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Simple Summary: Circulating tumor cells are cancer cells that detach from the primary tumor
and enter the bloodstream. These cancer cells in the blood stream eventually result in secondary
tumor growth referred to as metastasis. Research on circulating tumor cells is crucial because they
can provide valuable insights into cancer progression and treatment response that enhances the
patient outcomes. Findings from circulating-tumor-cell-based research can also shed light on cancer
metastasis, drug resistance, and tumor evolution, ultimately benefiting the research community
by advancing our understanding of cancer biology and guiding the development of innovative
treatments. In this review, we have attempted to consolidate the milestones in CTC-based research
and their utility in understanding the biology of cancer from origin to progression.

Abstract: Circulating tumor cells (CTCs) are cancer cells that slough off from the tumor and circulate
in the peripheral blood and lymphatic system as micro metastases that eventually results in macro
metastases. Through a simple blood draw, sensitive CTC detection from clinical samples has proven
to be a useful tool for determining the prognosis of cancer. Recent technological developments now
make it possible to detect CTCs reliably and repeatedly from a simple and straightforward blood
test. Multicenter trials to assess the clinical value of CTCs have demonstrated the prognostic value of
these cancer cells. Studies on CTCs have filled huge knowledge gap in understanding the process of
metastasis since their identification in the late 19th century. However, these rare cancer cells have
not been regularly used to tailor precision medicine and or identify novel druggable targets. In this
review, we have attempted to summarize the milestones of CTC-based research from the time of
identification to molecular characterization. Additionally, the need for a paradigm shift in dissecting
these seeds of metastasis and the possible future avenues to improve CTC-based discoveries are
also discussed.

Keywords: circulating tumor cells; epithelial to mesenchymal transitions; metastasis; CTC-derived
models; minimal residual disease; biomarker; actionable mutations; chemotherapy; tyrosine kinase
inhibitors; targeted therapy; immunotherapy; clinical trials; progression-free survival; overall survival

1. Background

Preliminary observations of circulating tumor cells (CTCs) date back to the early 19th
century, and Thomas Ashworth is credited for proposing their potential role in cancer
metastasis. Ashworth observed that cancer patients’ blood contained tumor cells and
suggested that these cells could migrate through the bloodstream to establish secondary
tumors in distant organs. This observation formed the basis for the subsequent identifi-
cation and characterization of circulating tumor cells (CTCs) as ‘micrometastatic seeds’
or ‘seeds of metastasis’. No significant breakthroughs were made for approximately a
century following the initial discovery of circulating cancer cells. Nonetheless, the research
community began paying attention to these circulating cancer cells in the late 1950s, and
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since then, CTC-based studies have undergone a fascinating evolution that continues to
the present day (Figure 1). We now know that single CTCs can be sequenced, and large
next-generation sequencing (NGS) data from multi-center studies can be generated to
explore the process and progression of cancer from locoregional disease to widespread
metastasis. The basic understanding is that CTCs are extravasated from the primary tumor
into the bloodstream through a complex process, where they act as surrogates reflecting
the characteristics of the tumor itself. Our review aims to elucidate the chronology of
CTC-based discoveries and their significance in enhancing cancer management and patient
prognosis. The rarity of CTCs within the vasculature engendered uncertainty regarding
their potential in mediating metastasis; however, it is now well established that even a
single CTC possesses tumorigenic capacity and can serve as a metastatic source.
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Figure 1. Important milestones in circulating-tumor-cell-based research [1–18].

2. Discovery of Circulating Tumor Cells as Precursors of Metastasis

The discovery of CTCs as precursors of metastasis has been a transformative journey
spanning over a century. In 1889, Stephen Paget first proposed the “seed and soil” hy-
pothesis, suggesting that cancer cells travel through the bloodstream and grow in distant
organs [19]. The fundamental idea of the “seed and soil’ hypothesis was a metaphor com-
paring cancer cell migration to plant germination. Similar to the fact that seeds dispersed
by a plant can only thrive in congenial soil, cancer cells traveling through the vasculature
require a receptive environment to germinate and grow in distant organs. Although the
hypothesis sufficiently illustrated the concept of distant growth, it initially lacked consid-
eration [20]. It was not until the mid-20th century that observational and experimental
evidence emerged, demonstrating that cancer cells from primary tumors could spread to
secondary sites through the circulation. Ashworth’s initial observation of epithelial cells in
the blood of a dying cancer patient in 1869 suggested the basis for primary tumor-derived
circulating cells [1]. Following Ashworth’s observation, various studies reported tumor
cells in the postmortem blood of patients with different cancers. A few studies also reported
tumor cells in the blood collected from patients a few hours prior to death [2]. The first
study on CTCs in 125 surgical patients having different cancers with a long follow up
of 5 years was evidenced in the year 1959 [3]. Later, similar studies were conducted by
several investigators to observe the dissemination of CTCs during and after operative
procedures [4,5]. Fidler and Kripke experimentally demonstrated that metastasis results
from pre-existing variant cells within a malignant tumor. They showed that clones derived
in vitro from a parent culture of murine malignant melanoma cells varied greatly in their
ability to produce metastatic colonies in the lungs upon intravenous inoculation into syn-
geneic mice. This study was a breakthrough in demonstrating the heterogenous nature of
primary tumor and clonal selection during metastasis [6]. Moving forward, the limited
number of CTCs in the patients’ blood stalled the studies to demonstrate their metastasis
initiating ability or tumorigenic potential. Firstly, and most importantly, the extensive
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availability of cells is imperative for their functional and biological characterization. The
scarcity of CTCs in the bloodstream historically presented both opportunities and chal-
lenges for researchers. Scientific community shifted their focus on enrichment of CTCs and
to date different antibody-based positive and negative enrichment technologies [7] and
microfluidics-based isolation methods (Table 1) are available. Further milestones uncover-
ing the metastasis initiating potential of CTCs are evidenced due to the availability of better
CTC enrichment technologies. The growth of xenograft tumors upon implantation of CTCs
enriched from the peripheral blood of human patients, coupled with the association of
high CTC numbers in circulation with disease recurrence in patients, provided conclusive
evidence that CTCs are indeed the seeds of metastasis [8,21–27]. Further, to assess the
utility of CTCs in forecasting patient outcomes and evaluating their predictive value as
biomarkers, numerous studies have been conducted that involve detecting and enumerat-
ing CTCs in cancer patients, followed by tracking their clinical progress [9,10]. This has
enabled researchers to explore the relationship between CTCs and patient prognosis, and
to determine the accuracy of CTCs as indicators of disease progression.

Table 1. A few microfluidics-based CTC enrichment techniques.

Name Enrichment Technique Type (Physical
or Biological) Key Findings

Herringbone (HB)-Chip Surface affinity Biological CTCs were detected in 93% of patients
with metastatic disease [13].

Nano Velcro Cell affinity Biological

Capable of detecting, isolating, and
purifying CTCs from blood samples
with high efficiency for subsequent
molecular analyses [28,29].

Nanoparticle-herringbone
microfluidic chip
(NP-HBCTC-Chip)

Surface affinity Biological Enhanced capture efficiency and recovery
of isolated CTCs [30].

PEDOT Nano Velcro Chips Cell affinity Biological
Ability to achieve high cell purity as
well as preserve the integrity of RNA
transcripts from the purified cells [31].

CaTCh FISH
Magnetic
separation/fluorescence
in situ hybridization

Physical Capture CTCs for in situ RNA
analysis [32,33].

Two-stage microfluidic chip Size and asymmetry
based capturing Physical High rate (99%) CTC clusters recovery

with 87% viability [34,35].

Bait-trap chip In situ rolling circle
amplification (RCA) method Physical Accurate and ultrasensitive capture of

live CTCs from peripheral blood [35].

3D Palladium Filter Lithography plus
electroforming process Physical Enumeration and isolation of CTCs for

genetic analysis [36].

Pillar-X Bimodular microfluidic device Biophysical
Efficiently captures both single cells and
clusters and sorts them based on size,
cohesiveness, and epithelial identity [37].

Dielectrophoretic field-flow-
fractionation (DEP-FFF)

Batch-mode microfluidic
di-electrophoresis method Physical 70–75% capture efficiency [38,39].

Parsortix™ Cell
Separation System

Microfluidic particle
separation technology Biophysical High capture efficiency and viable CTCs

for downstream analyses [40].

3. Circulating Tumor Cells as Biomarkers to Predict Patient Prognosis

Development of the CellSearch system in the early 2000s and the U.S. Food and Drug
Administration approval in 2004 enabled the detection, enumeration, and characteriza-
tion of CTCs in numerous clinical trials involving breast, prostate, and colorectal cancer
patients [11,41]. Since then, numerous studies have consistently shown that CTCs are
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associated with poor prognosis and can predict disease recurrence. This technology ad-
vancement elevated liquid biopsy in cancer research wherein CTCs from the peripheral
blood of patients with different cancer types were analyzed to predict the prognostic effect.
For example, a seminal study in breast cancer patients found that high CTC counts were
linked to decreased overall survival [42]. Similarly, in colorectal cancer, high CTC counts
have been linked to worse overall survival [43,44]. Clinical utility of CTCs as disease
prognosticators were shown in both castration resistant and sensitive prostate cancer pa-
tients [45]. Likewise, positive CTC counts were shown to be common in advance gastric
cancer patients who presented with diffused histologic tumor types and distant metastases.
Further, the study also showed that progression-free survival of CTC-positive patients
was significantly shorter than that of CTC-negative patients indicating the independent
prognostic potential of CTCs in gastric cancer [46]. The major drawback of the Cellsearch
system is the enrichment of CTCs based on the expression of epithelial cellular adhesion
molecule (EpCAM) [23]. In certain cancers like non-small-cell lung cancer (NSCLC), Ep-
CAM expression will be low due to epithelial to mesenchymal transition, and the Cellsearch
system may not be the suitable platform to enrich and enumerate CTCs. Owing to the
limitations of the Cellsearch system, the detection and analysis of CTCs have become more
sophisticated with advancements in non-epitope-dependent technologies like microfluidics
and filtration methods. Several groups including ours utilized non-epitope-dependent
technologies to study the biomarker potential of CTCs in predicting prognosis of cancer
patients. Using a size-based microfiltration method, one study demonstrated the prognosis
of head and neck squamous cell carcinoma patients in correlation to CTC numbers [47].
Similarly, the prognostic value of CTCs was demonstrated in NSCLC patients and screen-
ing subjects [48–50]. Additionally, C-X-C chemokine receptor type 4 (CXCR4) expression
on circulating pan-cytokeratin-positive cells was shown to be associated with survival
in patients with advanced non-small-cell lung cancer [51]. Another major advantage of
non-epitope-dependent technologies is the identification of multi-phenotypic subtypes of
CTCs and CTC clusters or microemboli [48,49]. For instance, CTC clusters are shown to
be more aggressive phenotypes than individual CTCs [52]. CTC clusters are defined as
two or more group of tumor cells with an intact nucleus [25]. Although less abundant in
circulation, CTC clusters possess higher metastatic potential and elevated expression of
epithelial-to-mesenchymal transition markers and stemness genes compared to individual
CTCs [11,53–55]. There are two types of CTC clusters: homotypic and heterotypic. Ho-
motypic clustering occurs through adhesion molecule interactions (e.g., CD44, cadherin,
desmoglein, ICAM1, and desmocollin), which stabilizes clusters and activates downstream
pathways that enhance invasiveness and migration [54,56–58]. Patients with elevated
individual CTC counts exhibit significantly poorer overall survival, and this association
is further exacerbated in patients with higher CTC cluster levels [48,59,60]. On the other
hand, CTC heterotypic clusters are characterized as tumor cells forming clusters with
other cell types such as leukocytes, neutrophils, fibroblasts, platelets, and myeloid derived
suppressor cells [61–65]. Patients with CTC–leukocyte clusters have shown worse overall
survival compared to patients without CTC–leukocyte clusters [66]. CTCs clustered with
neutrophils and fibroblasts have been shown to have higher cell division and invasion
and migration, respectively [61,62]. Platelets clustered with CTCs are believed to aid
them in escaping from immune surveillance [67]. Furthermore, analysis of CTCs has also
revealed insights into tumor biology, such as the presence of putative cancer stem cells
and circulating tumor microemboli [68]. Overall, the use of CTCs as biomarkers has the
potential to revolutionize personalized cancer care, and ongoing research is exploring new
frontiers in CTC analysis, including their potential use as liquid biopsies and predictors of
cancer relapse.

4. Circulating Tumor Cells as Biomarkers to Predict Anti-Cancer Therapy Responses

CTCs have potential uses beyond cancer diagnosis and prognosis. CTCs may serve
as a means to monitor cancer minimal residual disease after treatment. CTCs offer a non-
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invasive way to assess cancer progression and treatment response, potentially reducing
the need for invasive biopsies. As outlined below, a variety of neoadjuvant or adjuvant
anti-cancer therapies have been tailored based on the expression and mutational analysis
performed in CTCs (Figure 2). Even the response to tailored treatment strategy has been
shown to corelate with CTCs at baseline, during therapy and post-therapy.
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4.1. Circulating Tumor Cells as Biomarkers to Predict Chemotherapy Responses

Research has shown that CTCs can be used to predict chemotherapy response in vari-
ous cancer types [45,69,70]. For instance, a study found that the presence of CTCs in breast
cancer patients before systemic adjuvant treatment and after completion of chemother-
apy was associated with poor prognosis and reduced overall survival [71]. In metastatic
castration-resistant prostate cancer patients receiving first-line docetaxel-based therapy,
fewer than 5 CTCs per 7.5 mL of pre-therapy was associated with median overall survival
of 26 months and that with 5 or more CTCs per 7.5 mL had a survival of 13 months. Increas-
ing CTC counts at three weeks were associated with considerably lower overall survival,
suggesting that the baseline CTC count is a reliable, independent biomarker to determine
therapy outcome [70]. In lung cancer, CTCs isolated before chemotherapy were shown to
predict treatment response and disease recurrence [72]. In patients with locally advanced
rectal cancer, standard treatment consists of neoadjuvant chemoradiation followed by total
mesorectal excision [73]. In the context of rectal cancer treatment, 5-fluoro uracil is a com-
monly employed cytotoxic agent that targets the enzyme thymidylate synthase [74]. On
the other hand, RAD23 homolog B is a protein that plays a role in the nucleotide excision
repair process and is inducible by genetic damage triggered by radiation therapy [75]. One
study investigated CTCs in 30 locally advanced rectal cancer patients before treatment
and found that CTC counts decreased after chemoradiation in patients who exhibited
pathological complete or partial response [75]. Notably, thymidylate synthase expression in
CTCs was absent in patients with complete response, but present in 83% of non-responders.

https://biorender.com
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In contrast, RAD23 homolog B expression was observed in all non-responders, highlighting
the value of combining molecular analysis of CTCs with enumeration to predict treatment
outcomes accurately. Additionally, the inclusion of expression analysis of thymidylate syn-
thase and RAD23 homolog B in CTCs increased the sensitivity of the biomarker analysis in
predicting treatment outcome [75]. Similarly, combining CTC enumeration and evaluation
of serological cell death biomarkers has been demonstrated to be a valuable strategy for pre-
dicting chemotherapy outcome in small-cell lung cancer patients. In another study, blood
samples from small-cell lung cancer patients receiving chemotherapy showed a decrease in
CTC numbers following treatment, reflecting treatment response. Conversely, serological
cell death biomarkers, specifically M30 and nucleosomal DNA, exhibited elevated levels at
48 h post-treatment, indicating early response and severe toxicity [76]. Furthermore, the
persistent presence of CTCs after chemotherapy in colon cancer patients has been shown to
be strongly correlated with reduced disease-free survival and overall survival. Addition-
ally, analysis of CTCs post-chemotherapy has been found to be more accurate in detecting
relapse compared to analysis of the well-established biomarker carcinoembryonic antigen,
highlighting the potential of CTC analysis as a valuable tool for predicting treatment out-
comes in advanced colon cancer patients undergoing chemotherapy [77]. Pancreatic ductal
adenocarcinoma, a highly aggressive cancer, necessitates effective biomarkers to monitor
disease progression in chemotherapy-treated patients. A study demonstrated that high
CTC numbers pre- and post-chemotherapy are a prognostic factor for poor overall survival
and progression-free survival in advanced pancreatic ductal adenocarcinoma patients. No-
tably, CTCs with high activated leukocyte cell adhesion molecule (ALCAM) and POU class
5 homeobox 1B (POU51B) expression correlated with shorter survival times. The study
also revealed two distinct gene expression profiles in CTCs before and after chemother-
apy; the epithelial genes (EpCAM, VEGFA) were dominant before chemotherapy and
the stemness/pluripotency genes (ALCAM, POU51B) were enriched after chemotherapy,
suggesting dynamic changes in CTC biology [78].

The above-mentioned studies clearly demonstrate that the analysis of CTCs can help
identify specific biomarkers associated with chemotherapy resistance and efficiently aid in
disease monitoring. The presence of CTCs with certain genetic mutations or expression
of specific proteins can predict poor response to chemotherapy [79]. Furthermore, CTCs
can be used to monitor treatment response in real-time, allowing for adaptive therapy
strategies [80].

4.2. Circulating Tumor Cells as Biomarkers to Predict Targeted Therapy Responses

Targeted therapy is a type of cancer treatment that targets specific molecules involved
in cancer growth and progression [81]. For example, a targeted therapy can be receptor
tyrosine kinase inhibitor or monoclonal antibody targeting a specific molecule. These thera-
pies can be more effective and less toxic than traditional chemotherapy. Cancer treatment
has made significant strides with the development of targeted therapies, designed to attack
specific cancer-driving proteins or pathways. However, resistance to targeted therapy can
develop through various mechanisms, including genetic mutations and epigenetic alter-
ations [81,82]. Recent studies have investigated the association between CTCs and targeted
therapy in cancer patients and shown that besides predicting chemotherapy responses,
CTCs are also useful in monitoring targeted therapy. Studies have shown that CTCs can
predict responses to targeted therapies, such as tyrosine kinase inhibitors (TKIs), in lung
cancer patients. For example, one study attempted to investigate CTCs with epidermal
growth factor receptor (EGFR) mutations before and after TKI treatment and found that an
increase in the number of cells was associated with tumor progression, with the emergence
of additional EGFR mutations in some cases [83]. CTCs from breast cancer patients exhib-
ited increased expression of the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (PI3KCA) hotspot mutation during treatment with the CDK4/6 inhibitor
palbociclib, suggesting the emergence of resistance [84]. CTCs from breast cancer patients
with human epidermal growth factor receptor (HER2)-positive tumors exhibit increased
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expression of HER2, which can help predict the response to HER2-targeted therapies like
trastuzumab (Herceptin) [85]. Similarly, CTCs from lung cancer patients with EGFR muta-
tions can predict the response to EGFR-targeted TKIs like gefitinib (Iressa) [86]. Likewise,
CTCs were enumerated in RAS-BRAF wild-type colorectal cancer patients receiving third-
line anti-EGFR monoclonal antibodies, cetuximab or panitumumab and found that CTC
status assessed early on during targeted therapy may predict treatment failure in advance
compared to imaging-based tools [87]. Genetic and phenotypic profiling is critical in select-
ing the suitable targeted therapy because often genetic and phenotypic characteristics of
CTCs differs from that of the primary tumor [88]. CTCs and primary tumor cell phenotypes
are not always identical, and CTC phenotypes can be transient. For example, inconsistent
HER2 expression was observed between the primary tumor and CTCs of gastric cancer pa-
tients. HER2-positive CTCs were found in the blood of 17 patients with 54 HER2-negative
primary tumors. Similarly, the blood of five patients with HER2-positive primary tumors
produced HER2-negative CTCs, suggesting the importance of phenotypic or genetic charac-
terization of CTCs to tailor precision medicine [89]. Additionally, CTCs were demonstrated
to act as biomarkers for monitoring responsiveness to BRAF-targeted therapy in advanced
melanoma patients [90]. Specifically, BRAF-mutated CTCs were associated with treatment
response to BRAF inhibitors. Analysis of blood samples from advanced BRAF-mutated
melanoma patients revealed a decrease in CTC numbers with treatment, accompanied by
a positive correlation between CTC numbers and tumor regression. Notably, one patient
with a BRAF V600E mutation in the primary tumor but not in the lymph nodes highlighted
the heterogeneity of the BRAF genotype between the primary tumor, metastasis, and CTCs.
Furthermore, this patient’s blood contained a variety of BRAF-mutated CTCs, including
V600R, V600M, V600A, K601E, K601R, and A598V, in addition to V600E. While most BRAF-
mutated CTCs disappeared during treatment, BRAF A598V and wild-type CTCs persisted
even after other BRAF-mutated CTCs were cleared [90]. These findings suggest that CTC
analysis could guide targeted therapy selection and monitoring.

4.3. Circulating Tumor Cells as Biomarkers to Predict Immunotherapy Responses

Immunotherapy has revolutionized cancer treatment, offering a promising approach
to harness the body’s immune system to combat cancer [91]. However, predicting which
patients will respond to immunotherapy remains a significant challenge [92]. Another
exciting area of research involves using CTCs to predict response to immunotherapies.
Recently accumulated evidence suggested that CTCs can be used as biomarkers to predict
response to immunotherapy in various cancer types. The assessment of programmed
death-ligand 1 (PD-L1) expression is a clinical practice for selecting patients for immune
checkpoint inhibitor therapy or immunotherapy, wherein PD-L1 serves as a biomarker [93].
This approach is based on the understanding that PD-L1 expression on tumor cells can
predict the likelihood of a response to immunotherapy, and its evaluation has become
a crucial step in personalizing cancer treatment. Studies have shown that CTCs can be
analyzed for their expression of immune checkpoint proteins like PD-L1, which can help
predict response to immune-targeting drugs like checkpoint inhibitors. For instance, PD-
L1 expression of CTCs from 127 NSCLC patients clearly demonstrated their utility in
predicting immunotherapy response. Major findings of the study showed an increase
in PD-L1-positive CTCs in all patients with disease progression, while no change or a
decrease in PD-L1-positive CTCs was observed in responding patients [94]. In another
study of 24 advanced-stage NSCLC patients treated with Nivolumab, CTCs were analyzed
for PD-L1 expression at baseline, 3, and 6 months post therapy initiation [95]. A correlation
between PD-L1-expressing CTCs and outcome was observed. Specifically, at baseline and
3 months, the presence of CTCs and PD-L1 expression on their surface were associated
with poor patient outcomes. On the other hand, at 6 months, patients with PD-L1-negative
CTCs achieved clinical benefit, while patients with PD-L1-positive CTCs experienced
progressive disease [95]. In the context of head and neck cancers, anti-PD1 agents have
become the standard of care for chemotherapy refractory, recurrent or metastatic head and
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neck squamous cell carcinoma patients [96]. A prospective study involving 113 locally
advanced head and neck squamous cell carcinoma patients investigated the correlation
between PD-L1 expression in CTCs at baseline, after two cycles of chemotherapy, and at the
end of concurrent chemoradiotherapy with progression-free survival and overall survival.
Specifically, patients with CTCs that overexpressed PD-L1 at the end of treatment exhibited
shorter progression-free survival and overall survival. Conversely, the absence of PD-L1
overexpression at the end of treatment was strongly associated with complete response [97].
This study underscores the importance of adjuvant PD1 inhibitors in HNSCC patients in
whom PD-L1-positive CTCs are detected at the end of curative treatment. Furthermore, an
analysis of blood samples from 25 patients with muscle-invasive and metastatic bladder
cancer revealed that individuals with a high burden of PD-L1-positive and CD45-negative
CTCs and a low burden of apoptotic CTCs exhibited poorer overall survival. This finding
suggests that the combination of PD-L1 expression and low apoptotic activity in CTCs may
serve as a prognostic marker and potential guide for clinicians about patients’ suitability
for immunotherapy [98]. These findings, including other studies, suggest that CTCs can be
used to monitor changes in the tumor microenvironment during immunotherapy treatment,
allowing for real-time assessment of treatment effectiveness [99,100]. Overall, the analysis
of CTCs offers a promising avenue for non-invasive biomarker development, with potential
applications in predicting treatment response and detecting cancer recurrence. As research
continues to advance, the clinical utility of CTCs is likely to expand, providing valuable
insights into cancer biology and improving patient outcomes.

5. Molecular and Genetic Characterization of Circulating Tumor Cells beyond
Enumeration to Identify Actionable Mutations

The analysis of CTCs has evolved beyond mere enumeration, with advances in tech-
nologies enabling molecular and genetic characterization. This allows for the detection of
specific genetic mutations, the expression of surface proteins, and analysis of gene tran-
scripts in CTCs. Molecular characterization of CTCs using different techniques (Table 2)
including array comparative genomic hybridization, reverse transcription-polymerase
chain reaction (RT-PCR), fluorescence in situ hybridization (FISH), and NGS has been
accomplished [12,101–103]. These studies suggest that CTC genetic analysis may be more
appropriate than fresh tissue biopsy for studying tumor heterogeneity and clonal evolution.
Single-cell RNA sequencing revealed the heterogeneity of CTCs in breast cancer, identifying
distinct subpopulations with different gene expression profiles [104]. Our group identified
the distinct single cell heterogeneity between circulating-tumor-cell-derived xenografts
and patient primary-tumor-derived xenografts of NSCLC by single nuclear RNA sequenc-
ing [105]. Digital PCR has proven to be a valuable technique to detect EGFR and Kirsten rat
sarcoma virus (KRAS) gene mutations in CTCs from non-small-cell lung cancer patients,
demonstrating its potential as a liquid biopsy for monitoring treatment response [106,107].
Additionally, researchers have used molecular and genetic characterization of CTCs to
investigate tumor evolution and resistance to therapy. Whole-exome sequencing of CTCs
identified genomic alterations driving resistance to androgen receptor-targeted therapy in
prostate cancer [108]. Further, expression analysis and NGS of CTCs have been shown to be
useful tools to assess intra patient or intra tumoral heterogeneity. EGFR gene amplification
and heterogenous expression was observed between CTCs from the same patient with
colorectal cancer. Additionally, study also showed that KRAS and PIK3CA mutations were
detected in only 5 out of 15 CTCs and 14 out of 36 CTCs, respectively, from the same pa-
tients [109]. Utilizing CTCs to study the intra patient or intra tumor heterogeneity provides
important information for the disease prognosis, drug responsiveness, and personalized
treatment of cancer patients. Thanks to cutting-edge technologies, we can now analyze
CTCs at the genetic, transcriptomic, and proteomic levels, which has helped bridge the
knowledge gap in understanding the metastasis process and tailor precision medicine.



Cancers 2024, 16, 816 9 of 24

Table 2. Technologies for genetic and molecular characterization of CTCs.

Name Advantages Limitations References

RT-PCR

• High sensitivity for genes
expressed at low levels.

• Less experimental time.
• Cost-effective.

• Number of transcripts
are limited.

• Requires pre-amplification of
specific cDNA.

[14,110]

RNA in situ hybridization

• High sensitivity for genes
expressed at low levels.

• Comprehensive profiling.
• Less experimental time.
• Cost-effective.

• Limited to transcripts that are
used in probe designing. [15,111]

Single-cell RNA sequencing
• Complete profiling.
• Allows for the discovery of new

annotated transcripts.

• Expensive.
• Amplification bias

during sequencing.
[16,25]

Fluorescence In Situ
Hybridization (FISH)

• Less experimental time.
• Less cost.
• Allows spatial information.

• Limited number of genes. [17,112]

Integrated immunostaining
fluorescence in situ
hybridization (iFISH)

• Size-based identification of CTCs
with karyotyping.

• Identification of epithelial or
mesenchymal CTC type with
genetic changes.

• Limited number of genes. [113]

Targeted DNA sequencing • High sensitivity.
• Cost-effective. • Limited number of genes. [12,114]

Single-cell exome/
genome sequencing • Complete profiling of exons.

• Difficult to obtain whole
exome/genome.

• False-positivity due to
library amplification.

• Non-uniform coverage.

[18,115,116]

Bulk mass spectroscopy • Comprehensive profiling.
• Limited number of proteins.
• Low sensitivity and

low abundance.
[117,118]

Single-cell mass spectroscopy • Comprehensive profiling. • Not widely used.
• Not well established. [119,120]

Numerous studies have leveraged CTCs to uncover novel actionable mutations in
various cancer types in pre-treatment or during treatment. For instance, a study used CTCs
to identify PIK3CA mutations in estrogen-receptor-positive breast cancer, suggesting poten-
tial benefit from PI3K inhibitors [121]. Another study identified EGFR mutations in NSCLC
CTCs, which could guide targeted therapy with EGFR inhibitors [122]. Furthermore, CTC
analysis has revealed novel mutations in rare cancer subtypes. A study identified BRAF
V600E and V600K mutations in circulating tumor cells from patients with melanoma, in-
dicating potential benefit from BRAF inhibitors [123]. Additionally, CTCs have also been
utilized to detect gene rearrangements such as ALK, ROS1-, RET-rearrangements in NSCLC
and ERG-rearrangements in prostate cancer [124]. Moreover, CTC analysis has enabled the
detection of resistance mutations in real-time. CTCs collected from NSCLC patients with
EGFR mutations who had received tyrosine kinase inhibitors harbored T790M mutations,
suggesting potential benefit from next-generation EGFR inhibitors [83]. These findings
highlight the potential of CTCs for precision oncology and warrant further investigation.

6. Circulating Tumor Cells as Models to Identify Metastasis Competent Signatures

CTCs are regarded as the seeds of metastasis and given their molecular and genetic
profiles often differ from those of the primary tumor, it is scientifically important to investi-
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gate the mechanisms of metastasis within these cellular population to block the progression
of the disease. CTCs are proven valuable tools to identify phenotypic, genetic, and epi-
genetic signatures associated with metastasis. CTCs from breast cancer patients with a
gene expression pattern predicted metastasis to the bone, lung, and liver [8]. In a xenograft
assay, the authors demonstrated that CTCs positive for EpCAM, EPCAM, CD44, CD47, and
MET exhibit metastasis-initiating potential, expanding the scope beyond EpCAM+ CTCs
alone. Additionally, CTCs with similar molecular signatures in patient cohorts showed a
correlation with poor overall survival, supporting the findings observed in patient-derived
xenografts [8]. Similarly, CTCs from breast cancer patients are found to express a signature
required for brain tropism [125]. Notably, CTCs that were negative for EpCAM but positive
for HER2, EGFR, HPSE, and Notch1 were found to be highly invasive and capable of
generating brain and lung metastases when xenografted in nude mice, highlighting the
brain competent metastasis signature and limitations of the CellSearch system in capturing
these breast cancer circulating cells [125]. Likewise, CTCs from colorectal cancer patients
were shown to acquire a few features of epithelial to mesenchymal transition and increase
in the expression of mesenchymal to epithelial transition, indicating a metastasis-competent
phenotype [126]. In particular, all nine CTC lines generated by serial blood draw from a
metastatic colorectal cancer patient exhibited expression of the oncogenes MYC and ezrin,
while lacking expression of the epithelial-to-mesenchymal transition inducer gene SIX1.
Conversely, the mesenchymal-to-epithelial transition activator GRHL2 and its targets were
strongly expressed in all CTC lines, supporting a role in metastasis formation [126]. Fur-
thermore, analysis of CTCs has revealed alterations in key signaling pathways that promote
metastasis. For instance, a study showed that CTCs from melanoma patients needed to
activate PI3K/Akt/mTOR pathway during the earliest steps of brain colonization, which
enhances cell survival and migration [127]. Moreover, CTC analysis has also revealed the
presence of putative cancer stem cells, which are thought to be responsible for the initiation
and progression of metastasis. A study identified a subpopulation of CTCs in breast cancer
patients that expressed stem cell markers and could be the reason for enhanced tumor-
initiating capacity [128]. In a cohort of 38 breast cancer patients, presence of stemness
and epithelial-to-mesenchymal transition in CTCs were identified by assessing the expres-
sion of stem cell markers (CD44, ALDH1, and CD133) and the epithelial-to-mesenchymal
transition marker N-cadherin. Notably, all N-cadherin-positive CTCs exhibited stem fea-
tures, as evidenced by co-expression of CD133 and ALDH1, whereas N-cadherin-negative
CTCs lacked stem cell markers (ALDH1, CD44, and CD133), indicating a non-stem cell
phenotype [128]. These findings suggest that CTCs can be a valuable tool for identifying
molecular signatures and pathways associated with metastasis, which may inform the
development of new therapeutic strategies to prevent or treat metastatic disease.

7. Real World Evidence by Circulating-Tumor-Cell-Based Clinical Trials

CTCs have emerged as a promising biomarker for cancer diagnosis and monitoring.
Several clinical trials have investigated the clinical utility of CTCs in various cancer types to
accumulate real world data or evidence (Table 3). CTC in patients have been monitored to
determine the first, second and/or late line chemotherapy treatment outcomes in NSCLC,
breast, gastric, colorectal, and pancreatic cancers [129–133]. Clinical trials in advanced
breast cancer patients laid the foundation for scientific arguments regarding the utility of
CTCs as a biomarker for treatment response. Specifically, one study found that switching
cytotoxic therapy in response to an increase in CTCs during first-line therapy did not
significantly impact patient survival outcomes [130]. In contrast, another study observed
a correlation between early changes in CTC count and treatment response to third-line
chemotherapy, suggesting potential clinical utility for CTC monitoring in this context [134].
These differences in clinical observations could be due to disparities in sample processing
methods, including blood collection and storage protocols, as well as differences in patient
populations and sample sizes, leading to heterogeneity in CTC characteristics. Additionally,
the use of diverse analytical platforms to analyze CTCs can introduce technical variability.
To address these inconsistencies, a standardized approach to defining CTCs and establish-
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ing appropriate cut-off values for each cancer type is essential. Nonetheless, CTC number
was found to be significantly correlated to prognosis in gastric cancer patients treated
with fluorouracil-based chemotherapy and NSCLC patients treated with standard of care
chemotherapy [129,131]. Additionally, differential gene expression pattern was observed
in colon cancer CTCs of the same patient during first- and second-line chemotherapy
treatments, highlighting the importance of acquired biological changes in these seeds of
metastasis due to selective treatment pressure [132]. Furthermore, chemosensitivity assay
profiling of CTCs has been demonstrated to be a valuable tool for guiding therapy in
advanced pancreatic adenocarcinoma [133].

Table 3. CTC-based clinical trials.

Trial Number, Year of
Completion, Study
Type and Phase.

Name Cancer Type Cancer Stage and
Other Information Key Findings

NCT00429793.
2012. Interventional.
Phase 2.

NA Ovarian Cancer

Advanced. Grade 1,2,3. Tumor
types-adenocarcinoma, clear
cell carcinoma, endometrioid
adenocarcinoma and serous
adenocarcinoma.

Positive CTC pre-treatment showed lack of
response to mTOR inhibitor, temsirolimus and
high expression of apoptosis marker in CTCs
was associated with longer progression-free
survival [135].

NCT00156273.
2008.
Observational.

NA Breast cancer
Advanced (Stage IV).
Metastatic breast cancer.
ECOG status 0–2.

In patients with elevated CTC, higher levels of
CTC-apoptosis were associated with worse
prognosis, while higher CTC-BCL-2 levels
correlated with better outcomes [136].

NCT00967031.
2012. Interventional.
Phase 2.

LANDSCAPE Breast cancer
Advanced. Brain metastases
overexpressing HER2. ECOG
performance status of 0–2.

After 21 days of lapatinib treatment, a
disappearance of CTC was observed in 11 of 36
patients. The 1-year overall survival rate was
83.9% in patients with no CTC at day 21 versus
42.9% in patients with ≥1 CTC [137].

NCT00428896. 2008.
Interventional.
Phase 2.

NA Breast Cancer
Advanced. Metastatic breast
cancer with
EGFR expression.

A median reduction of 96.4 and 94.1% in CTC
count was observed in 11 (64.7%) and 12
(70.6%) of patients after the first and the second
gefitinib treatment cycles, respectively.
Treatment-resistant CTCs could be eliminated
by gefitinib in metastatic breast cancer, and
EGFR expression on CTCs merits further
validation as a potential biomarker for specific
and effective targeting of CTCs [138].

NCT00382018. 2017.
Interventional.
Phase 3.

SWOG S0500 Breast Cancer

Advanced. Metastatic breast
cancer.
ECOG status 0–2.
Patients enrolled before
initiation of first line of
chemotherapy. ER-positive,
HER2-negative, triple-negative
and HER2-positive patients
were included in the study.

Prognostic significance of CTCs in patients
with metastatic breast cancer receiving first-line
chemotherapy was confirmed. For patients
with persistently increased CTCs after 21 days
of first-line chemotherapy, early switching to
an alternate cytotoxic therapy was not effective
in prolonging overall survival [130].

NCT01349842. 2018.
Interventional.
Phase 3.

CirCe01 Breast Cancer

Advanced (Stage III–IV).
Metastatic
lobular or ductal
adenocarcinoma.
Eastern Cooperative Oncology
Group (ECOG) status 0–4.

Early changes in CTC count were correlated
with first cycle of third line chemotherapy
treatment outcome. Among patients with <5
CTC/7.5 mL at baseline showed better
prognostication for progression-free survival
[134]. However, due to the limited accrual and
compliance, this trial failed to demonstrate the
clinical utility of CTC monitoring in third- and
fourth-lines chemotherapy [139].

NCT01722903. 2015.
Observational. NA Colorectal Cancer

Advanced (Stage IV).
Colorectal cancer with
resectable metastases limited
to liver and lungs.

CTCs were quantified in blood of patients
collected at incision, during resection, 30 min
after resection, and on postoperative day 1 by
EpCAM-based CellSearch and size-based
isolation method. CTC quantity was
significantly higher with size-based filtration
method than CellSearch at all points of blood
collection [140].
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Table 3. Cont.

Trial Number, Year of
Completion, Study
Type and Phase.

Name Cancer Type Cancer Stage and
Other Information Key Findings

NCT01322893. 2016.
Observational. CTC-MBC Breast Cancer

Advanced (Stage IV).
Metastatic breast cancer with
estrogen receptor alpha and
HER2 expression. Invasive
lobular and ductal carcinoma
of no special type. ECOG
status 0–2.

Study demonstrated the feasibility to ascertain
the status of important predictive biomarkers
expressed in breast cancer CTCs using the
newly developed CTC-DropMount
technique [141]. Patients with a continuous
presence of apoptotic or CTC clusters in follow
up during systemic therapy had worse
prognosis than patients without similar CTC
characteristics [66]. Longitudinal evaluation of
CTC and CTC clusters were shown to improve
prognostication and monitoring in patients
with metastatic breast cancer starting first-line
systemic therapy [10]. The number of CTCs
were found to be higher in invasive lobular
carcinoma compared to invasive ductal
carcinoma highlighting the importance of
different CTC cut-off considerations in different
breast cancer types [142].

NCT00694252. 2011.
Interventional.
Phase 2.

NA Breast Cancer Advanced (Stage IIIB and IV).
ECOG status 0–2.

Lapatinib treatment is effective in decreasing
HER2-positive CTCs in patients with metastatic
breast cancer irrespective of the HER2 status of
the primary tumor [143].

NCT01713699. 2017.
Interventional. NA

Leptomeningeal
metastases from 9
tumor types *

Advanced. Patients treated for
advanced EpCAM-positive
solid tumors.
ECOG status 0–4.

EpCAM-based flow cytometry assay to detect
CTCs in cerebrospinal fluid is superior to
cytology for the diagnosis of leptomeningeal
metastases in patients with a clinical suspicion
of metastases but a negative or inconclusive
MRI [144].

NCT02075606. 2017.
Interventional.
Phase 4.

CALMNET

Neuroendocrine
cancers #

Midgut
neuroendocrine
cancers %

Early and advanced. Only
patients with well or
moderately differentiated
tumors with a Ki67
proliferation index of <20%
was recruited.

Somatostatin receptors 2 and 5 were detected
on CTCs in patients with neuroendocrine
tumors which might be a useful biomarker for
evaluating somatostatin receptor-targeted
therapies [145]. Patients without CTC at
baseline may be more likely to achieve a
symptomatic response following lanreotide
autogel treatment than patients with CTC [146].

NCT01577511. 2017.
Observational. NA Colorectal Cancer

Advanced (Stage IV).
Chemotherapy-naïve patients
with metastatic colorectal
cancer.

Patient-derived colorectal CTC lines contain
functional cancer stem cells and express high
levels of drug metabolism genes rendering
them resistant to conventional therapies [147].

NCT01439568. 2016.
Interventional.
Phase 2.

NA SCLC
Advanced. A total of 60–70%
of patients had extensive-stage
disease.

Weak positive correlation at baseline between
CXCR4 expression in tumor tissue and CTCs
was observed in patients treated with CXCR4
peptide antagonist LY2510924 plus
carboplatin-etoposide. Baseline CXCR4+
CTCs ≥ 7% was prognostic of shorter
progression-free survival [148].

NCT00898014. 2010.
Observational. IC2006-04 Breast Cancer

Advanced (Stage IV). No prior
chemotherapy for metastatic
disease.

Detectable CTC was the only factor observed to
be significantly associated with an increased
risk of arterial thrombotic events [149].

NCT01625702. 2015.
Interventional. NA Gastric cancer

Advanced gastric
adenocarcinoma. Karnofsky
performance status ≥ 60.

CTC number was found to be significantly
correlated to prognosis in histologically
HER2-negative patients treated with
fluorouracil-based chemotherapy. In patients
that are histologically HER2-positive, CTC
number was not obviously correlated to the
progression-free or overall survival during
combined anti-HER2-targeted therapy [131].
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Table 3. Cont.

Trial Number, Year of
Completion, Study
Type and Phase.

Name Cancer Type Cancer Stage and
Other Information Key Findings

NCT02372448. 2019.
Interventional. STALKLUNG01 NSCLC

Early and advanced. Lung
adenocarcinoma
with ALK rearrangement on
tumor tissue was included.

As a part of standardization of the
pre-analytical conditions for CTC-based clinical
trials, study found out that blood processed
after 24 h and 48 h in BCT tubes showed stable
CTCs counts and integrity, whereas CTCs in
K3EDTA tubes showed an altered morphology
in all patients. Moreover, CTCs recovered in
BCT or K3EDTA tubes were evaluable for MET
expression, ALK rearrangement studies [150].
CTCs can be used as a complementary tool to a
tissue biopsy for the detection of ALK
rearrangements. Longitudinal analyses of
CTCs are promising for real-time patient
monitoring and improved delivery of
molecularly guided therapy [151].

NCT01548677. 2017.
Interventional.
Phase 2.

TREAT-CTC Breast Cancer
Early. HER2-negative primary
non metastatic
adenocarcinoma of the breast.

Study aimed to assess whether trastuzumab
treatment decreases the detection rate of CTCs
in HER2 nonamplified, early breast cancer
patients and found that Trastuzumab does not
decrease the detection rate of CTCs [152].

NCT02937116. 2020.
Interventional.
Phase 1.

IBI308
Ten types of
gastrointestinal
tumors @

Advanced (Stage IIIB-IV).
ECOG status 0–1.

Abundance of PD-L1high CTCs at baseline
serve as a predictor to screen patients for
PD-1/PD-L1 blockade therapies and measuring
the dynamic changes in CTC indicate the
therapeutic response at early time [153].

NCT03032913. 2017.
Observational. PANC-CTC Pancreatic cancer

Early (Stage I, IIb and III).
Pancreatic ductal
adenocarcinoma.

Combined CTC and exosome detection
displayed 100% of sensitivity and 80% of
specificity, with a negative predictive value of
100%. High levels of exosomes and/or CTC
presence were significantly correlated with
progression-free survival and with overall
survival when CTC clusters were found [154].

NCT01975142. 2019.
Interventional.
Phase 2.

CirCe T-DM1 Breast Cancer

Advanced. Metastatic breast
cancer.
HER2-negative primary tumor.
ECOG status of 0–2.

CTC with HER2 amplification can be detected
in a limited subset of HER2-negative metastatic
breast cancer patients indicating the
importance of clonal evolutionary changes
within the tumor [155].

NCT01640444
(VISNU-2).
2018. Interventional.
Phase 2.
NCT01640405
(VISNU-1). 2018.
Interventional.
Phase 3.

VISNÚ-1/2 Colorectal Cancer
Advanced. Metastatic
colorectal adenocarcinoma.
ECOG status of 0–1.

Elevated baseline CTCs and RAS mutations
were associated with clinicopathologic features
known to be associated with poor
prognosis [156]. Patients with baseline
CTC ≥ 3 count had poor prognosis [157].
First-line 5-fluorouracil/leucovorin, oxaliplatin,
irinotecan plus bevacizumab treatment
significantly improved progression-free
survival in patients with ≥3 CTCs at baseline
compared to 5-fluorouracil/leucovorin,
oxaliplatin plus bevacizumab doublet
therapy [158].

NCT01800058. 2018.
Observational. NA Prostate Cancer

Early (Stage II and III).
Prostate adenocarcinoma.
Karnofsky performance score
of ≥70.

Positive CTC status at diagnosis, following
neoadjuvant androgen deprivation therapy, at
the end of radiotherapy, and 9 months after
radiotherapy was not significantly associated
with any clinical or pathologic factors and
overall survival [159].

NCT02005770. 2018.
Interventional.
Phase 4.

NA Breast Cancer

Early (Stage 0–III). Primary
preinvasive and invasive
breast cancer without
metastases.

Study evaluated the association of different
types of anesthesia with postoperative CTC
counts in surgically resectable breast cancer
patients and found that there was no difference
between sevoflurane and propofol with respect
to CTC counts over time [160].
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Table 3. Cont.

Trial Number, Year of
Completion, Study
Type and Phase.

Name Cancer Type Cancer Stage and
Other Information Key Findings

NCT02453139. 2017.
Interventional. ExPeCT Prostate Cancer

Advanced. Prostate
adenocarcinoma
participants were stratified
based on body mass index.

Platelet cloaking of CTCs was observed in the
patient population for the first time but without
any significant correlation with
clinico-pathological information [161].

NCT01710605. 2018.
Interventional.
Phase 3.

STIC CTC Breast Cancer Advanced. Metastatic ductal
adenocarcinoma.

CTC count was found to be a reliable
biomarker method for guiding the choice
between chemotherapy and endocrine therapy
as the first-line treatment in hormone
receptor-positive, HER2-negative metastatic
breast cancer patients [162].

NCT01596790. 2019.
Interventional. NA Colorectal Cancer

Advanced. Colon or rectum
adenocarcinoma, visceral
metastases. WHO
performance status 0, 1 or 2.

Differential gene expression pattern was
observed in CTCs of same patient during first-
and second-line chemotherapy treatments and
disease progression highlighting the CTCs
adaptability to escape treatment pressure [132].

NCT02549430. 2017.
Interventional.
Phase 2.

TREnd Breast Cancer

Advanced. Endocrine resistant
ER-positive, HER2-negative
advanced breast
adenocarcinoma.

CTC count was found to be a promising
modality in monitoring palbociclib response in
patients with ER-positive, HER2-negative
advanced breast cancer [163].

NCT02137837. 2019.
Interventional.
Phase 3.

SWOG1222 Breast Cancer
Advanced. Invasive breast
carcinoma with ER-positive
and HER-2-negative status.

An association was observed of baseline CTC
and ctDNA with poorer survival [164].

NCT02771314. 2020.
Interventional.
Phase 2.

NA NSCLC

Early and advanced. Patients
with histologically
documented EGFR-mutant
NSCLC.

The decrease in both CTCs and ctDNA
occurring early during osimertinib treatment in
EGFR Mutant NSCLC patients was found to be
predictive of better outcome [165].

NCT03033927. 2024
(estimated).
Observational.

NA Pancreatic cancer Advanced pancreatic
adenocarcinoma.

Chemosensitivity assay profiling of CTCs was
found to be a promising tool for guiding
therapy in advanced pancreatic
adenocarcinoma [133].

NCT03935802. 2018.
Observational. NA Breast Cancer

Early (Stage I–III). Invasive
ductal carcinoma, Invasive
lobular carcinoma.

Increase in CTC numbers over the course of
adjuvant radiotherapy signified a potential
predictive biomarker to judge relative risk or
benefit in patients with early breast
cancer [166].

NCT04358718. 2021.
Interventional. NA Bladder cancer Early

µ-opioid receptor agonists used for pain
treatment both during and after surgery in
blader cancer patients was associated with high
CTCs and CTC cluster counts [167].

NCT01740804. 2026.
Observational. POLICE NSCLC

Advanced (Stage IIIb and IV).
Adenocarcinoma, squamous
cell carcinoma and Mixed
NSCLC
ECOG status of 0–1.

CTC persistent presence during treatment
represented poor prognosis and resistance to
chemotherapy in advanced NSCLC [129].

NCT01619111. 2022.
Interventional.
Phase 3.

DETECT III Breast Cancer
Advanced. HER2+ metastatic
breast cancer.
ECOG Score < 2.

Study demonstrated that phenotyping of CTCs
has clinical utility for stratification of metastatic
breast cancer patients irrespective of
HER-2-positive or -negative status for targeted
therapy. Study highlighted the phenotypic
changes in tumor cells during disease
progression [168].

Abbreviations: NA—Not available, NSCLC—non-small-cell lung cancer, SCLC—small-cell lung cancer. * Nine
tumor types including breast cancer, NSCLC, SCLC, gastrointestinal cancer, ovarian cancer, nasopharyngeal
carcinoma, urothelial cell carcinoma, renal cell cancer and parotid gland carcinoma. # Study recruited patients
with metastatic neuroendocrine tumors of either midgut or pancreas origin. @ Ten types of gastrointestinal tumors
including neuroendocrine tumors of the right adrenal neuroblastoma, hepatocellular carcinoma, colorectal carci-
noma, intrahepatic cholangiocarcinoma, pancreatic carcinoma, esophageal carcinoma, ampullary adenocarcinoma,
small intestinal stromal tumor, and esophageal small-cell carcinoma. % Patients with neuroendocrine tumors of
the ileum, caecum, jejunum, small bowel, duodenum, and right colon were recruited in the study.
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Clinical trials to understand the clinical utility of CTCs in tailoring or monitoring
targeted therapy have shown some promising evidence. For instance, it is well known that
somatostatin receptor expression is highly relevant in neuroendocrine tumors. Clinical
trials have demonstrated the usefulness of somatostatin receptor expression detection
on CTCs for tailoring somatostatin-receptor-targeted therapies [145]. Likewise, CXCR4
expression has been studied in various cancer types including breast, lung, kidney, colon,
ovarian, and brain tumors, and its overexpression is believed to be associated with in-
vasion and migration. In an exploratory analysis of phase II study, efficacy of selective
CXCR4 antagonist small cyclic peptide LY2510924 plus carboplatin-etoposide treatment
was correlated with baseline CTC counts in predicting survival in small-cell lung cancer pa-
tients [148]. Additionally, CTC phenotypic changes have been investigated in breast cancer
irrespective of HER2-positive or -negative status; it was found that CTCs are heterogenous
compared to primary tumors and phenotyping CTCs are critical in stratifying patients
for HER2-targeted therapy [168]. Similar to measuring treatment response by assessing
apoptosis and necrosis in treated tumors, apoptotic CTCs were found to be associated with
longer progression-free survival in ovarian cancer patients treated with mTOR-targeted
inhibitor [135]. These findings suggest that CTC-based clinical trials may lead to improved
cancer diagnosis and treatment strategies and CTC-based biomarkers may help optimize
cancer treatment and improve patient outcomes. However, the majority of clinical trials
have been conducted with advanced-stage cancer patients (Table 3) which marks the need
for trials in early-stage cancer patients to prolong their survival with better treatment
choices based on liquid biopsy.

8. Challenges and Opportunities

Despite the promise of CTCs as a liquid biopsy for cancer diagnosis and monitoring,
several challenges need to be addressed. One major challenge is the rarity of CTCs in
peripheral blood, which can make their detection and analysis difficult. Additionally, the
heterogeneity of CTCs and other factors in the blood can lead to false negatives or false
positives. Moreover, standardization of CTC isolation and analysis methods is still a work
in progress, which can hinder comparison across studies. Although NGS has undergone
significant advancements, it still remains a challenge to characterize CTCs due to the limited
quantity of genetic material that can be obtained from these rare cells.

However, these challenges also present opportunities for innovation and advancement.
For instance, development of more sensitive and specific CTC detection methods, such
as machine-learning-based algorithms, can improve accuracy. Additionally, single-cell
analysis of CTCs can reveal novel insights into tumor heterogeneity and evolution. Fur-
thermore, the integration of CTC analysis with other liquid biopsy markers, like circulating
DNA or RNA, can enhance diagnostic and prognostic power. Finally, investigations into
the biology of CTCs can unveil new targets for cancer therapy and enable personalized
treatment strategies.

Another opportunity lies in the development of CTC-based liquid biopsies for early
cancer detection and screening. If CTCs can be detected and characterized in individuals
without symptoms, it may be possible to identify cancer at an early stage. Additionally,
CTC analysis may help identify patients at risk of cancer relapse, allowing for earlier
intervention and potentially improving outcomes.

Moreover, advancements in single-cell analysis enable the study of CTCs at the single-
cell level, allowing researchers to explore the genetic and epigenetic landscape of individual
CTCs. This knowledge can aid in the development of targeted therapies and immunother-
apies. Furthermore, researchers can leverage CTCs as a platform for drug testing and
development, potentially leading to more effective and personalized treatments. Over-
all, while challenges persist in CTC research, ongoing advancements and collaborative
efforts can overcome these hurdles, paving the way for CTCs to become a valuable tool in
cancer care.
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9. Conclusions

CTCs have emerged as a promising biomarker for cancer diagnosis, prognosis, and
treatment monitoring, and research on CTCs has made significant progress in recent
years, shedding light on their role in cancer metastasis. Over the past decade, substantial
development has been made in CTC research, including advancements in detection and
characterization techniques, identification of CTC subpopulations, and integration of CTC
analysis into clinical trials. These advancements have paved the way for CTCs to become a
valuable tool in cancer diagnosis and management. Evaluation of CTCs in various cancer
types and investigation of their potential in combination with other liquid biopsy markers,
such as circulating tumor DNA, will likely yield valuable insights into cancer biology
and treatment response. However, challenges remain, including standardization of CTC
enumeration and molecular characterization, further validation of CTC-based biomarkers,
and exploration of CTCs in large cohorts of early-stage cancer patients. Nonetheless, the
field of CTC research has made substantial strides towards unlocking the potential of these
“seeds of metastasis” to improve cancer patient outcomes. As research continues to unravel
the complexity of CTC biology, standard methodology for CTC enumeration including
cut-off for a particular cancer type will likely be developed for widespread clinical adoption.
Furthermore, the development of novel molecular technologies like NGS and analytical
methods have aided in-depth analysis of CTCs and the process of metastasis. For instance,
single-cell analysis and artificial intelligence-driven approaches may reveal new aspects
of CTC heterogeneity and tumor evolution. Additionally, the integration of CTC analysis
with other omics technologies, such as proteomics and metabolomics, could provide a more
comprehensive understanding of cancer biology. Furthermore, phenotypic and molecular
characterization of CTCs have clearly demonstrated the intra tumor and intra patient
heterogeneity and the need for regular change in the treatment strategy leading to actual
precision medicine.
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