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Simple Summary: Multi-gene assays (MGAs), such as Oncotype DX and Mammaprint, are used to
provide predictive and prognostic values in treatment of ER+HER2− breast cancer. However, their
accessibility is restricted due to their high cost in some countries. For this reason, many studies have
been conducted to develop the tests that can replace the multi-gene assays, but practicality is still
insufficient. The aim of our study is to develop a highly accessible machine learning-based model for
predicting the result of MGA. Our accurate and affordable machine learning-based predictive model
may serve as a cost-effective alternative to the expensive multi-gene assays.

Abstract: This study aimed to develop a machine learning-based prediction model for predicting
multi-gene assay (MGA) risk categories. Patients with estrogen receptor-positive (ER+)/HER2−
breast cancer who had undergone Oncotype DX (ODX) or MammaPrint (MMP) were used to develop
the prediction model. The development cohort consisted of a total of 2565 patients including
2039 patients tested with ODX and 526 patients tested with MMP. The MMP risk prediction model
utilized a single XGBoost model, and the ODX risk prediction model utilized combined LightGBM,
CatBoost, and XGBoost models through soft voting. Additionally, the ensemble (MMP + ODX) model
combining MMP and ODX utilized CatBoost and XGBoost through soft voting. Ten random samples,
corresponding to 10% of the modeling dataset, were extracted, and cross-validation was performed
to evaluate the accuracy on each validation set. The accuracy of our predictive models was 84.8%
for MMP, 87.9% for ODX, and 86.8% for the ensemble model. In the ensemble cohort, the sensitivity,
specificity, and precision for predicting the low-risk category were 0.91, 0.66, and 0.92, respectively.
The prediction accuracy exceeded 90% in several subgroups, with the highest prediction accuracy
of 95.7% in the subgroup that met Ki-67 <20 and HG 1~2 and premenopausal status. Our machine
learning-based predictive model has the potential to complement existing MGAs in ER+/HER2−
breast cancer.
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1. Introduction

In estrogen receptor-positive (ER+), HER2-negative breast cancer, several multi-gene
assays (MGAs) are used to provide predictive and prognostic value. Among these, On-
cotype DX (ODX; Exact Sciences, Madison, WI, USA) (Genomic Health, Redwood City,
CA, USA) and Mammaprint (MMP; Agendia, Amsterdam, The Netherlands) have shown
level 1 clinical utility in identifying patients with preserved outcomes when treated with
adjuvant endocrine therapy and no chemotherapy through the large, prospective phase
3 clinical trials TAILORx [1] and MINDACT [2]. On this evidence, ODX and MMP are
included in the main international clinical guidelines of AJCC 8th edition [3–5].

The biggest hurdle that makes MGAs less accessible, such as ODX and MMP, is the
high cost of testing. Restrictions on the usual use of MGAs are particularly severe in
countries that are not covered by insurance or in developing countries [6–8]. If the test is
omitted, proper treatment may not be performed because the physicians may not make
the right decision. To overcome this problem, the necessity for tests that are relatively
inexpensive and can replace MGA has been raised.

For this reason, many alternative tools have been developed to predict ODX risk
scores. Several studies have reported statistical models predicting ODX risk groups based
on pathological variables, such as Magee equations (MEs) [9–11], IHC4 score [12], or
Adjuvant! Online. In addition, several studies have reported on models that predict MGA
risk based on MRI imaging features [13]. Some alternative tests are being used, but they
are insufficient to completely replace MGAs.

Recently, with the development of AI (artificial intelligence), several studies have
reported the development of models to predict ODX risk based on deep learning [14–16].
However, there have not been many studies about AI predictive models. In addition, they
have limitations in terms of accuracy, and the amount of data used in each study was low.

The purpose of our study was to develop a more accurate and affordable prediction
model using machine learning for high-risk or non-high-risk groups according to the
TAILORx [1] and MINDACT criteria [2]. (i.e., recurrent score > 25 for high risk in ODX;
MMP index < 0 for high risk in MMP). This study is collaborative research involving
multiple institutions, and it utilizes a larger number of cohorts compared to previous
studies. While previous studies have focused on predicting ODX among MGAs, this study
is the first attempt to also include prediction of MMP and ensemble (MMP + ODX) in
addition to prediction of ODX using machine learning.

Related Work

Several AI-based models have been reported to predict ODX risk using various clinico-
pathologic features in ER+, HER2-negative breast cancer. Xiaoxian et al. developed a linear
regression model to predict the ODX risk category by utilizing deep learning-derived image
features and Magee features [17]. They used the Mask R-CNN to derive the image features
such as the tumor cell number, tumor-infiltrating lymphocyte (TIL) number, and nuclear
grades from whole-slide images (WSIs) of 382 patients. The concordance rates between the
actual RS and their model prediction were 56.1% and 68.0% in each validation set.

Brunetti et al. employed a logistic regression model to predict the ODX risk score using
the dynamic contrast-enhanced (DCE) MRI-derived radiomics features of 248 patients [18].
Tumor lesions were manually annotated by three independent operators on DCE-MRI
images through 3D region of interest (ROI) positioning. The pandas and scikit-learn Python
packages were used for data processing, and a logistic regression machine learning classifier
was employed for prediction. In the test set, the accuracy of the model was 63.0%.

Devalland et al. developed a prediction tool for the ODX risk categories based on
deep learning and using only the morpho-immuno-histological variables [14]. They built a
prediction model using Matlab (R2023a) software with 152 cases for training and 168 cases
for testing. Three classifiers were used to learn each ODX risk category. The concordance
rate between the actual risk group and the predicted risk group ranged from 53 to 56% for
each class.
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In the study by Kim et al., they present a random forest model using the Azure
machine learning platform, which is a cloud service that enables the execution of machine
learning processes, for predicting ODX risk categories [15]. Of the total cases, 208 cases
were defined as the modeling group and 76 cases were defined as the validation group.
The predictors included 14 clinicopathologic features, including histology, the existence of
ductal carcinoma in situ, Ki-67, etc. Then, they trained the modeling set using a two-class
decision jungle method for the prediction of the high-risk group and a two-class neural
network method for the prediction of the low-risk group. The accuracy of validation was
88% in the high-risk group and 79% in the low-risk group.

The random forest model developed by Pawloski et al. showed performance power
with specificity and negative predictive value for identifying low-risk patients at 96.3%
and 92.9%. But sensitivity and positive predictive value for predicting high-risk patients
were lower (48.3% and 65.1%, respectively) [16]. Their predictive model with 500 trees was
developed on the training cohort, using age, tumor size, histology, progesterone receptor
(PR) expression, lympho-vascular invasion (LVI), and grade as predictors.

Predictive models using pathology slides or MRI images showed low prediction power
and have the disadvantage of requiring additional expert intervention when used in clinical
practice. Previous AI-based predictive models using various clinicopathologic features
presented an accuracy of 53 to 88%. However, there was a limitation in that the patient data
used to develop the model was somewhat small.

Our contribution to this work is two-fold. First, through a multicenter study, we
gathered a large cohort of 2565 patients to develop our model. Second, we attempted to
develop a model that predicts MMP and ensemble (ODX + MMP) in addition to ODX. As
far as we know, AI-based models predicting MMP have not yet been developed.

2. Methods
2.1. Study Population and Data

Following approval from the Institutional Review Board, we retrospectively identi-
fied 2565 breast cancer patients with ER+/HER2− breast cancer, who underwent MGAs
(ODX or MMP) and were treated at six institutions in South Korea (The BReast Artifi-
cial Intelligence Network group: Catholic Kwandong University International St. Mary’s
Hospital, Severance Hospital, Gangnam Severance Hospital, Yongin Severance Hospital,
Konkuk University Medical Center, and Inha University Hospital) from May 2008 to May
2023. Patients who received neoadjuvant chemotherapy were excluded. Clinicopathologic
data—including age at surgery, height, weight, body mass index (BMI), menarche age,
menopausal status, E2, FSH, pathologic tumor size, multiplicity, histologic grade (HG),
nuclear grade (NG), extensive intraductal component (EIC), LVI, nodal status, hormone
receptor expression level by immunohistochemistry (IHC), and Ki-67 and MGA recurrence
score (RS) (ODX and MMP)—were obtained from the patients’ medical records. ER pos-
itivity was defined as ≥1% of positive staining cells. HER-2 status was determined via
immunohistochemistry and/or fluorescence in situ hybridization. RS results were obtained
from the original reports provided by Genomic Health and Agendia.

2.2. Statistical Analysis

Continuous variables were compared using Student’s t-test. Categorical variables
were compared using the χ2 test using SPSS (version 22.0; SPSS Inc., Chicago, IL, USA).
Receiver operating characteristic (ROC) curves and areas under the ROC curve (AUCs)
were calculated. All tests were two-sided, and a p-value of <0.05 was considered statisti-
cally significant.

2.3. Data Preprocessing and Feature Selection

We performed a thorough exploratory analysis of the data, addressing outliers in-
troduced during collection. To enhance data quality, we corrected abnormal data points
resulting from errors and anomalies. Additionally, we utilized specific techniques like
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imputation with median, mean, and mode, tailored to each feature’s characteristics, to fill
in missing values in the dataset. Additionally, we used MinMaxScaler to scale the data,
ensuring that each feature had a consistent impact by transforming their range to fall within
0 to 1. This normalization process facilitates fair comparisons across all features. Next, we
carefully selected the predictors by considering factors such as the availability of valid data
points, data diversity, and the suitability of each feature for predicting MGA risk. In total,
22 features were selected as model predictors including age at surgery, height, weight, BMI,
menarche age, menopausal status, E2, FSH, pathologic tumor size, multiplicity, HG, NG,
EIC, LVI, number of extracted sentinel lymph nodes (SLNs), number of metastatic SLNs,
perinodal extension, ER, PR, HER2, and Ki-67 and MGA recurrence score. This selection
process aimed to ensure a comprehensive and effective set of features for our analysis.
Subsequently, MMP and ODX data were separated for individual use, and the modeling
and test datasets were divided into 85% and 15% of the total, respectively. As a result,
the MMP dataset was divided into 447 patients for the modeling group and 79 patients
for the test group, while the ODX dataset was split into 1733 patients for the modeling
group and 306 patients for the test group. Combining the MMP and ODX datasets, a
total of 2180 patients formed the modeling group, and 385 patients comprised the test
group. Specifically, the MMP risk prediction model utilized the MMP dataset, the ODX risk
prediction model utilized the ODX dataset, and the ensemble model employed both the
MMP and ODX datasets for a comprehensive analysis. The results from the MGAs were
categorized to obtain the risk category as a binary outcome (low: RS ≤ 25, high: RS > 25 for
ODX; low: index > 0, high: index < 0 for MMP).

2.4. AI Modeling and Evaluation

In the AI modeling process (Figure 1), we trained a total of 19 classification models, en-
compassing various approaches such as a feedforward neural network, to comprehensively
assess the performance of the prediction model and efficiently proceed with optimization
and ensemble processes. To effectively address the issue of imbalanced data, where the
number of instances in each class differs significantly, we employed class-weighted clas-
sification techniques during the model training process. This involved assigning higher
weights to the minority class to ensure that the model gives adequate consideration to both
classes. Additionally, a portion of the modeling dataset, representing 10%, was randomly
selected as a validation dataset. Ten random samples were extracted, and cross-validation
was performed to evaluate the accuracy of each validation set. The model with the best
performance, based on the highest average accuracy across the validation datasets, was
then selected. Subsequently, the selected model underwent model optimization using the
Hyperopt library. Finally, the MMP risk prediction model utilized a single XGBoost model,
and the ODX risk prediction model utilized combined LightGBM.

Additionally, the ensemble model combining MMP and ODX utilized CatBoost and
XGBoost through soft voting. To address the class imbalance problem between ‘low’ and
‘high’ risk categories, the F1 score was incorporated into the performance metrics for model
evaluation, in addition to accuracy. For the final model training, the entire modeling dataset,
which includes the combined validation set, was utilized. During the model validation
stage, we set the ‘low risk’ as a ‘positive’ class and evaluated the overall performance on
11 randomly selected modeling–test dataset pairs. Following this assessment, we chose the
final modeling–test dataset pair by selecting the one with the median of the performance
metrics across all evaluated dataset pairs. This approach ensured that the selected pair
represented a balanced and representative performance assessment, contributing to the
robustness of our model evaluation process.
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Figure 1. The workflow of modeling using machine learning.
Figure 1. The workflow of modeling using machine learning.

3. Results
3.1. Patient and Tumor Characteristics

The development cohort consisted of a total of 2565 patients, including 2039 patients
tested with ODX and 526 patients tested with MMP, respectively. The median patient age
was 50 years of age, and the median tumor size was 1.5 cm. Among tumors for which the
Nottingham grade was reported (99.6%; n = 2556), 704 (27.5%) were low grade, 1617 (63.3%)
were intermediate grade, and 235 (9.2%) were high grade. LVI was absent in 2196 cases
(86.0%). All tumors (100%) were ER+, and 129 tumors (5.0%) were weakly positive via IHC
(Allred score ≤ 5).
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In the ensemble cohort, the modeling and test groups consisted of 2180 (85%) patients
and 385 (15%) patients, respectively. The modeling and test groups consisted of 447 patients
and 79 patients in the MMP cohort and 1733 patients and 306 patients in the ODX cohort.
The proportion of low-risk patients was higher in the modeling group than in the test group.
However, there were no statistical differences between the modeling group and the test group.

Between the MGA risk groups, several factors showed significant differences. In the
MMP cohort, the low-risk group exhibited smaller tumor size, lower HG/NG, and lower
Ki-67 levels compared to the high-risk group (Table 1). In the ODX cohort, the low-risk
group had a younger age at diagnosis, earlier menarche age, and a higher percentage of
patients with premenopausal status than the high-risk group. Additionally, there were
significant differences between the risk groups in terms of preoperative E2/FSH levels,
tumor size, ER/PR/HER2 expression, HG/NG, and Ki-67 (Table 2). The ensemble cohort
showed similar results to the ODX cohort.

Table 1. Baseline clinicopathologic characteristics between the low- and high-risk groups in the
MMP cohort.

Variables
MMP (n = 526)

Low (n = 335) High (n = 191) p-Value

Age (mean ± SD) 53.27 ± 9.07 52.62 ± 10.44 0.473
Height (mean ± SD) 159.23 ± 5.41 158.81 ± 5.06 0.380
Weight (mean ± SD) 60.54 ± 10.09 60.62 ± 8.09 0.920
BMI (mean ± SD) 23.87 ± 3.78 24.05 ± 3.10 0.590
Menarche age (mean ± SD) 14.41 ± 1.76 14.42 ± 1.57 0.933
Menopausal status 0.656

Premenopausal 176 (52.5%) 96 (50.3%)
Postmenopausal 158 (47.2%) 95 (49.7%)

Unknown 1 (0.3%) 0 (0.0%)
Preoperative E2 (mean ± SD) 73.15 ± 98.06 77.01 ± 98.34 0.676
Preoperative FSH (mean ± SD) 40.93 ± 36.29 38.24 ± 34.68 0.422
Tumor size (mean ± SD) 1.62 ± 0.65 1.97 ± 0.82 <0.001
Multiple lesions 0.213

No 251 (74.9%) 153 (80.1%)
Yes 84 (25.1%) 38 (19.9%)

HG <0.001
1 123 (36.7%) 30 (15.7%)
2 197 (58.8%) 101 (52.9%)
3 12 (3.6%) 59 (30.9%)

Unknown 3 (0.9%) 1 (0.5%)
NG <0.001

1 32 (9.6%) 3 (1.6%)
2 274 (81.7%) 134 (70.2%)
3 28 (8.4%) 53 (27.7%)

Unknown 1 (0.3%) 1 (0.5%)
EIC 0.131

No 218 (65.1%) 138 (72.2%)
Yes 108 (32.2%) 46 (24.1%)

Unknown 9 (2.7%) 7 (3.7%)
LVI 0.192

No 285 (85.1%) 153 (80.1%)
Yes 49 (14.6%) 37 (19.4%)

Unknown 1 (0.3%) 1 (0.5%)
SLN (mean ± SD) 2.55±1.60 2.80±2.50 0.172
Lymph node metastasis 0.352

No 182 (54.3%) 93 (48.7%)
Yes 148 (44.2%) 93 (48.7%)

Unknown 5 (1.5%) 5 (2.6%)
Perinodal extension 0.545

No 288 (86.0%) 169 (88.5%)
Yes 46 (13.7%) 22 (11.5%)

Unknown 1 (0.3%) 0 (0.0%)
Estrogen receptor 0.271

Low (0~5) 11 (3.3%) 10 (5.2%)
High (6~8) 324 (96.7%) 181 (94.8%)
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Table 1. Cont.

Variables
MMP (n = 526)

Low (n = 335) High (n = 191) p-Value

Progesterone receptor 0.112
Negative 39 (11.6%) 34 (17.8%)
Positive 296 (88.4%) 157 (82.2%)

HER2 receptor 0.062
0 77 (23.0%) 50 (26.2%)

1+ 156 (46.6%) 69 (36.1%)
2+ 102 (30.4%) 72 (37.7%)

Ki-67 (mean ± SD) 13.17 ± 11.73 27.96 ± 18.89 <0.001
BMI, body mass index; E2, estradiol; FSH, follicle-stimulating hormone; HG, histologic grade; NG, nuclear grade;
EIC, extensive intraductal component; LVI, lympho-vascular invasion; SLN, sentinel lymph node; HER2, human
epidermal growth factor receptor 2.

Table 2. Baseline clinicopathologic characteristics between the low- and high-risk groups in the
ODX cohort.

Variables
ODX (n = 2039)

Low (n = 1742) High (n = 297) p-Value

Age (mean ± SD) 50.21 ± 9.52 52.76 ± 9.81 <0.001
Height (mean ± SD) 159.31 ± 5.34 158.88 ± 5.35 0.201
Weight (mean ± SD) 58.77 ± 8.31 58.25 ± 8.22 0.315
BMI (mean ± SD) 23.15 ± 3.27 23.01 ± 3.21 0.516
Menarche age (mean ± SD) 14.18 ± 1.56 14.60 ± 1.70 <0.001
Menopausal status <0.001

Premenopausal 1061 (60.9%) 122 (41.1%)
Postmenopausal 671 (38.5%) 174 (58.6%)

Unknown 10 (0.6%) 1 (0.3%)
Preoperative E2 (mean ± SD) 107.12 ± 149.39 72.06 ± 103.40 <0.001
Preoperative FSH (mean ± SD) 30.68 ± 33.55 44.22 ± 37.24 <0.001
Tumor size (mean ± SD) 1.62 ± 0.72 1.77 ± 0.67 0.001
Multiple lesions 0.191

No 1320 (75.8%) 236 (79.5%)
Yes 422 (24.2%) 61 (20.5%)

HG <0.001
1 522 (30.0%) 29 (9.8%)
2 1124 (64.5%) 195 (65.7%)
3 92 (5.3%) 72 (24.2%)

Unknown 4 (0.2%) 1 (0.3%)
NG <0.001

1 134 (7.6%) 7 (2.4%)
2 1419 (81.5%) 187 (63.0%)
3 184 (10.6%) 102 (34.3%)

Unknown 5 (0.3%) 1 (0.3%)
EIC 0.293

No 934 (53.6%) 175 (58.9%)
Yes 568 (32.6%) 91 (30.7%)

Unknown 240 (13.8%) 31 (10.4%)
LVI 0.559

No 1498 (86.0%) 260 (87.5%)
Yes 236 (13.5%) 36 (12.1%)

Unknown 8 (0.5%) 1 (0.3%)
SLN (mean ± SD) 2.81±2.05 2.64±1.67 0.161
Lymph node metastasis 0.093

No 1531 (87.9%) 273 (91.9%)
Yes 189 (10.8%) 23 (7.8%)

Unknown 22 (1.3%) 1 (0.3%)
Perinodal extension 0.430

No 1571 (90.2%) 273 (91.9%)
Yes 39 (2.2%) 4 (1.3%)

Unknown 132 (7.6%) 20 (6.8%)
Estrogen receptor 0.004

Low (0~5) 82 (4.7%) 26 (8.8%)
High (6~8) 1660 (95.3%) 271 (91.2%)
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Table 2. Cont.

Variables
ODX (n = 2039)

Low (n = 1742) High (n = 297) p-Value

Progesterone receptor <0.001
Negative 193 (11.1%) 109 (36.7%)
Positive 1549 (88.9%) 188 (63.3%)

HER2 receptor <0.001
0 506 (29.0%) 78 (26.3%)

1+ 805 (46.2%) 113 (38.0%)
2+ 431 (24.8%) 106 (35.7%)

Ki-67 (mean ± SD) 13.91 ± 11.64 24.93 ± 16.68 <0.001
BMI, body mass index; E2, estradiol; FSH, follicle-stimulating hormone; HG, histologic grade; NG, nuclear grade;
EIC, extensive intraductal component; LVI, lympho-vascular invasion; SLN, sentinel lymph node; HER2, human
epidermal growth factor receptor 2.

In the ODX cohort (n = 2039), the median observed RS was 16. Only 14.6% of patients
(n = 297) were classified as high risk (RS > 25). However, in the MMP cohort (n = 526),
36.3% of the patients were classified as high risk (n = 191) (Figure 2). Thus, an imbalance in
risk distribution between the MGAs was identified.
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3.2. Machine Learning Model Prediction of MGA Risk Category

Our study identified that the accuracy of our predictive model was 86.8% for the
ensemble model, 84.8% for the MMP model, and 87.9% for the ODX model (Table 3). In
the ensemble cohort, the sensitivity, specificity, and precision for predicting the low-risk
category were 0.91, 0.66, and 0.92, respectively (Figure 3 and Table 4). The sensitivity,
specificity, and precision of the MMP prediction model were 0.86, 0.83, and 0.92. Those of
the ODX prediction model were 0.93, 0.58, and 0.92, respectively (Table 4). Additionally,
the AUC of the ROC curve was 0.86 in the ensemble cohort (Figure 4).
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Table 3. The predictive result according to MGAs.

Cohort Modeling/Test Accuracy F1 Score

MMP 447/79 84.8% 0.8889
ODX 1733/306 87.9% 0.9287

Ensemble (MMP + ODX) 2180/385 86.8% 0.9184
MMP, Mammaprint; ODX, Oncotype DX.
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Table 4. The predictive result of the test cohort.

MGA Cohort Sensitivity Specificity Precision F1 Score Accuracy

MMP 0.8571 0.8261 0.9231 0.8889 0.848
ODX 0.9341 0.5833 0.9234 0.9287 0.879

Ensemble 0.9140 0.6620 0.9228 0.9184 0.868
MGA, multi-gene assay; MMP, Mammaprint; ODX, Oncotype DX.
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3.3. Cross-Tab Analysis and Subgroup Analysis

We analyzed the data of patients who had undergone MMP using a predictive model
based on ODX. Likewise, the opposite analysis was also implemented. The results of the
cross-tab analysis of predicting ODX data using the MMP predictive model and MMP data
using the ODX predictive model are presented in Table 5.

We conducted a subgroup analysis according to the various clinical situations. As a
result, it was confirmed that the prediction accuracy exceeded 90% in several subgroups.
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The accuracy of the MMP prediction model for postmenopausal patients was 93%. Further-
more, the accuracy of the ensemble prediction model was the highest at 95.7% in the case
of PR positivity, Ki-67 levels < 20, and premenopausal status (Tables S1 and S2).

Table 5. Cross-tab analysis.

Modeling Dataset Test Dataset Modeling/Test Accuracy F1 Score

MMP data ODX data 447/2039 77.0% 0.8584
ODX data MMP data 1733/526 71.5% 0.8077

MMP, Mammaprint; ODX, Oncotype DX.

3.4. Analysis of Model-Underpredicted (Discordant) Cases

We also identified the characteristics of model-underpredicted (discordant) cases.
Compared with the prediction success group, the prediction fail group exhibited older
age, a higher FSH level, larger tumor size, higher grades, more LN metastasis, a higher PR
negative rate, more HER2 expression, a higher Ki-67 level, and higher MGA risk (Table S3).

Interestingly, most discordant cases were distributed in border values between low
risk and high risk. In the ODX cohort, 62.2% (23/37) of discordant cases had ODX risk
score values within the range of 20 to 32. Furthermore, in the MMP cohort, 83.3% (10/12)
of discordant cases had an MMP index within the range of −0.2 to 0.2 (Figure 5).
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(10/12) of discordant cases had a boundary MMP index. MGA, multi-gene assay; ODX, Oncotype
DX; MMP, Mammaprint.
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4. Discussion

This study included ER+HER2− breast cancer patients who had undergone MMP or
ODX. While many studies have been conducted to develop models that can predict ODX
outcomes, none have ventured into developing models for predicting MMP. In this respect,
our study stands as a novel attempt and has the largest number of cohorts compared to
previous studies. Statistically significant factors between the low- and high-risk groups in
the MMP and ODX cohorts are the same as those previously known (Tables 1 and 2).

Our cohort exhibits an imbalance between the low-risk group and the high-risk group.
In the MMP cohort (n = 526), 36.3% of patients were classified as high risk, while in the
ODX cohort (n = 2039), 14.6% of patients were categorized as high risk. We analyzed
these cohort data by adding an F1 score indicator in addition to accuracy to overcome the
imbalance problem. The imbalance in data means the presence of selection bias because
MGA is not applied to all patients with HR+HER2− breast cancer in the real clinical field.
Based on these data, nevertheless, the accuracy of our predictive model was 86.8%, 84.8%,
and 87.9% in the ensemble cohort, MMP cohort, and ODX cohort, respectively (Table 3).
In previous studies predicting only ODX, the predictive model with logistic regression
developed by Orucevic et al. showed an overall accuracy of 86.8% [19]. They developed
a predictive model using a sample of approximately 65,754 patients from the National
Cancer Database, which was predictive of low- and high-risk categories and was highly
sensitive (99%) for predicting RS ≤ 25 in all ages [19]. Some studies have reported machine
learning-based predictive models to predict ODX risk categories using clinicopathologic
data. Kim et al. developed a random forest model using the Azure machine learning
platform for predicting ODX risk categories. The accuracy of validation was 88% in the
high-risk group and 79% in the low-risk group. The AUC of the ROC curve was 0.917 in the
high-risk group and 0.744 in the low-risk group in the test cohort [15]. The predictive model
developed by Pawloski et al. showed performance power with specificity and negative
predictive value for identifying low-risk patients at 96.3% and 92.9%. But the sensitivity
and positive predictive value for predicting high-risk patients were lower (48.3% and 65.1%,
respectively) [16]. Previous studies have divided data into low- and high-risk groups
and developed models that predict each risk group. However, our study is differentiated
by developing a model for predicting MGA risk in the entire data containing both low-
and high-risk groups. Nevertheless, our model did not have a lower prediction rate and
demonstrated comparable performance power.

The recent development of commercially available MGAs has proven to be prognostic,
with data supporting their ability to predict chemotherapy benefits. Consensus guidelines
support the routine use of these tests to guide adjuvant therapeutic decisions for eligible
patients worldwide [20,21]. However, it is common knowledge that results can vary
significantly even between different MGAs [22]. Prat A. et al. reported that various
genomic signatures including PAM50-ROR, MMP, and ODX often produce discordant risk
results even in the same patient cohort [23]. Intriguingly, high discordance rates have
been reported even between ODX and MMP, both of which are included in the major
international clinical guidelines. Over 30% of MMP high-risk cases were reclassified as
low risk by ODX [24]. In this study, we tested the MMP cohort by using a predictive
model trained based on ODX data and tested the ODX cohort using a predictive model
trained based on MMP data. The cross-tab analysis revealed that the accuracy of the
MMP model for the ODX cohort and the ODX model for the MMP cohort was 77.0% and
71.5%, respectively (Table 5). These prediction failure rates are in line with previously
reported discordance rates between different MGAs. This means that the previously known
discordant rate between MGAs was also confirmed in our cohort by the predictive model.

The reason why these CDSSs (clinical decision support systems) should be continu-
ously developed regardless of existing statistical methods or AI (artificial intelligence) is
because of the cost problem, which is the biggest hurdle of MGAs, not only to supplement
MGA [25]. Although the cost of ODX and MMP is currently USD 3460 and USD 4250,
respectively, a number of retrospective studies have confirmed the cost-effectiveness of
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these tests in treatment decision-making for breast cancer [26–29]. However, it remains a
limitation that the costs are still high, thus posing challenges in terms of accessibility by
nations and individuals [6–8]. Reliable identification of patients with low-risk tumors even
when MGAs are not readily available is crucial to minimize unnecessary cytotoxic exposure
and to reduce the treatment costs [30]. In this regard, Pawloski et al. endeavored to enhance
the clinical utility of the developed model by studying cohorts limited to those over the
age of 50 [16]. In our ensemble cohort with MGAs implemented, we classified several
subgroups and tested the prediction model. We identified that the prediction accuracy
exceeded 90% in several subgroups, with the highest prediction accuracy of 95.7% in the
subgroup that met Ki-67 < 20 and HG 1~2 and premenopausal status. However, as the
test dataset was divided into subgroups, the problem of decreasing the amount of data for
testing occurred. If the test dataset itself is insufficient, the results may be unreliable even if
the prediction rate is high. The lack of sufficient test datasets for the “High Risk” group
in subgroup analysis is a limitation. Therefore, further follow-up research is required to
develop models with substantial clinical potential in patients under specific conditions.

Comparison analysis between the prediction success and fail groups identified sta-
tistically significant differences in age, menopausal status, FSH, tumor size, HG, NG, LN
metastasis, PR, HER2, and Ki-67 (Table S3). By considering these factors, it may be possible
to develop a more improved prediction model and select the appropriate target patient
group. In the prediction-failed cases, there were many patients mainly corresponding
to boundary values (Figure 5). This phenomenon was also confirmed in a study using a
machine learning model by Pawloski et al. [16]. Their model predicted 76 cases as low risk
(RS ≤ 25) among 147 women with high-risk tumors (RS > 25). Of these cases, the median
observed RS was 29 (IQR 27–31). Over 71% of these tumors had RS results between 26 and
30 (n = 54).

One of the strengths of our study is the large sample size drawn from a multicenter
database for modeling a predictive model. Moreover, we developed the predictive model
using various non-routine parameters in addition to clinicopathologic variables related to
breast cancer prognosis. As mentioned earlier, our model was developed to predict not
only ODX but also MMP risk category.

However, our study has several limitations. First of all, because our study was
performed by multiple centers, there may have been measurement deviations in the data
collection. However, this situation can serve as both a disadvantage and an advantage. Our
models were developed under these circumstances, which may ultimately reduce these
limitations when extending coverage to various clinical institutions. Second, the amount of
data used in the subgroup analysis was small. Third, our ensemble predictive model in this
study might be affected by data bias by using two MGAs. Lastly, our study is retrospective
in nature.

5. Conclusions

We have developed a machine learning-based predictive model that has the potential
to complement existing MGAs in ER+HER2− breast cancer. We identified that the accuracy
of the ensemble predictive model was 86.8% overall, especially 95.7% in the case of PR
positivity, Ki-67 levels < 20, and premenopausal status. Although the accuracy of our model
is still somewhat insufficient to apply to all ER+HER2− breast cancer patients, it is expected
to be feasible in a well-selected group with variables such as PR positivity, Ki-67 levels < 20,
and premenopausal status. Currently, we are planning a prospective study based on our
model with external validation. As more patient data are accumulated and survival data
are added in the future, it is expected that a more accurate and widely available predictive
model could be developed.
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