays
usually lead to the dominance of transient dynamics
(DeAngelis & Waterhouse 1987, Hastings & Higgins
1994; Hastings 1996). DeAngelis & Waterhouse (1987)
argued that the stable equilibrium state should not be
viewed as a fundamental property of ecological systems.
On a global scale, the population of Homo sapiens grew at
an accelerating rate until 1965 and shows no signs of
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reaching any fixed equilibrium (Cohen 1995). A mass
extinction of species may be impending or underway and
human activities may be a major contributor (Rosenzweig
1995). Global climate change, whether of human or
non-human origin, may be imposing a large press-
perturbation on the global ecosystem. It seems unlikely
that the global ecosystem is in a steady state. If the global
ecosystem and many affected regional ecosystems are in a
transient state then perhaps it is time to switch some
attention from steady-state to transient dynamics.
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Figure 6. (Opposite) Mean maximum amplification of perturbation (p,,,,) and the mean time at which the maximum

amplification is first attained (7,

max

) in relation to different combinations of 7, s and ¢ in Lotka—Volterra cascade model food

webs: (a,g) varying ¢ (black diamonds) and varying r and s simultaneously (r=s) (open squares); (b,h) varying ¢t with r (black
diamonds) and s (open squares) fixed at a large value; (¢,2) varying r (black diamonds) and s (open squares) with ¢ being small;
(d,j) varying r (black diamonds) and s (open squares) with ¢ being large; (e,k) varying r (black diamonds) and s (open squares)
with the other parameters being small; (f,/) varying » (black diamonds) and s (open squares) with the other parameters being
large. The caption on each graph indicates the parameter that is varied and, in parentheses, the values of the other parameters.
Each point represents mean 1 s.d. of the mean. The error bars are not visible for most points since the standard deviations of

the means are smaller than the size of the markers on the curves.
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