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Abstract: Sepsis is a syndrome of organ dysfunction caused by an uncontrolled inflammatory
response, which can seriously endanger life. Currently, there is still a shortage of specific therapeutic
drugs. Quercetin and its natural derivatives have received a lot of attention recently for their potential
in treating sepsis. Here, we provide a comprehensive summary of the recent research progress
on quercetin and its derivatives, with a focus on their specific mechanisms of antioxidation and
anti-inflammation. To obtain the necessary information, we conducted a search in the PubMed, Web
of Science, EBSCO, and Cochrane library databases using the keywords sepsis, anti-inflammatory,
antioxidant, anti-infection, quercetin, and its natural derivatives to identify relevant research from
6315 articles published in the last five years. At present, quercetin and its 11 derivatives have been
intensively studied. They primarily exert their antioxidation and anti-inflammation effects through
the PI3K/AKT/NF-κB, Nrf2/ARE, and MAPK pathways. The feasibility of these compounds in
experimental models and clinical application were also discussed. In conclusion, quercetin and its
natural derivatives have good application potential in the treatment of sepsis.

Keywords: sepsis; quercetin and its derivatives; anti-inflammatory; antioxidant

1. Introduction

Sepsis remains a life-threatening illness with high morbidity and mortality, especially
in low- and middle-income regions [1,2]. It affects approximately 48.9 million individuals
worldwide, leading to an estimated 11 million deaths annually [3]. These deaths are
predominantly associated with organ dysfunction caused by an uncontrolled immune
response to infections [4,5]. Although advances in therapeutic interventions and critical
care have been substantial, the treatment of sepsis continues to be a major challenge, relying
mainly on timely identification, the immediate administration of antibiotics, and supportive
care. This highlights the urgent need for more effective treatment approaches to improve
patient outcomes.

There has been increasing interest in exploring natural formulations and active ingre-
dients as potential treatments for sepsis and its complications. For example, traditional Chi-
nese medicines like Xuebijing and Huanglian–Jiedu decoctions were investigated for their
potential to control sepsis during the COVID-19 pandemic [6,7]. Quercetin, a natural com-
pound found in fruits and vegetables, has similarly attracted interest. Its anti-inflammatory
effects have been widely supported by computational prediction, experimental verification,
and clinical analysis [8]. Additionally, quercetin displays antioxidant properties and thus
mitigates the harmful effects of sepsis [9]. Equally remarkable, quercetin has been gradually
recognized for its antimicrobial effects against various bacteria as well as fungi and viruses,
even drug-resistant ones [10]. These characteristics suggest that its application as a potent
anti-sepsis agent could be highly favorable to the patient. During the past few years, its
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molecular mechanisms and pharmaceutical properties have also been extensively investi-
gated [10,11]. Despite the existing literature on the anti-septic effects of quercetin and its
derivatives, recent progress reviews and product information in this field are limited. By
exploring the mechanisms and pathways involved in its treatment of sepsis, we propose
that improving its bioavailability and solubilizing properties while retaining its natural
advantages are valuable avenues for future research.

2. Inflammatory Pathways in Sepsis

It is now accepted widely that the occurrence of sepsis is multifactorial and involves
dysregulated host responses to infection. For instance, lipopolysaccharides (LPS, impor-
tant outer membrane components of Gram-negative bacteria) play a pivotal role in the
development of sepsis [12]. In general, the interaction between LPS and Toll-like receptor
4 (TLR4) activates transcription factors like nuclear factor-kappa B (NF-κB), leading to
the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β), and IL-6. However, the excessive production of these cytokines can
result in multiple organ dysfunction and fatal sepsis [13].

In addition to the disordered inflammatory response, an aberrant oxidative stress
response also contributes to the pathogenesis of sepsis. The excessive release of reactive
oxygen species (ROS) by immune cells in sepsis overwhelms the body’s antioxidant defense
system, leading to oxidative stress and cellular damage. This oxidative stress state further
activates the NF-κB signaling pathway, promoting the overproduction of inflammatory
factors like TNF-α, IL-1β, and cyclooxygenase-2 (COX-2) [14,15]. The mitogen-activated
protein kinase (MAPK) pathway is activated downstream of TLR4. MAPKs, including
extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase,
play crucial roles in the production of proinflammatory cytokines and the regulation of
immune cell activation [16,17]. Moreover, the interferon regulatory factor 3 (IRF3) pathway
contributes to the production of type I interferons and other proinflammatory cytokines [18].

Not surprisingly, excessive production of pro-inflammatory cytokines and an imbal-
anced inflammatory and oxidative stress response are known to contribute to the severity
of sepsis. Addressing this issue, researchers have focused on the role of nuclear factor
erythroid 2-related factor 2 (Nrf2), a crucial transcription factor involved in regulating the
intracellular antioxidative stress response [19]. In situations of increased oxidative stress,
Nrf2 dissociates from Kelch-like ECH-associated protein 1 (Keap1) and translocates into the
nucleus. Once inside the nucleus, Nrf2 binds to antioxidant response elements (AREs) in
the DNA, subsequently activating the expression of antioxidant and detoxifying enzymes.
This activation process protects cells from sepsis-induced injury by mitigating oxidative
stress, reducing inflammatory responses, and promoting cellular defense mechanisms
against oxidative damage [20]. Furthermore, Nrf2 activation can inhibit the production of
inflammatory factors such as IL-1β and TNF-α, thus reducing the inflammatory response
and tissue damage [21]. Additionally, Nrf2 can regulate cell death processes such as apop-
tosis and autophagy, which impact the pathological process of sepsis [14,19]. Therefore,
potential therapeutic interventions targeting the TLR4 signaling pathway and oxidative
stress may hold promise in the treatment of sepsis.

3. Overview of Quercetin and Its Natural Derivatives

Quercetin and its natural derivatives, such as isoquercetin, rutin, and quercitrin, are
known for their noteworthy biological activities attributed to their distinctive chemical
structure (Figure 1). Quercetin exhibits antioxidant and anti-inflammatory properties ow-
ing to its flavonoid skeleton and numerous hydroxyl groups [10]. These qualities enable it
to shield cells against oxidative damage and mitigate inflammation. They are ubiquitously
present in plant-based foods, including fruits, vegetables, grains, and herbs [22,23]. Some
of the richest sources of quercetin include apples, onions, berries, citrus fruits, grapes,
tomatoes, broccoli, and leafy greens [23]. Efforts have been made to elucidate the bioactive
potentials of quercetin and its derivatives. In fact, it is now widely appreciated that they
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exert a variety of beneficial effects, including antioxidant, anti-inflammatory, antitumor,
antibacterial, immunosuppressive, and neuroprotective properties [24–26]. These proper-
ties not only make quercetin and its derivatives promising candidates for the treatment of
various diseases, but they have also provided knowledge and understanding of how they
and the presence of quercetin in natural foods benefit personal health.
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Quercetin and its derivatives are polyphenolic substances that are widely present
in nature. Solvent extraction is commonly used to extract such compounds by soaking
plant materials in solvents (such as ethanol, methanol, etc.) [27]. High-performance liquid
chromatography (HPLC) and other chromatographic techniques could be used for further
separation and purification [28,29].

Nevertheless, quercetin is known for a low bioavailability associated with its poor
solubility, stability, and absorption characteristics [30]. Accordingly, researchers have at-
tempted to modify and generate novel quercetin derivatives with suitable pharmacological
properties. Currently, the most extensively studied quercetin derivatives are glycosides and
methyl derivatives (Figure 1). While the former enhances water solubility and thus facili-
tates the absorption and utilization of quercetin in humans by attaching sugar groups [31],
the latter improves the stability, bioavailability, and overall drug properties of quercetin
through methylation [32]. Therefore, in the following, we mainly discuss the therapeutic
effects of quercetin and its glycosides and methyl derivatives during sepsis.

4. Disease Management Roles of Quercetin and Its Natural Derivatives
4.1. Quercetin

Multiple studies have provided direct or indirect evidence supporting the therapeutic
potential of quercetin in sepsis. The mechanism of action involves the negative regulation
of intracellular ROS levels and the NF-κB signaling pathway, effectively suppressing the
excessive production of inflammatory factors, including TNF-α, IL-1β, and COX-2 [33,34].

In a rat model of colorectal cancer depression, quercetin exhibited antidepressant
effects by reducing the expression levels of TNF-α and IL-1β in serum and the medial
prefrontal lobe. It also increased the expression of BDNF (brain-derived neurotrophic
factor) protein and acted on the tyrosine kinase receptor B/β-catenin axis, demonstrating
its potential for treating depression [35].
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Quercetin has also shown promise in reducing inflammatory factors in the hippocam-
pus of mice in a chronic unpredictable stress model. It inhibits the secretion of COX-2,
reduces the expression of nitric oxide, and restores hippocampal function, thereby exert-
ing an antidepressant effect [36]. Studies have suggested that quercetin may inhibit the
neuroinflammation–apoptosis cascade and neuronal apoptosis in the hippocampus. It has
been found to inhibit the increase in TNF-α and IL-6 expression in the hippocampus of an
olfactory bulb-removed rat model, indicating its potential antidepressant mechanism [37].

Research conducted by Sul et al. demonstrated that quercetin effectively reduced the
levels of ROS in lung epithelial cells induced by LPS [38]. It also inhibited the nuclear
translocation of NF-κB, resulting in a decrease in the levels of inflammatory cytokines, such
as TNF-α, IL-1, and IL-6, which were elevated after LPS stimulation.

Furthermore, quercetin has been found to inhibit the activation of the NLR family
pyrin domain containing 3 (NLRP3) inflammasome, which is involved in inflammatory re-
sponses. It reduces excessive ROS production and downregulates the expression of NLRP3,
cleaved caspase-1, IL-1β, and N-gasdermin D (N-GSDMD) in macrophages. Quercetin also
suppresses TLR2/myeloid differentiation factor 88 (Myd88) and p-AMP activated protein
kinase (AMPK) upregulation induced by LPS/ATP in macrophages [39].

Quercetin can regulate immune responses in X-linked inhibitor of apoptosis protein
(XIAP) deficiency by inhibiting IL-1β secretion and reducing IL-18 production. It has been
shown to decrease levels of IL-1β and IL-18 in mice after LPS challenge [40]. Quercetin
activates the Nrf2 signaling pathway, enhancing the expression and activity of Nrf2 through
various mechanisms. It directly associates with Keap1, a negative regulator of Nrf2, pre-
venting its degradation and promoting stability and functionality. Quercetin also offers
protection against cytotoxicity induced by benzo[a]pyrene (B[a]P) and mitigates DNA
adduct formation through aromatic hydroxylase receptor (AhR) and Nrf2 activation [41].

Severe sepsis, especially septic shock, causes extensive ischemia–reperfusion (I/R)
injury [42], which often occurs in the kidney, brain, gut, lung, myocardium, retina, etc.
Quercetin has been found to alleviate I/R injury by activating Nrf2 through the MAPK and
phosphoinositide 3-kinase (PI3K)/ protein kinase B (PKB, also known as AKT) signaling
pathways [43]. Furthermore, Li et al. demonstrated in a recent study that quercetin ame-
liorated neurological deficits and reduced infarct size in rats after cerebral I/R injury by
regulating the PI3K/AKT/NF-κB signaling pathway and upregulating the proportion of
M2 polarization of macrophages (microglia) [44]. In addition, it also reduces senescence-
associated secretory phenotype (SASP) factors and senescence phenotype in nucleus pul-
posus cells under IL-1β treatment, thereby mitigating intervertebral disc degeneration
(IDD) [45]. It upregulates the expression of Nrf2, resulting in elevated levels of antioxidant
enzymes and reduced renal injury [46]. Moreover, quercetin enhances the activity of an-
tioxidant enzymes, such as superoxide dismutase (SOD) and catalase, reducing oxidative
stress and protecting against cellular damage [47].

Quercetin is considered an excellent anti-asthmatic agent. In a rat asthma model
experiment, quercetin (50 mg/kg) reduced IL-6 and TNF-α and increased IL-10 in the
lung tissues of asthmatic mice compared to dexamethasone (2.5 mg/kg). It also alleviates
oxidative stress and inflammation, especially in tissues [48]. In conclusion, quercetin
modulates the expression of proinflammatory and anti-inflammatory cytokines, promoting
a more balanced immune response (Table 1). It also offers various pharmacological benefits
for sepsis, improving cardiovascular health by lowering blood pressure and lipid levels.
Quercetin prevents thrombosis and reduces the risk of cardiovascular disease by inhibiting
clot formation, platelet aggregation, and platelet activation markers [49,50]. Furthermore,
quercetin maintains the integrity of the endothelial barrier, reducing organ dysfunction,
and improving outcomes in sepsis.
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Table 1. Summary of quercetin in sepsis-related in vivo/in vitro models and effective working
concentrations.

Symptoms/Phenomena
Associated with Sepsis Stimulants Main Study Subjects Work

Concentration Ref.

ALI LPS (10 µg/mL) A549 cells 10 µM [38]

Macrophage pyroptosis LPS (10 µg/mL),
ATP (5 mM) THP-1 cells 50 µM [39]

Immunodeficiency and
hyperinflammation

In vivo: LPS (10 ng/kg)
In vitro: LPS (1 µg/mL)

Human adherent
monocyte; mouse BMDMs

In vivo: 50 mg/kg
In vitro: 50 µM [40]

CI/RI the MCAO/R model Male SD rats 50 mg/kg [44]

Irritable bowel syndrome
and IBD Diquat (100 µM) IPEC-1 cells 5 µM [47]

Asthma 1% aerosolized OVA 8-week-old male
Wistar rats 50 mg/kg [48]

ALI—acute lung injury; BMDMs—bone marrow-derived macrophages; CI/RI—cerebral ischemia/reperfusion
injury; SD—Sprague–Dawley; MCAO/R—middle cerebral artery occlusion/reperfusion; IPEC-1—intestinal
porcine epithelial cell line 1; IBD—inflammatory bowel disease; OVA—ovalbumin.

4.2. Miquelianin

Miquelianin (quercetin 3-O-glucuronide), a flavonoid glycoside compound, is present
in plants of the Asteraceae and Moraceae families. It possesses unique characteristics, such
as the addition of a glucuronic acid moiety to the quercetin molecule, which enhances
its antioxidant properties. Recent studies have indicated that treatment with 0.1 µM
miquelianin can effectively reduce the production of ROS and modulate various signaling
pathways, including cAMP, RAS, and ERK1/2 [51]. Additionally, it has been shown
to regulate the expression of genes associated with heme oxygenase 1 (HO-1), matrix
metalloproteinase (MMP)-2, and MMP-9, suggesting its potential neuroprotective effects.

Studies have demonstrated that miquelianin can cross the blood–brain barrier (BBB)
and reduce the production of β-amyloid (Aβ) peptides in primary cultured Tg2576 mouse
models of Alzheimer’s disease [52]. Moreover, it interferes with the initial protein–protein
interactions necessary for the formation of neurotoxic Aβ oligomers, specifically Aβ1-
40 and Aβ1-42, further supporting its potential as a therapeutic agent. Recent research
has also highlighted the role of miquelianin in promoting neurogenesis by upregulating
the time-resolved Kerr rotation (TrkR) and PI3K/AKT signaling pathways. Mice supple-
mented with nuciferine leaf polyphenol extract (NLPE), enriched in miquelianin, exhibited
increased numbers of stem cells and neurons. In vitro experiments using miquelianin-
treated HT22 and SH-SY5Y cells demonstrated enhanced neurite outgrowth and elevated
TrkR and PI3K/AKT levels, indicating its potential in the treatment of neurodegenerative
diseases [52,53].

Furthermore, miquelianin exhibits immunomodulatory effects by inhibiting the Th2
immune response and displaying antiallergic properties. It has been shown to suppress
cytokine production and IL-2 by Th2 cells while upregulating the expression of HO-1
in splenocytes [54]. In vitro experiments have demonstrated its ability to inhibit CD4+
T-cell proliferation and induce HO-1 expression through the ROS and the C-Raf–ERK1/2–
Nrf2 pathway. In a mouse model of atopic dermatitis, miquelianin effectively alleviated
symptoms by inhibiting the Th2 immune response.

These studies highlight the protective utility and potential medicinal value of miquelianin
in various situations, including neuroprotection and immunomodulation (Table 2). Its
application in the treatment of sepsis-related diseases deserves further exploration.
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Table 2. Summary of studies of natural quercetin derivatives with ameliorative effects.

Chemical
Structure, Name,
and Formula

Objectives Subjects Signaling
Pathways/Axes

Main Outcome
(Increase/Decrease) Ref.

Miquelianin
(C21H18O1)

Antioxidant effect In vivo: male SD rats
(275–300 g)

JNK and
MAK-ERK

Decreased: ROS, cAMP
and RAS, p-ERK1/2,
HO-1, MMP-2, and
MMP-9

[51]

Neurodegenerative
diseases

In vivo: 24-week-old
male C57BL/6 mice;
In vitro: HT22 and
SH-SY5Y cells

TrKR and
PI3K/AKT

Increased: TrKR,
PI3K/AKT, neurite
outgrowth levels

[52]

Allergic diseases

In vitro: Th2 and
CD4+ T cells
In vivo: 6-week-old
female BALB/c mice

C-Raf-ERK1/2-
Nrf2

Increased: HO-1
Decreased: IL-2 [54]

Reynoutrin
(C20H18O11) IHF In vivo: male SD rats

(180–220 g) NF-κB
Decreased: S100A1,
MMP-2, MMP-9, p-P65,
TGF-β1

[55]

Rutin
(C27H30O16)

Nervous system
inflammation and
cognitive
dysfunction

In vivo: 6-month-old
male tau-P301S mice NF-κB Increased: PP2A

Decreased: tau oligomers [56]

Colitis In vivo: 8-week-old
female C57BL/6 mice NF-κB

Increased: TJ protein
Decreased: FITC-dextran
and endotoxin,
Romboutsia ilealis and
Eubacterium fissicatena
group

[57]

Isoquercetin
(C21H20O12)

ALD In vitro: HepG2 cells Nrf2/ARE, NF-κB Decreased: NO, ROS and
MDA levels, TNF-α [58]

Birth defects in
diabetic pregnancies

In vivo: female
C57BL/6 mice NF-κB, ER-stress

Increased: SOD1
Decreased: P65, IKK,
NOS2

[59]

SD-induced
neuronal injury In vivo: C57BL/6 mice Not mentioned

Decreased: NLRP3,
caspase-1, ASC, IL-1β,
IL-18, and GSDMD.

[60]

NAFLD In vivo: 6-week-old
male C57BL/6 mice

Intestinal
FXR-Fgf15
signaling

Decreased: cholesterol
and triglyceride levels [61]

DOX-induced
cardiomyocyte
apoptosis

In vitro: H9c2 and
HMC cells AKT/Bcl2

Increased: LDH, ∆Ψm
Decreased: oxidative
stress levels, AKT, Bcl-2,
Bax, CytC, and
pro-caspase-3

[62]

Quercetin-3-O-
sambubioside
(C26H28O16)

Hepatoprotective
effect of HDWE

In vivo: transgenic
zebrafish with a
liver-specific
fluorescent probe
(L-FABP: EGFP)

Not mentioned Increased: SOD, GSH
Decreased: ALT, AST [63]
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Table 2. Cont.

Chemical
Structure, Name,
and Formula

Objectives Subjects Signaling
Pathways/Axes

Main Outcome
(Increase/Decrease) Ref.

Quercitrin
(C21H20O11)

OA

In vitro: chondrocytes,
SW1353 cells
In vivo: male SD rats
(200 ± 20 g)

P110α/AKT/mTOR Increased: collagen II
Decreased: MMP-13 [64]

APAP-induced liver
injury

In vitro: L-02 cells
In vivo: BALB/c mice Not mentioned

Increased: SOD, GSH,
GSH-Px, CAT
Decreased: ALT, AST,
LDH, IL-6, TNF-α, ROS,
MDA

[65]

Neuroinflammation
and depression

In vivo: 6–8-week-old
male ICR mice
(22–24 g)

PI3K/AKT/NF-
κB, MEK/ERK,
pCREB/BDNF/
PSD95/Synapsin1

Increased: ERK signaling
Decreased: IL-10, IL-1β,
and TNF-α

[66]

Spiraeoside
(C21H20O12)

Antioxidative and
anti-cancer effects In vitro: HeLa cells

Bcl-
2/Bid/caspase-9/-
3 pathway, cell
cycle-related
CDK2-cyclin E
pathway

Increased: caspase-9,
caspase-3
Decreased: Bcl-2 and Bid,
CDK2-cyclin E, MUDENG,
aromatase, monoamine
oxidase A/B, and
angiotensin-converting
enzyme

[67]

Rhamnetin
(C16H12O7)

Sepsis caused by
CRAB and E. coli

In vitro: RAW 264.7
cells and HEK cells
In vivo: 6-week-old
female ICR mice

Not mentioned Decreased: IL-6 and NO [68]

Tamarixetin
(C16H12O7)

Cardiac
hypertrophy

In vitro: H9c2 cells
In vivo:
8–10-week-old male
C57BL/6 mice

NFAT and
PI3K/AKT

Decreased:
VW/BW, LW/BW,
echocardiographic
parameters, hypertrophic
markers, ROS

[69]

Bacterial sepsis
In vitro: BMDCs
In vivo: 6-week-old
female C57BL/6 mice

MAPK/JNK
Increased: IL-10
Decreased: p-JNK1, p-p38
and p-AKT, COX-2

[70]

S. aureus infection In vivo: 6-week-old
female C57BL/6J mice Not mentioned

Increased: urease
Decreased: HLa and PVL
proteins, ClpP activity,
hla, agr, RNAIII, pvl,
PSM-α and spa genes

[71]

Nepetin
(C16H12O7)

MRSA infection In vivo: 7-week-old
female C57BL/6J mice Not mentioned Decreased: thermal

stability of ClpP [72]

RPE In vitro: ARPE-19 cells NF-κB and MAPKs Decreased: IL-6, IL-8, and
MCP-1 [73]

Inflammation and
allergy

In vitro: BMMCs
In vivo: male BALB/c
mice

AKT/NF-
κB/COX-2, and
IGE/Ag

Decreased: COX-2, PLCγ1,
cPLA2, LTC4, PGD2, Ca2+ [74]

Inflammatory
osteolysis

In vitro: osteoclasts
In vivo: 6-8-week-old
male BALB/c mice

NF-κB and MAPK
Decreased: TRAF6-
dependent ubiquitination
of Beclin-1

[75]

CFD-induced
pneumonia and
asthma

In vitro: MH-S cells
In vivo: 6-week-old
C57BL/6 mice

NF-κB and MAPK,
the localization of
IRAK-1

Decreased: NO, INOS,
COX-2, IL-1β, IL-6, and
TNF-α, ADMA, SDMA

[76]
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Table 2. Cont.

Chemical
Structure, Name,
and Formula

Objectives Subjects Signaling
Pathways/Axes

Main Outcome
(Increase/Decrease) Ref.

Isorhamnetin
(C16H12O7)

DED

In vitro: FRT cells, T84
cells, HEK-293T cells,
CHO cells, human
CorE and CorjE cells
In vivo: 6-week-old
ICR mice (30 g)

PI3K/AKT and
NF-κB

Increased: CFTR activity
and tear secretion
Decreased: IL-1β, IL-8,
and TNF-α

[77]

Diabetes-associated
cerebral I/R injury In vitro: HT22 cells AKT/SIRT1/Nrf2/

HO-1
Decreased: SIRT1, Nrf2,
HO-1, p-AKT [78]

Liver fibrosis
In vivo: 8-week-old
male C57 mice
(22–24 g)

TGF-β1-mediated
SMAD3 and
p38-MAPK

Increased:
PPAR-γ, MMP-2
Decreased: TGF-β1,
SMAD3, ALT, AST,
Collagen I and III, α-SMA,
Beclin-1, LC3, TIMP-1

[79]

Antiplatelet and
antithrombotic
effects

In vitro:
human peripheral
blood

Not mentioned
Increased: Ca2+

Decreased: platelet ATP
levels, ∆Ψm

[80]

ALD—alcohol-related liver disease; BMMC—bone marrow mononuclear cell; CHO—Chinese hamster ovary;
ConjE—conjunctival epithelial; CorE—corneal epithelial; DED—dry eye disease; FRT—fisher rat thyroid;
ICR—Institute of Cancer Research; LAD—left anterior descending; LW/BW—lung weight/body weight ra-
tio; MMP—matrix metallopeptidase; MUDENG—mu-2 related death-inducing gene; NFAT—nuclear factor
of activated T cells; RPE—retinal pegment epitheliitis; S100A1—S100 calcium-binding protein A1; SD—sleep
deprivation; SPF—specific-pathogen-free; TJ—tight junction; VW/BW—ventricular weight/body weight ratio;
∆Ψm—mitochondrial membrane potential.

4.3. Reynoutrin

Herbs containing reynoutrin (quercetin-3-xyloside) are recognized for their poten-
tial anti-inflammatory, antioxidant, and antiviral effects, particularly against hepatitis C
virus [81]. Notably, reynoutrin has displayed promising potential in improving ischemic
heart failure (IHF) by targeting S100A1 [55]. In an experimental rat model of left anterior
descending (LAD) ligation-induced heart failure, reynoutrin was administered at different
doses, and its impact on various aspects, including cardiac function, inflammatory factors,
oxidative stress, cardiomyocyte apoptosis, and myocardial fibrosis, was comprehensively
evaluated (Table 2). The results revealed significant improvements in cardiac function, a
reduction in the release of inflammatory factors, alleviation of oxidative stress, attenuation
of cardiomyocyte apoptosis, and mitigation of myocardial fibrosis in IHF rats treated with
reynoutrin [55,82].

However, it is important to note that while reynoutrin has been isolated and identified
from various plants in several studies [55,83,84], there is limited evidence available to fully
support its antioxidant and anti-inflammatory effects. Further investigations are required
to elucidate and provide more comprehensive evidence of these effects.

4.4. Rutin

Rutin, also known as quercetin-3-rutinoside or sophorin, is a flavonoid compound
commonly found in various plants [85]. Extensive research has been conducted on rutin,
highlighting its potential as a promising active ingredient derived from medicinal plants.

One area of focus has been rutin’s beneficial effects in mitigating tau pathology
(Table 2). It has been found to inhibit tau aggregation, reduce cytotoxicity caused by
tau oligomers, decrease proinflammatory cytokine production, protect neuronal morphol-
ogy from harmful tau oligomers, and promote the uptake of extracellular tau oligomers by
microglia. In a tau-P301S mouse model, rutin demonstrated therapeutic effects by reducing
pathological tau levels, regulating tau hyperphosphorylation through increased expression
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of PP2A, inhibiting gliosis and neuroinflammation by downregulating the NF-κB pathway,
preventing microglia-mediated synapse clearance, and rescuing synaptic loss [56]. Notably,
rutin is able to effectively penetrate the BBB despite its limited water solubility and low
bioavailability [86]. Its impact on the brain’s nervous system is not through the regulation
of the gut microbiome but rather through direct regulation of tau [56].

Rutin has also shown potential in modulating inflammation and oxidative stress
responses in mice with colitis, as observed in a study by Liu et al. [57]. It significantly
improved colonic permeability, as indicated by increased levels of tight junction proteins
and decreased levels of FITC-dextran and endotoxin in the serum. Rutin exerted its
anti-colitis effects by inhibiting the activation of the NF-κB pathway. Additionally, rutin
partially restored the imbalance in the gut microbiota of mice with colitis. It increased the
abundance of potential probiotics, such as Faecalibaculum rodentium, while reducing the
levels of potentially disease-associated bacteria, such as Romboutsia ilealis and Eubacterium
fissicatena group (Table 2).

Data from a double-blind, placebo-controlled trial of rutin 500 mg daily for 3 months
showed significant improvements in metabolic measures, brain-derived neurotrophic factor
(BDNF), and markers of inflammation and oxidative stress in patients with type 2 diabetes
mellitus (T2DM) [87]. These findings highlight the diverse therapeutic potential of rutin,
particularly in the context of mitigating tau pathology and modulating inflammation and
oxidative stress responses. Further research is needed to fully elucidate the molecular
mechanisms and clinical applications of rutin in various disease conditions.

4.5. Isoquercetin

Isoquercetin (quercetin 3-glucoside) is a naturally occurring polyphenol that pos-
sesses antioxidant and anti-inflammatory properties, providing protection against oxida-
tive stress and reducing inflammation [88]. It has demonstrated potential in mitigating
ethanol-induced hepatotoxicity, oxidative stress, and inflammation through the Nrf2/ARE
antioxidant signaling pathway. Additionally, it regulates the expression of nitric oxide by
modulating the NF-κB transcription system [58]. Isoquercetin’s high bioavailability and
low cytotoxicity make it a promising candidate for preventing birth defects in diabetic
pregnancies [59].

In a study by Zhou et al., isoquercetin not only enhanced spatial memory but also pro-
vided protection to hippocampal neurons in sleep-deprived mice. The study observed an
increase in the levels of NLRP3 in sleep-deprived mice, which was subsequently alleviated
by treatment with isoquercetin. Furthermore, isoquercetin exhibited an inhibitory effect
on the upregulation of pyroptosis-related factors, such as NLRP3, caspase-1, apoptosis-
associated speck-like protein containing CARD (ASC), IL-1β, IL-18, and GSDMD, induced
by LPS [60].

A recent study by Zhang et al. investigated the therapeutic effects of isoquercetin
on nonalcoholic fatty liver disease (NAFLD) in mice induced by a high-fat diet [61]. The
study found that isoquercetin supplementation significantly regulated bile acid levels in
the liver, serum, gut, and fecal samples of NAFLD mice. Additionally, it reduced the
hepatic biliary sterols and triglyceride levels by 13.2% and 16.05%, respectively, in NAFLD
mice. Isoquercetin achieved these effects by inhibiting FXR-Fgf15 signaling and promoting
bile acid biosynthesis. It also modulated the receptors involved in bile acid transport,
reabsorption, and excretion. Long-term intake of isoquercetin is suggested to have an
intervention effect on the occurrence of fatty liver.

Moreover, a study on Apocynum venetum leaf extract (AVLE) showed that eight com-
pounds, including isoquercetin, quercetin, rutin, and quercetin-3-O-glucuronide, in AVLE
had protective effects against doxorubicin (DOX)-induced cardiomyocyte apoptosis [62].
AVLE administration mitigated DOX-induced oxidative stress, improved mitochondrial
function, regulated apoptosis-related protein expression, and activated the AKT signaling
pathway, thereby safeguarding against DOX-induced cardiotoxicity.



Biomedicines 2024, 12, 444 10 of 20

These findings highlight the potential therapeutic benefits of isoquercetin in various
contexts, including hepatotoxicity, sleep deprivation, nonalcoholic fatty liver disease, and
cardiomyocyte apoptosis (Table 2). Further research is needed to explore its mechanisms of
action and clinical applications.

4.6. Quercetin-3-O-Sambubioside

Quercetin-3-O-sanburoside is a glycoside derivative of quercetin that was mentioned
in a study by Wang et al., which focused on the hepatoprotective effects of Hedyotis diffusa
Willd [63]. The researchers observed significant protective effects against liver injury and
identified quercetin-3-O-sambubioside as the key active compound. In vitro experiments
further confirmed the compound’s ability to reverse the decrease in cell viability caused by
INH (isoniazid) and its effects on relevant targets.

In another study by Guo et al., the main active components of Eucommia male
flower pollen were identified and analyzed [89]. Quercetin-3-O-picroside, quercetin-3-O-
sansanoside, and quercetin-3-O-naringin were identified as the primary active compounds.
The researchers performed purification and structure identification of these compounds
and employed molecular docking methods to predict their activities. The effects of these
compounds on ROS generation were evaluated using H2O2 stimulated with RAW264.7
cells as a model.

These studies highlight the potential therapeutic benefits of quercetin-3-O-sanburoside
and related compounds, particularly in the context of hepatoprotection and antioxidant
effects (Table 2). Further research is needed to explore the mechanisms of action and the
potential clinical applications of these compounds.

4.7. Quercitrin

Quercitrin (quercetin 3-rhamnoside) is a bioflavonoid compound, shows promise in
the treatment of various diseases, particularly osteoarthritis (OA) [64,90]. It has been found
to reduce the expression of MMP-13 and increase collagen II expression, promoting cell
proliferation and delaying the degradation of the extracellular matrix (ECM). Notably,
studies conducted on chondrocytes and SW1353 cells have yielded promising results. In
an animal model of OA using rats with anterior cruciate ligament transection (ACLT),
quercitrin was found to activate the p-110α/AKT/mTOR signaling pathway, leading to
increased bone and tissue volume and enhanced cartilage thickness in the tibial subchondral
bone. These positive effects are further supported by a decrease in the OARSI score,
emphasizing quercitrin’s potential for the prevention and treatment of early OA.

Quercitrin has also demonstrated hepatoprotective properties against acetaminophen
(APAP)-induced liver injury [65]. This is achieved through the reduction of ROS levels,
protection of the mitochondria, and the restoration of mitochondrial complex I activity.
Animal models have shown that quercitrin effectively mitigated APAP-induced liver injury,
resulting in improved liver function markers and reduced inflammation levels [65].

In a comprehensive study conducted by Sun et al., the molecular mechanisms of
quercitrin were further explored in an inflammatory animal model induced by LPS [66].
The study focused on quercitrin’s antidepressant effects, modulation of neuroinflammation,
and influence on neuroplasticity. The administration of quercitrin (10 mg/kg) resulted in
rapid and sustained antidepressant effects. Within two hours, signaling molecules related
to neuroplasticity in the hippocampus were upregulated, while inflammatory pathways
were suppressed. Quercitrin exhibited the ability to reduce cytokine levels, restore impaired
signaling, and exert anti-inflammatory effects similar to those of a PI3K inhibitor. These
findings highlight the diverse therapeutic potential of quercitrin, particularly in the domains
of osteoarthritis, liver injury, and neuroinflammation (Table 2).

Further investigations are warranted to deepen our understanding of the underlying
mechanisms and expand the scope of the clinical applications of quercitrin.



Biomedicines 2024, 12, 444 11 of 20

4.8. Spiraeoside

Spiraeoside (quercetin 4’-O-glucoside) is a flavonoid glycoside compound that occurs
naturally in plants. It has shown potential as a natural alternative for managing gout, a
type of arthritis [91,92]. Research conducted on the marine seagrass Halophila stipulacea
has revealed that the extract, which contains spiraeoside, reduced neutral lipid levels in
zebrafish larvae [93]. In another study, spiraeoside derived from Filipendula ulmaria (L.)
Maxim. was investigated for its inhibitory activity on monoamine oxidase (MAO), an
enzyme targeted in gout treatment. Spiraeoside demonstrated inhibitory activity approxi-
mately 25 times greater than allopurinol, suggesting its potential as a natural alternative
for managing gout [91].

Furthermore, spiraeoside has significant antioxidant and anti-inflammatory properties.
It has shown promising inhibitory effects on aromatase, monoamine oxidase A/B, and
angiotensin-converting enzymes. Additionally, spiraeoside exhibited strong inhibitory
effects on the growth of HeLa cells, particularly at a concentration of 50 µg/mL [67].
Mechanistically, it was found to suppress the expression of Bcl-2 and Bid, promoting
apoptosis through the activation of caspase-9/-3, and inhibited the expression of mu-2
related death-inducing gene (MUDENG).

These findings highlight the potential of spiraeoside in the management of gout and
its ability to exhibit antioxidant, anti-inflammatory, and anti-cancer properties (Table 2).
Further studies are necessary to explore its therapeutic applications and mechanisms in
greater detail.

4.9. Rhamnetin

Rhamnetin is a quercetin derivative derived from Coriandrum sativum [94]. In the
molecular structure of quercetin, the hydroxyl group’s position is substituted by a methyl
group, giving rise to rhamnetin. Sepsis caused by carbapenem-resistant Acinetobacter bau-
mannii (CRAB), a pathogen resistant to current antibiotics and responsible for acute lung fail-
ure, has been extensively studied. In a study carried out by Lee et al., the potential therapeu-
tic efficacy of rhamnetin in sepsis was underscored, presenting encouraging outcomes [68].
They demonstrated that rhamnetin effectively mitigated the uncontrolled inflammatory
response in sepsis by inhibiting the release of IL-6 and NO in mouse macrophages stimu-
lated by LPS, CRAB, and Escherichia coli (E. coli) (Table 2). Additionally, in a mouse model
of sepsis with CRAB or E. coli infection, rhamnetin administration significantly reduced
the bacterial load in organs and effectively alleviated lung injury, as evidenced by levels of
inflammatory factors and histological analysis of lung tissue. In the meantime, rhamnetin
exhibited remarkable anti-inflammatory activity with minimal cytotoxicity.

Shatta et al. conducted a study that established a reliable in vitro model using HepG2
cells to study the effects of rhamnetin on nonalcoholic steatohepatitis (NASH) [95]. The
researchers used mixtures of oleic acid (OA) and palmitic acid (PA) at different ratios
and concentrations to induce NASH in the cells. They found that rhamnetin effectively
modulated the molecular mechanisms of inflammation and oxidation in the HepG2 cells,
leading to significant improvement in PA-induced NASH.

4.10. Tamarixetin

Tamarixetin (4’-O-methyl quercetin) is a methylated derivative of quercetin extracted
from Tamarix troupii. It has been found to protect against cardiac hypertrophy, a com-
pensatory response to a mechanical load that can lead to heart failure. In an anti-cardiac
hypertrophy study, researchers demonstrated that tamarixetin effectively alleviated cardiac
hypertrophy and ventricular dilatation in transverse aortic constriction (TAC) mice; a series
of echocardiography parameters were improved, and hypertrophy markers, such as atrial
natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain 7
(Myh7) were significantly reduced [69]. It also inhibited phenylephrine-induced hypertro-
phy in cardiomyocytes and reduced oxidative stress and ROS production. It suppressed
the expression of apoptosis and fibrosis-related genes, reversed remodeling in the stressed
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heart, and prevented nuclear translocation of the nuclear factor of activated T cells (NFAT)
and activation of the PI3K–AKT signaling pathway (Table 2).

In a mouse model of bacterial sepsis induced by E. coli K1, tamarixetin demonstrated
a strong anti-inflammatory effect, leading to reduced bacterial counts and endotoxin levels.
Compared to quercetin, it exhibited stronger anti-inflammatory properties in bacterial sep-
sis [70]. In addition, tamarixetin has shown promising effects in combating Staphylococcus
aureus (S. aureus) infection, with minimal cytotoxicity. It inhibits the activity of caseinolytic
protease P (ClpP), reducing the pathogen’s virulence. Tamarixetin also suppresses the
transcription of genes associated with S. aureus pathogenicity and decreases the expression
of virulence-related proteins. It inhibits hemolytic activity and enhances urease expres-
sion. In vivo studies have demonstrated its therapeutic potential in protecting against
S. aureus pneumonia and enhancing the antimicrobial activity of cefotaxime when used in
combination [71].

4.11. Nepetin

Nepetin (6-methoxyluteolin) is a methylated derivative of quercetin that is derived
from the flowers of Inula japonica, Inulae flos [74]. It has shown potential in managing
various diseases, including Alzheimer’s disease and T2DM [96,97]. In the context of sepsis,
nepetin has demonstrated effectiveness against multiple infections. For example, Jing et al.
identified nepetin (100 mg/kg) as an inhibitor of ClpP and a potential lead compound for
treating methicillin-resistant S. aureus (MRSA) infection [72]. Nepetin effectively combated
MRSA-induced pneumonia by inhibiting bacterial virulence (Table 2).

Moreover, nepetin exhibits anti-inflammatory properties by reducing the secretion
and mRNA expression of pro-inflammatory cytokines, such as IL-6, IL-8, and monocyte
chemoattractant protein 1 (MCP-1). This effect is achieved through the inhibition of the
NF-κB and MAPK signaling pathways. Additionally, nepetin can inhibit degranulation
and the production of inflammatory molecules in bone marrow-derived mast cells [73].

Nepetin also shows potential in inhibiting osteoclast differentiation, formation, and
bone resorption induced by RANKL. Studies have demonstrated its protective effect against
bone destruction caused by excessive osteoclast activity. This protection is attributed to the
inhibition of NF-κB and MAPK signaling pathways and prevention of the TNF receptor-
associated factor 6 (TRAF6)-mediated ubiquitination of Beclin-1 [75].

Furthermore, nepetin has been found to reduce inflammation and improve lung tissue
in an asthma mouse model. It decreased the levels of inflammatory markers and influences
immune and inflammatory responses [76].

In summary, nepetin holds promise as a natural compound with potential therapeutic
applications in the management of various diseases (Table 2). Its ability to inhibit infection,
modulate inflammation, and protect against bone destruction and lung injury makes it an
interesting target for further research.

4.12. Isorhamnetin

Isorhamnetin (3’-methylquercetin) is a flavonoid compound extracted from Hippophae
rhamnoides (L.). Lee et al. discovered that isorhamnetin can activate the cystic fibrosis
transmembrane conductance regulator (CFTR), offering a potential treatment for dry eye
syndrome [77]. Their investigations showed that isorhamnetin significantly enhanced
CFTR chloride currents occurring in both wild-type and ∆F508-CFTR mice. Importantly,
isorhamnetin had no impact on the intracellular cAMP levels or the activity of other
ion channels. The topical application of isorhamnetin on mice’s ocular surface led to
CFTR activation and increased tear secretion. Isorhamnetin effectively reduced ocular
surface damage and the expression of inflammatory markers in an experimental dry eye
mouse model. This protective effect is attributed to the activation of the AKT/sirtuin 1
(SIRT1)/Nrf2/HO-1 pathway, mitigating apoptosis, inflammation, and oxidative stress [78].

In terms of liver fibrosis, isorhamnetin has shown promise. Studies using mouse
models induced by carbon tetrachloride (CCl4) or bile duct ligation (BDL) demonstrated
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that the oral administration of isorhamnetin effectively counteracted liver fibrosis. Its
hepatoprotective properties are attributed to the inhibition of hepatic stellate cell activation,
reduction of the extracellular matrix deposition, and regulation of autophagy through the
modulation of TGF-β1-mediated signaling pathways [79].

Furthermore, isorhamnetin exhibits notable antiplatelet activity. It inhibits platelet
aggregation triggered by collagen and TRAP-6 without causing cytotoxic effects. The
antiplatelet mechanism involves the inhibition of mitochondrial function, while ROS levels
remain unaffected. Isorhamnetin has demonstrated potential as an antithrombotic agent by
impeding platelet deposition [80].

These findings suggest that isorhamnetin has therapeutic potential in treating dry
eye syndrome, diabetes-aggravated brain injury, liver fibrosis, and platelet aggregation
(Table 2). Further research is needed to explore its clinical applications and mechanisms of
action in more depth.

5. Oral Supplementations

Quercetin and its natural derivatives have shown promising therapeutic effects. As
a natural pharmaceutical standard (PS) supplement with standard management (SM),
quercetin has been used in subject trials in patients with mild-to-moderate asthma attacks
and rhinitis. Compared to SM alone, ingesting quercetin Phytosome® (Indena Inc., Milan,
Italy), a supplement that uses sunflower phospholipids, the oral absorption of quercetin
increased up to 20-fold, significantly improved outcomes, increased rhinitis scores, and
reduced oxidative stress [98]. This is supported by another survey. Athletes using this
quercetin supplement had better improvement in symptoms, such as muscle or local
pain, spasms, and reduced levels of oxidative stress compared to controls [99]. No side
effects were reported [98,99], and no hepatic or renal toxicity was observed [100]. It has
been claimed that the use of the supplement may be effective in reducing some of the
symptoms of pollen-induced allergies [101]. It is also a potent candidate for anti-COVID-19
treatment [102,103].

Enzymatically modified isoquercitrin (EMIQ®, San-Ei Gen F.F.I., Inc., Toyonaka, Japan)
is an isoquercetin derivative that is extracted from the flowers and buds of the Japanese
pagoda tree [104]. Its bioavailability is 17-fold higher than that of quercetin aglycone, and
it shows potent cardiovascular ameliorating effects in vivo. The plasma concentrations of
quercetin metabolites were significantly higher after EMIQ® treatment compared to placebo
(p < 0.001) [105]. It has been found safe in many toxicity studies and has been self-affirmed
as Generally Recognized as Safe (GRAS) by the FDA (GRAS Notice No. GRN000220).

Oral supplements of rutin are common. In the previously mentioned clinical trial,
rutin tablets (Solgar, New Jersey, USA) were used to intervene in patients with T2DM [74].
Macuprev® supplementation (Farmaplus Italia s.r.l., Rome, Italy), used in another follow-
up study [106], is a vitamin complex rutin tablet; its ingredients include vitamin D3 (800 IU),
vitamin B12 (18 mg), alpha-lipoic acid (140 mg), rutin (157 mg), vitamin C (160 mg), and
so on.

6. Conclusions and Perspectives

In summary, quercetin and its natural derivatives may play a beneficial role in sepsis
by reducing inflammation and oxidative stress, downregulating the expression of TLRs,
regulating the immune response, and reducing organ dysfunction associated with sepsis
through the PI3K/AKT/NF-κB, Nrf2/ARE, and MAPK signaling pathways (Figure 2).
In addition, in practical applications, quercetin and its natural derivatives are often used
as daily supplements or as adjuvant therapeutic candidates. These compounds reduce
inflammation and promote healing, enhance the antibacterial effect of antibiotics, and
reduce the nuisance of drugs on intestinal flora. Additionally, they are synergetic with
anti-cancer drugs to enhance chemosensitivity [107–111].
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Abbreviations

ADMA—asymmetric dimethylarginine; AhR—aromatic hydroxylase receptor; AMPK—AMP-
activated protein kinase; ANP—atrial natriuretic peptide; APAP—acetaminophen; ARE—antioxidant
stress response element; ASC—apoptosis-associated speck-like protein containing CARD;
AVLE—Apocynum venetum leaf extract; Aβ—β-amyloid; B[a]P—benzo[a]pyrene; BBB—blood-brain
barrier; BDL—bile duct ligation; BDNF—brain-derived neurotrophic factor; BMMCs—bone marrow-
derived mast cells; BNP—brain natriuretic peptide; CCl4—carbon tetrachloride; CFD—coal fly
dust; CFTR—cystic fibrosis transmembrane conductance regulator; ClpP—caseinolytic protease P;
COX-2—cyclooxygenase-2; CRAB—Carbapenem-resistant Acinetobacter baumannii;
GSDMD—gasdermin D; HDWE—Hedyotis diffusa Willd. ethanol extract; HO-1—heme oxygenase-1;
HPLC—high-performance liquid chromatography; I/R—ischemia/reperfusion; IDD—intervertebral
disc degeneration; IHF—ischemic heart failure; IL-1β—interleukin-1β; iNOS—inducible nitric oxide
synthase; LPS—lipopolysaccharides; LTC4—leukotriene C4; MAPK—mitogen-activated protein
kinase; MCP-1—monocyte chemoattractant protein 1; MDA—malondialdehyde; MRSA—Methicillin-
resistant Staphylococcus aureus; MyD88—myeloid differentiation factor 88; Myh7—myosin heavy chain
7; NAFLD—nonalcoholic fatty liver disease; NF-κB—nuclear factor kappa B; NLPE—nuciferine leaf
polyphenol extract; NO—nitric oxide; Nrf2—nuclear factor E2-related factor 2; PGD2—prostaglandin
D2; PKB—protein kinase B; ROS—reactive oxygen species; SASP—senescence-associated secre-
tory phenotype; SDMA—symmetric dimethylarginine; SIRT1—sirtuin 1; SOD—superoxide dismu-
tase; T2DM—type 2 diabetes mellitus; TLR4—toll-like receptor 4; TNF-α—tumor necrosis factor-α;
TRAF6—TNF receptor associated factor 6; TrkR—time-resolved Kerr rotation.
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