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Relating individual behaviour to population dynamics
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How do the behavioural interactions between individuals in an ecological system produce the global
population dynamics of that system? We present a stochastic individual-based model of the reproductive
cycle of the mite Varroa jacobsont, a parasite of honeybees. The model has the interesting property in that
its population level behaviour is approximated extremely accurately by the exponential logistic equation
or Ricker map. We demonstrated how this approximation is obtained mathematically and how the
parameters of the exponential logistic equation can be written in terms of the parameters of the indivi-
dual-based model. Our procedure demonstrates, in at least one case, how study of animal ecology at an
individual level can be used to derive global models which predict population change over time.
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1. INTRODUCTION

Although there are many ways of approaching the model-
ling of ecological systems, they can usually be categorized
as either ‘top-down’ or ‘bottom-up’ In top-down models,
the relationships of interest are between variables that
capture the global properties of a system, e.g. the relation-
ship between the the size of a honeybee colony and the
number of parasites it contains. Nicholson (1954) was one
of the first to describe how differential equations can be
used as top-down models of the types of population
change that can result from interactions between species
and resources. Such models are derived both by reasoning
phenomenologically about the interactions and by obser-
ving population changes overtime. Differential equations
are now widely and successfully used in understanding
and predicting population dynamics (Murray 1989;
Schaffer & Kot 1996; Earn et al. 1998).

An area of top-down modelling that has attracted a lot
of research interest is modelling density dependence in
single-species populations using difference equations.
Based on Nicholson’s (1954) concepts of resource competi-
tion, Hassell (1975) proposed a general model for single
species density-dependent populations:

a = va,(l + aa1>_ﬂ> (1)

where @, and q,,, are populations in successive genera-
tions, 7=0 may be thought of as the low population
density growth rate, 320 is a constant defining the
density dependent feedback term and a>0 is a scaling.
By fitting this model to population time-series for a
variety of species, Hassell e/ al. (1976) attempted—albeit
with limited success—to reconstruct the population
dynamics of various laboratory studies. Recent work has
produced better and more general methods for recon-
structing these dynamics (Turchin & Taylor 1992; Zhou
et al. 1997), and these methods have been widely applied
in the analysis of yearly population census data (Cheke &
Holt 1993; Turchin et al. 2000). This top-down approach

is most often concerned with determining the relative
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importance of density dependence—which can cause
periodicity and chaos—and exogenous environmental
factors, which are not represented in equation (1). It is not
concerned with establishing how the individual inter-
actions of the animals in the population produce the
dynamics. Although Hassell (1978) gave an account of
how some top-down models are related to Poisson-
distributed encounters between individual predators and
prey, in general top-down models are derived from
reasoning about interactions at a population level.

In contrast, bottom-up models start from a description
of local interactions. For example, how and when do
parasites reproduce? What happens when two or more
parasites compete for the same resource? The experi-
mental data which answers these questions can then be
built into an individual-based model (Kindlmann &
Dixon 1996; Lomnicki 1999). Analysis and computer
simulation of the model should produce, as emergent
properties, the global relationships seen in the real world,
without them being built explicitly into the model. By
providing insight into the detailed interactions at the
local level, bottom-up models allow the validity of the
phenomenological assumptions made in global, top-down
models to be tested directly. In theory, individual-based
modelling is thus used to determine when a particular set
of parameterized equations are applicable to modelling
the population dynamics of a particular ecological
system. In practice, however, individual-based models
tend to be complicated and, while models should reflect
the true complexity of the organisms they attempt to
model, this complexity can actually obstruct under-
standing of the relationship between an individual and
population.

An interesting and important question is therefore
whether we can use individual-based models for making
reliable and testable predictions about population
dynamics. This question has received particular attention
with regard to establishing the relationship between local
interactions and the generation of spatially heterogenecous
patterns (Durrett & Levin 1994; Czaran 1998; Rand
1999). In this paper, we look at a spatially well-mixed
system produced by the interactions between the parasitic
mite Varroa and it natural host the Asian honeybee. The
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link between individual and population is achieved by
deriving a nonlinear mean-field approximation of a simple
though realistic stochastic model of mite reproduction. We
thus come to a complete understanding of how changes in
the parameters which govern individual behaviour will
affect the dynamics and equilibria of the population as a
whole. The parameters of the population are no longer
simply adjustable quantities used to obtain the best fit to
time-series data. Rather, they are related to more funda-
mental parameters which can be obtained by examining
the reproductive behaviour of individual organisms.

2. MODELLING VARROA MITE REPRODUCTION

(a) The mite’s reproductive cycle

The large mite Varroa jacobsoni (lmm x 1.6 mm) is an
ectoparasite which attaches itself to the bodies of worker
(female) and drone (male) honeybees. The Asian
honeybee Apis cerana F. has a balanced host—parasite
relationship with the mite (Boecking & Ritter 1994); 63
out of 64 Asian bee colonies in South Thailand were
found to contain low levels—usually less than 100
mites—of infestation (Rath & Drescher 1990). Parasitism
may affect the vitality of some drone bees but does not
greatly affect the performance or the survival of the
colony. In contrast, infestation of a European honeybee
Apis mellifera L. colony can lead to its collapse as popula-
tions grow to thousands of mites (Martin 1997q).

In the Asian bee, Varroa mites reproduce in brood cells
containing immature drone pupae. A mature (or ferti-
lized) female mite enters a cell containing a drone larva
one to two days before it is capped by the worker bees.
The female mite first produces a male offspring followed
by an average of three to five female offspring (Donze &
Guerin 1994; Boot et al. 1997). If only a single mite enters
a cell then the bee will hatch with the mother mite and
her female offspring attached to its body (the male mite
dies in the cell). However, if two female mites attempt to
reproduce in one cell then there is a high probability that
the bee larva will die before developing, the cell will
remain capped and the mites will become ‘entombed’ and
die (Rath 1992). Drone cells are usually only produced
once a year, for a period lasting around one month, and
mite reproduction takes place almost exclusively during
this time (Rath 1991). Throughout the other 11 months of
the year, the mites remain attached to drone and worker
bees. During this period there is a constant probability of
death (Martin 1998).

(b) The individual-based model

Let us make the above observations the basis of an
individual-based model of mite reproduction. At genera-
tion ¢, each of A, mites enters one of n cells, with the
choice assumed to be made uniformly at random. There is
strong evidence for this assumption, since between
generations the mites move freely between the cells and
the spatial distribution of mites in cells has been observed
to be completely random (Salvy et al. 1999). If two or
more mites choose the same cell then these mites die
without reproducing, while single mites produce &
offspring. Between breeding, mites have a probability py
per month of dying. The 4,,; surviving mites become the
next generation and again choose from n cells. n is
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assumed constant over the generations, since Asian
honeybee colony size is mainly unaffected by the mites.

We can use observational data for parameterizing this
model. Martin (1998) estimated the probability of death
per month for a mite attached to a bee for the 11 months
when no drone brood is available as p; = 0.1133. Donze
& Guerin (1994) estimated that mites reproducing in a
cell containing no other mites produce b = 3 offspring on
average. A typical small bee colony will produce n = 400
drone cells once a year, while a large colony may produce
around n = 800 (Rath 1991).

The results of typical simulations for both small
(n = 400) and large (n = 800) bee colonies are shown in
figure 1. In simulations run for 300 years, directly after
breeding the mite populations have a mean of 53.7 and a
variance of 36.0 in the small colony, and a mean of 121.5
and a variance of 33.8 in the large colony. The gross
feature of both these plots is the oscillatory form of the
mite populations, showing a sharp increase annually
during the breeding season followed by an exponential
decay as the mites die at a constant rate throughout the
rest of the year. The figure shows that the mite population
is periodic for neither colony size and that peak heights
are seen to vary over a time-scale of several years.

Rath & Drescher (1990) found in field experiments
that colonies with drones (i.e. where mite breeding had
already  occurred)  hosted  more  mites—mean
92.5(+140.2) (pooled small and large colonies). In the
field, colonies which did not contain drones had a mean
mite population of 22.7, compared to 23.5 in the small
simulated colony and 52.5 in the large simulated colony.
Rath & Drescher (1990) also observed that, while most
colonies contained less than 100 mites, infestations of
more than 100 occurred in both small and large colonies.
However, these observations did not control for the
number of drone brood produced in the colonies studied
and were taken at various stages in the annual cycle so,
while consistent with our model, the current data cannot
be used to validate it completely.

(c) The mean-field approximation

It is possible to derive a simple mean-field approxima-
tion to the full stochastic individual-based model of mite
reproduction. We let 4, be a random variable, repre-
senting the number of mites at time ¢/ The conditional
expectation of the population at the next generation,
given that the current population is @, is the sum of the
expected number of mites emerging from each cell multi-
plied by their probability of survival until the next year:

E4,,l4,=a) = (1 —p)"! Z E (number of mites

s=1

emerging alive from cell s |4, =q,). (2)

If we now introduce the observation that only single mites
can produce surviving offspring we obtain

n

(4|4, =a) = (1=p)"" Y (b+1) P(only one

s=1

mite in cell 5|4, =a,). (3)
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Figure 1. Typical simulated mite populations. (a) A small bee colony (n = 400); () A large bee colony (n = 800). The
parameters for the simulation model are taken from the literature. Martin (1998) estimated the probability of death per month
for a mite attached to a bee for the 11 months when no drone brood is available as p4 = 0.1133. Donze & Guerin (1994)
estimated that mites reproducing in a cell containing no other mites produce b = 3 offspring on average. A typical small bee
colony will produce n = 400 drone cells once a year, while a large colony may produce around » = 800 (Rath 1991). The figure
shows a simulation run for 15 years observed after the simulation had been running for 100 years.

We assume that the ¢, mites are distributed uniformly at
random between 7 cells. The probability that a particular
mite enters cell s is 1/n and the probability that out of the
other ¢, — 1 mites none enters cell s is (1 —1/n)%"". The
probability of only a single mite occupying a cell is there-
fore determined by a binomial coeflicient:

E(dild = a) = pd_ (1) (1)1 = 1!
s=1

= pa,(1 — 1/n)""", (4)

where p= (b+1)(1 —py)"" represents the density-
independent reproductive gain per mite. Thus, we have
the expected mite population at time ¢+ 1 as a function
of the actual mite population at time ¢ We introduce a
mean-field approximation by equating the actual mite

population  with  the expected population
=E(4,,14, = ;). Hence,
a =/f(a) = aexp(r(l —a/K)), (5)
where
p

(2 :
A S R ®)
and

1 1-1

el -

—In(1—=1/n) —In(1—=1/n)

Equation (5) is the exponential logistic or Ricker map. It
has a similar functional form to equation (1) and is often
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applied in modelling the dynamics of density-dependent,
non-overlapping populations (Cheke & Holt 1993;
Sheeba & Joshi 1998).

Physically, it is only interesting to consider non-
negative populations and, since non-negative populations
remain non-negative under the exponential logistic map
(i.e. non-negative reals are invariant under the map), we
restrict our attention to these. Thus, we consider the map
/:RT — R, which is defined in equation (5), where
a,=0. It 1s usual when studying this map to consider the
bifurcations that can arise when changing the parameter
r (¢ 1s, like y in equation (1), a growth rate at low densi-
ties) while keeping the ‘carrying capacity’ K fixed (May
& Oster 1976). The map f has two r-independent fixed
points at a, =0 and a, = K. If we take K > 0 then a
degenerate bifurcation occurs at » = 0, where these fixed
points exchange stability. This bifurcation implies that
certain parameter regions of the exponential logistic map
are unphysical. In particular, we see that the fixed point
a, = K 1s repelling when » < 0. As a consequence, any
initial population ¢, > K grows without bound, despite a
growth rate ¢ < 1. We note that this difficulty arises
when the signs of r and K are different.

On the other hand, our derivation of the exponential
logistic map gives r and K in terms of p and n, which
specify the individual-based model. In particular, we note
that » and A are constrained to have the same sign and,
hence, the issue of divergent populations mentioned
above does not arise. If, for example, we increase p at
fixed n, we see that r increases with p and that K is
proportional to . When p is small enough, » < 0 which
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Figure 2. Simulated mite populations over 250 years for (a,c) a small bee colony (n = 400) and (4,d) a large bee colony

(n =800). (a,b) The mite populations before breeding for 250 simulated years of the individual-based model. (¢,d) The change in
populations from one year to the next in the individual-based model (crosses) and equation (5) (dotted line). The parameter
values are identical to figure 1. The change in population 4 from year ¢ to ¢ + 1 usually lies near equation (5). In particular, the
population in the individual-based model fluctuates around the point where equation (5) crosses the line a,4; = @, (solid line).

implies K < 0. In this situation the only fixed point in R*
is the origin and this a global attractor. Thus, for small
enough p the mites become extinct. When p=1—1/n
then » =0 and the bifurcation occurs. As p increases
from this value, a new attracting fixed point at
a, = K > 0 moves away from the origin. The origin itself
1s now repelling and a, is attracting. Having said this, it
is clear that our naive discussion of this bifurcation has its
own anomaly, since it suggests that the fixed point at the
origin becomes unstable even when p < 1. This is not a
problem with the mean-field approximation, which is
exact for ¢, =0 and @, = 1. Rather the problem arises
because we have interpreted a, as a real variable, whereas
it 1s clear that the number of mites should be an integer.
In fact a better condition for local stability of the origin
would be to test whether f(1)< 1. Note that
f(1) = ¢V = p_s0 the stability condition is just p < 1
as we might expect.

At the bifurcation the new fixed point a, = K. If we
now assume—with more justification—that a, can be
treated as a real variable we find that the fixed point is
attracting as long as 0 <7< 2, since

df (@)

ddl a=K

=1-r (8)
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In terms of the individual-based parameters, provided
p<e*(1 — 1/n), mite populations will approach the equili-
brium value K. For a small bee colony (n = 400), with the
parameter values given in figure 1, K = 26.4, while for a
large colony (n=800) K =51.8 The equivalent
individual-based simulations have mean populations
consistent with this prediction (23.5 and 52.5, respectively).

Figure 2 shows the results of simulations for small and
large colonies as time-series of the population each year
just before breeding (as opposed to figure 1 which shows
monthly populations). The population appears to increase
and decrease according to a bounded random walk for
both colony sizes. Such behaviour may be explained in
terms of the inherent randomness in the individual-based
simulation and the parameterized form of equation (5)—
populations fluctuate around a, = K (see figure 2¢,d). The
large range of this random walk could explain the high
variation in mite populations seen in the field (Rath &
Drescher 1990; Rath 1999) with simulated populations
growing as large as 408 directly after breeding. However,
the maximum populations in the simulation do fall short
of the 800 mites seen in some real colonies and predicted
by some other models of mite reproduction (Iries et al.
1994; Martin 19975). Such large populations of mites could

be produced in our simulations if we increased 4. For
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Figure 3. Time-series generated by ay = f(a,) = a,¢"~*/®) (a) compared to the individual-based model (b) for various values of
7. The parameter n = 4000, the number of available sites, is constant. The density-independent reproductive gains per mite p are,
from top to bottom, 6, 11, 13, 15, 21 and 23. As p (and, therefore, r) increases, the population dynamics go from stable (p = 6) to
period 2 oscillations (p = 10) and period 4 oscillations (p = 13) to oscillations which are aperiodic (p = 15 and p = 21). Periodic

windows can also be seen, for example we see period 3 at p = 23.

example, b = 4 has been observed as the successful repro-
duction rate of mites (Boot e/ al. 1997). This estimate for &
would give K =230.2 in a large colony and, after
breeding, populations of over 1000. In general, predictions
of before and after breeding populations are given by K
and 0K, respectively.

(d) An individual-based route to chaos

At small values, the number of cells # plays an impor-
tant role in determining the dynamics of equation (5).
When 7 is small stochastic effects dominate individual-
based simulations and the mean-field approximation has
limited predictive power. However, for large but finite #,
simulation of the individual-based model and iteration of
equation (5) produce similar population dynamics for a
wide range of parameter values (see figure 3 for the case
where n =4000). Both undergo a series of period-
doubling bifurcations as p 1s increased—the first of which
occurs at p=e?*(1 — 1/n)—resulting in periodic and
eventually chaotic dynamics. The match between the
deterministic equation and stochastic simulation 1is
remarkably good—figure 4 shows how closely equation
(5) predicts the population in the next generation given
the current population. The boundaries between regions
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of parameter space characterized by a particular period
are less well defined in the individual-based simulations
than are the bifurcations of the exponential logistic map.
For example, the period 4 oscillations when r = 2.3981
often appear as period 2 oscillations in the corresponding
individual-based simulation. Similarly, when r = 3.1357
the individual-based simulation shows both period 3 and
irregular oscillations. Such effects can be mathematically
understood as resulting from the loss of structural stability
of the model near to bifurcations.

3. FROM INDIVIDUAL TO POPULATION

The derivation of the exponential logistic map from an
individual-based model is useful, not only because it helps
us understand the properties of a simulation in terms of
the behaviour of a simple dynamical system, but because
it demonstrates, in terms of the behaviours of individuals,
why the particular difference equation is applicable in
modelling the dynamics of the population. In particular,
it allows the assumptions which underlie the model para-
meters to be tested. For example, when applying the
logistic map as a phenomenological model, the parameter
K is said to relate to the ‘carrying capacity’ of the
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Figure 4. Plot of a1 = f(a;) = a1l ) (dotted line) and the populations 4,4, resulting from various 4; in the individual-based

model (crosses). The same values of 7 are used as in figure 3.

organism’s environment. In fact K is a function of not
only n—which can be correctly considered the capacity
or breeding space of the environment—but also of p.
Thus, K represents a balance between available space and
the net gain in population per successful individual. This
observation is important in a general ecological context,
since reducing the breeding space of a particular
organism may affect not only the equilibrium level of the
population but, through the stability condition in equa-
tion (8), may also introduce periodic oscillations. Such
oscillations would greatly increase the probability of
species extinction.

The mathematical link between individual and popula-
tion can also aid in the analysis of ecological time-series.
Yearly population census data often consist of only 20-30
data points. This makes it difficult to fit top-down models
accurately, which invariably require the estimation of
large numbers of parameters (Turchin & Taylor 1992). An
alternative approach would be to develop an individual-
based model, the parameters of which may be measured
by detailed observation of one or more reproductive
cycles of the species of interest. The predictions of such a
model and its mean-field approximation could then be
compared with the known population data. Such a model
may be useful for forecasting, for example, the chances of
extinction of the species. As an observation of this general
point, we note that the parameters of the Varra reproduc-
tion model are density independent and, therefore, that
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observation of only one reproductive cycle is necessary in
order to parameterize the model.

(a) Other applications of the model

There are more complicated individual-based models
of the reproduction of other organisms that simplify to
the model we have discussed here. For example, Sole et al.
(1999) described a model in which, at each generation,
individuals are placed randomly on a lattice where they
‘eraze’—collecting energy from cells of the lattice. Indivi-
duals that collect enough energy reproduce while others
die without reproducing. The energy in the cells is replen-
ished every generation and the individuals are redistrib-
uted. This model has clear parallels with our mite model
and it is therefore not surprising that simulating it
produces dynamics which correspond to equation (5). We
offer our simpler model as a mathematical explanation
for this correspondence.

Kindlmann & Dixon (1996) used an individual-based
model for studying within-year populations of tree-
dwelling aphids and found that ‘migration is the most
important factor determining the [sometimes dramatic]
summer decline in [aphid] abundance’ (p. 28). Summer
migration is thought to be caused by a combination of
overcrowding and low host plant quality. This process can
be modelled by dividing the host plant into n units, with
each unit containing enough energy to support one aphid
and then, in each generation, distributing the aphids
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randomly amongst these units. The rule for migration is
then made similar to that for survival in mites: if two or
more aphids share the same unit then both migrate, while
aphids with their own unit of energy reproduce. During
the rest of the year populations evolve according to a
simple linear law. The number of eggs laid in autumn
depends linearly on the host-plant quality (Dixon 1990)
and, thus, may be thought of as a linear function of n
(with a constant of proportionality we will call ¢) and in
spring the number of aphids that hatch is proportional to
the number of eggs laid in the previous autumn. This
model is identical to the one we have described here for
mites, with migration replacing death. Equation (3) is
derived as before with p = p, un, where p,, is the prob-
ability that an egg survives from autumn to spring.

In this model, we have assumed that asexual reproduc-
tion, which takes place throughout the summer (Dixon
1985), 1s perfectly balanced by aphid death. We have also
assumed that the host-plant quality is unaffected by the
aphid population (see Dixon (1990) and Sequeira &
Dixon (1997) for discussion of this). Accepting these
simplifications, the model predicts that, depending on the
values of p, p,, and n, aphid population dynamics can be
stable, periodic or even chaotic. Indeed, there is clear
evidence of both stability and biennial oscillations in
aphid populations (Dixon 1990) and a suggestion that
certain species have shown chaotic oscillations (Turchin
& Taylor 1992). Our model thus provides a simple mathe-
matical explanation of how these ‘see-saw’ population
dynamics may arise from the summer migration of

aphids.

4. DISCUSSION

We have presented an example of an individual-based
model with population dynamics which can be approxi-
mated by a single difference equation. It is possible to
generalize this approach using a formal mathematical
framework for representing individual-based models. In
this case, we used a process algebra known as weighted
synchronous  calculus  of communicating systems
(WSCCS) (Tofts 1994). This allowed us to determine the
approximate mean-field dynamics of the model using
well-defined mathematical techniques. Details of using
WSCCS in modelling biological systems may be found in
Tofts (1992) and Sumpter et al. (2001).

We have applied this generalized approach to other
models of species interactions (Sumpter 2000). For
example, consider a model with rules such that, if two or
more individuals choose the same breeding site, then the
conflict is resolved with exactly one individual breeding at
the site, with others excluded and unable to reproduce
that season. In nature this may correspond to the acquisi-
tion and protection of breeding space by territorial
animals. An individual-based model describing this
process can be shown to produce stable equilibrium
dynamics, no matter how many offspring the individual
can produce (details of this model may be found in
Sumpter (2000)). The result shows that density depen-
dence does not imply that increases in the net rate of
population growth will lead from stable to periodic or
chaotic population dynamics. In Hassell’s (1975) general
model (equation (1)) stable dynamics occur for all v when
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0 < B < 1. A simple interpretation of such dynamics is
that species with population dynamics which fit
equation (1) with 8 < 1 compete for breeding space using
a mechanism comparable to exclusive acquisition and
protection, while those with 8> 1 have competition for
resources similar to the Varroa mites and the tree-dwelling
aphids. Using Nicholson’s (1954) definitions, our original
individual-based model can be thought of as a generic
model of a ‘scramble’ for resources, while the latter terri-
torial model is a generic ‘contest’.

Other individual-based models can be developed for
modelling two or more species interactions—which can
then be approximated with coupled difference equations—
or spatially local interactions—which behave similarly to
coupled map lattices of population densities. By expressing
individual-based models in a formal framework, a mathe-
matical link can be established between individual- and
population-level behaviour. Such a link helps us provide
causal explanations for population cycles. The study of
such models produces counter-intuitive predictions about
the effects of individual interactions on population
dynamics and allows us to understand why certain models
are better suited than others for capturing the population
dynamics of particular species. We thus begin to bridge the
gap between detailed and complicated models of individual
interactions and simplified top-down models. Building this
bridge is essential if we are to understand the complex
interactions at work in real ecological systems.

We would like to thank Stephen Martin for improving the
biological accuracy of this document. Thanks are also due to
Jerry Huke, Jonathon Bagley, Anders Johansson and Anders
Oberg for useful discussions. This work was funded by Engineer-
ing and Physical Sciences Research Council and the Defence
Evaluation and Research Agency.
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