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Abstract: Tumor diseases become a huge problem when they embark on a path that advances to
malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated
from a biological perspective in the past, whereas it has still been less explored from a physical
perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention,
while the interaction of cancer cells with macrophages has received little attention. Apart from
the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which
is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates
cancer cells and thus alters their functions. The review article highlights the interaction of cancer
cells with other cells in the vascular metastatic route and discusses the impact of this intercellular
interplay on the mechanical characteristics and subsequently on the functionality of cancer cells.
For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis,
whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels.
Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during
extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The
review article highlights the vascular route of cancer metastasis and discusses the key players in this
traditional route. Moreover, the effects of flows during the process of metastasis are presented, and
the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the
increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.

Keywords: transmigration; intravascular cancer cell dissemination; tumor associated macrophages
(TAMs); exosomes; stiffness; mechanotransduction; cancerogenesis; cancer stem cells (CSCs); fibroblasts

1. Introduction

Solid primary tumors are not homogeneous accumulations of cells. Instead, they tend
to be heterogeneous and consist of different cell types. The heterogeneity of cancers may be
due to multiple genetic alterations that develop cancer. This represents a central challenge
in cancer biology: to map and subsequently comprehend what kind of somatic genomic
alterations cause cancer. The question arises: in the era of cancer genomics, why are
scientists in need of comprehending the oncogenicity of cancer driver genes and mutations?
Despite the fact that alternative definitions and methods of detection have been established
to identify cancer-promoting genes and mutations, thousands of cancer genomes have
been examined, resulting in a strikingly convergent collection of approximately 300 genes
that are mutated in a minimum of one type of cancer. Nevertheless, many characteristics
of these genes and their function in cancer are at present ambiguous, especially when
a somatic mutation is genuinely oncogenic. A limited group of driver mutations lead
to cancer. Identifying driver mutations poses a major hurdle, both experimentally and
computationally, particularly for infrequent drivers [1].

Since it is still difficult to decide whether a primary tumor will progress to a malignant
tumor through the development of metastases, there is still a demand for further novel
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markers, such as physical markers, to identify cancer cells and their malignant development.
There is a prevailing concept of the universality of the mechanical phenotype of cancer cells.
The remaining important questions are whether the mechanical phenotype is indepen-
dent of the cancer type and the cancer state. Another question arises: whether the tumor
microenvironment (TME) can alter the mechanical phenotype or not? The constitution,
architecture, and organization of the extracellular matrix (ECM) are also important elements
in the overall view of mechanobiology, as they shape the mechanical characteristics of the
ECM and thus determine aspects of the mechanical signals perceived by the cells. However,
it has been identified that a bidirectional interaction exists between the mechanosensing
of the ECM and restructuring by cells [2,3]. Integrins have been thoroughly investigated
as bidirectional connections that link the ECM and the cytoskeleton of the cells [4–6]. The
bidirectional nature of the interplay between cancer cells and their microenvironment,
which includes acellular and cellular elements, is critical for the malignant progression of
cancer [7,8]. Cancer cells communicate with endothelial cells or entire vessels to migrate
and invade the tissues for metastasis. The interplay between cancer cells and the endothe-
lial cell lining of blood or lymphatic vessels has been explored, but the mechanisms are
not yet fully understood. Thereby, the role of macrophages is controversially discussed.
However, the aim of this review is to emphasize the role of tumor heterogeneity, universal
cues, mechanics, and the microenvironment in cancer metastasis. This review concen-
trates in particular on the metastatic cascade and the interaction between cancer cells and
macrophages. The emphasis is on mechanical factors that favor or hinder the metastasis
of cancer cells. Finally, the possibility of cancer cells switching between the different cell
shapes during metastasis is also discussed.

2. Cancer Development

Cancer can be seen as a collection of diseases that evolve when the processes that
regulate normal cell growth, cell division, and the entire life span become dysregulated.
Consequently, the cells begin to proliferate out of control, prevent them from dying when
they normally ought to, and cause the motility of other cells and tissues like blood vessels,
immune cells, and various other types of normal cells to fuel the tumor’s growth advantage
relative to the adjacent tissue. When the cancer progresses, specific cells inside the cancer
take on specific modifications that offer them and their offspring cells the highest likelihood
of growing and surviving. These alterations may involve the capacity to proliferate more
rapidly, to manage to persist in the face of medical intervention, to infiltrate neighboring
tissues and organs, to escape the body’s immune defense system, to enter the bloodstream
and/or lymphatic system, to propagate without entering vascular systems, and to dissemi-
nate to remote areas of the organism. The majority of more advanced cancers display some,
perhaps all, of these characteristics.

2.1. Driver Mutations Advance Cancerogenesis

Cancer leads to an imbalance of fundamental processes in the cell that subsequently
cause alterations in DNA and in DNA-repair enzymes. As a consequence, cancer cells
acquire multiple (epi)genetic changes in the course of their lifetime, and these changes occur
one or two orders of magnitude more often compared to reproductive and normal somatic
cells [9]. Consequently, cancer cells collect numerous genetic changes during their lifespan,
but only a limited number of them accelerate the progression of the cancer, the so-called
driver mutations. Cancerogenesis has long been revealed as a multistage disease. Driver
mutations can differ according to the cancer type and the individual patient, and their
impact on cancer may be time-delayed or immediate. For example, they can stay dormant
for quite some time and turn into drivers only at specific phases of cancer, or they can
promote oncogenesis only in combination with additional mutations. The large mutational,
biochemical, and histological heterogeneity of tumors renders the identification of driver
mutations very difficult. One of the first findings was that the mortality rate for certain
types of cancer increases with the sixth power of the patient’s age. A numerical model



Biomolecules 2024, 14, 184 3 of 46

has been developed that predicts a number of successive driver mutations and different
cancer stages [10]. Additional investigations identified a limited number of mutations that
accelerate the development of cancer (driver mutations) [11,12]. For example, roughly a
single driver mutation for each patient was detected in sarcoma, thyroid, and testicular
cancer, and approximately four driver mutations for each patient with bladder, colorectal,
and endometrial cancer [13]. Nevertheless, it is generally agreed that most mutations
in cancer are broadly neutral, which are referred to as passenger mutations, and do not
encourage the pathogenesis of cancer. The overwhelming majority of driver mutations are
either replacements of single nucleotides or point mutations.

Apart from genomic mutations, epigenetics concerns changes in DNA that are not as-
sociated with a modification of the DNA base sequence. The epigenetically altered genome
is termed the “epigenome”. An important epigenetic process involves the packaging of a
cell’s DNA within a cell nucleus. The latest findings strengthen the idea that mutations in
the epigenetic signal transduction apparatus, comprising histones, such as K27M mutations
in histone H3 in gliomas [14], and chromatin remodelers, such as in the genes ARID1A and
ARID1B [15], are prospective new epigenetic markers in cancer [16].

2.2. Establishment of Basic Primary Cancer Models

Cancer is evoked by a broad range of factors, including chemical carcinogenesis,
epigenetic changes, somatic mutations, and viral infections [17,18]. The way normal cells
turn into cancer cells is currently based on two different models (Figure 1). Supporters
of the deterministic model propose the hypothesis that somatic stem cell transformation
by somatic mutations produces a specific subset of cancer cells capable of self-renewal,
which are known as cancer stem cells (CSCs) [19,20]. CSCs generate subsidiary cells that
have a restricted tumorigenic and metastatic capacity and subsequently develop primary
tumors [21,22].
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Figure 1. Models for the initiation of primary solid tumors. The deterministic model (upper images)
presents CSCs at the apex of the hierarchical organization. CSCs possess the potential for self-
renewal and can produce differentiated cells that are less cancerogenic. The clonal evolution model
(middle images) accumulates genomic mutations or epigenetic alterations that enable cancer cells
to proliferate faster compared to normal, healthy cells. The cellular plasticity model (lower images)
postulates the idea that CSCs do not represent cells of origin. Instead, plasticity occurs in CSCs, or
differentiated cells, that finally culminate in the primary tumor.
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The model of clonal evolution of carcinogenesis, which is commonly referred to
as the stochastic model, implies that mutations or epigenetic changes bestow selective
reproductive predominance on a cell over healthy cells, resulting in unrestrained growth
and a primary solid tumor [23,24]. The clonal evolution model is similar to a Darwinian
natural selection model, which is an adaptive system. The model of clonal evolution
predicts that selection at various phases of tumor growth leads to enhanced genetic and
epigenetic changes and a reduction in tumor suppressive defense mechanisms, resulting
in susceptibility to oncogenesis [25]. None of these models accounts for the high level of
heterogeneity present in primary solid tumors [26]. Recently, a fusion of these two models,
referred to as the cellular plasticity model, has been advocated (Figure 1). It assumes that
the “original cell” in this case is different from a CSC. Rather, the cellular plasticity model
assumes that healthy cells are naturally plastic and may exhibit phenotypic alterations upon
being subjected to a stimulus, either internally or externally [27]. This congenital plasticity
allows healthy cells to evolve by undergoing epigenetic and phenotypic modifications,
enabling transformation into CSCs. Exterior impulses are capable of causing the buildup
of multiple mutations throughout the cancer cells, leading to a huge heterogeneity within
primary solid tumors [17]. A heterogeneous solid tumor arises from both kinds of mutated
cells [28].

Why does phenotypic heterogeneity arise on a mechanistic basis? The expression
of genes constitutes a stochastic or “noisy” biological process. This noise can arise in
two different types. It can be broken down broadly into two principal categories: Firstly,
isogenic cells/individuals that obtain the same pieces of information from the surrounding
environment can result in varying expressions of a phenotypic characteristic. Isogenic cells
vary because of the noise generated through the process of splitting the cell components
binomially during the moment of cell division [29,30]. Consequently, the inherent stochas-
ticity of biochemical processes like transcription and translation produces “intrinsic” noise.
Secondly, isogenic cells/individuals that obtain varying pieces of information from the
surrounding environment can result in varying expressions of a phenotypic characteristic.
Fluctuations in the abundance or states of other cellular compounds elicited by the sur-
rounding environment can indirectly result in fluctuations in the expression of a certain
gene and therefore generate “extrinsic” noise [31] (Figure 2).

Does a universal mechanical phenotype of cancer cells exist in general or at specific
time points of tumorigenesis and/or malignant progression? The findings of the physical
oncology research community point towards the fact that the relationship between the
biophysical TME and genetic modification exerts a considerable influence on the progres-
sion of tumors. Cancer cells in particular and the stromal cells connected to them modify
their individual cytoskeletal and physical characteristics while also restructuring the sur-
rounding microenvironment with abnormal mechanical characteristics [5]. Finally, these
altered mechano-omics of cancer tissues and their components profoundly displace the
mechanotransduction paradigms in cancer and stromal cells and activate oncogenic cues
inside the neoplastic niche to promote cancer progression.

Although there are many possibilities for tumor cell diversity, is there still a possibility
that a certain cell phenotype, such as the mechanophenotype, is not different but the same?
Moreover, is this mechanophenotype found universally in the different tumors, does it also
exist during malignant progression, or is it at least also universally changed?
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Figure 2. Extrinsic and intrinsic signals control the heterogeneity of cancer cells. (A) Extrinsic cues
can lead to cell heterogeneity. Two isogenic cells are subject to different environmental cues due to
broad microenvironmental variations that evoke various responses. (B–E) Intercellular variations
lead to heterogeneity due to intracellular variations. (B) A small number of transcription factors (red
dots) require different times to bind to the promotor region (short red line) on the DNA (blue line).
(C) The activity of cellular processes such as transcription is time-dependent. (D) Non-equal cell
division can cause intercellular differences. (E) Feedback circuits in cellular populations result in all
(green) or none states (yellow) in cellular physiology.

3. Universal Properties of Cancer and Their Effect on Cancer Cell Function

The mechanical phenotype can be characterized by considering the cell as a material.
It is a pivotal factor as it dictates the interaction between forces such as tension, pressure,
and entrapment and the consequent alterations in cell morphology, such as cell shape and
physical size. The mechanical phenotype can be expressed by various measurements like
viscoelasticity, cell deformability, cell adhesion characteristics, and cell shape. To address
the question of whether there is a universal mechanical phenotype of cells, it is possible to
consider the function of certain proteins, such as Caveolin1 (Cav1). Specifically, the focus is
on emphasizing the involvement of caveolae and caveolar constituents, particularly Cav1,
in the process of incorporating the mechanical forces transferred by the ECM [32] and
the specific involvement of cellular cytoskeletal remodulation as a mechanism of action
whereby caveolae and caveolins can react to and remodel the ECM [33–35].

In general, it is the cellular mechanical phenotype that determines survival after defor-
mations caused by entrapment and liquid streaming. The concept involves the assumption
that cancer cells are sculptural (plastic) and acquire various mechanical phenotypes when
exposed to various geometries, which promote their survival. Therefore, an attractive
objective of physical cancer research is to interfere with the capacity of cancer cells to take
on different mechanical states. For this reason, the mechanosensory process of cancer cells
must be investigated. The ability of cells to recognize stiffness is necessary to react to the
rigidity of the matrix. It was investigated how healthy cells and cancer cells exhibit discrete
mechanical characteristics [36]. Cancer cells appeared softer compared to their healthy
control equivalents, irrespective of the specific cancer type, such as breast, bladder, cervix,
ovarian, pancreatic, or Ha-RasV12-transformed cells [37]. The measurements were con-
ducted with atomic force microscopy (AFM). When growing on ECM matrices of different
stiffness, low stiffness can impair the proliferation of healthy cells [38], whereas this effect
is not attained by cancer cells and transformed cells. Hence, cancer cells experience a modi-
fication of their mechanical phenotype, which entails a softening of the cell and a reduction
in the sensation of stiffness. In a groundbreaking investigation, it was shown that mes-
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enchymal stem cells (MSCs) alter their morphology and develop towards lineage-specific
differentiation when grown on matrices that exhibit varying, physiologically important
matrix stiffnesses [39]. Cancer cells are capable of undergoing malignant transformation
and taking on a mesenchymal phenotype.

Cav1 acts as a small oligomeric scaffold protein that is generally necessary for the
development of membrane curvatures in structures like caveolae [40,41]. In addition,
Cav1 connects to multiple other proteins, regulates the homeostasis of cholesterol, and
controls a multitude of cell processes, including endocytosis, internalization of receptors,
accumulation of cholesterol, cell signal transduction pathways, proliferation, and cell
death [41,42]. Cav1-driven regulation of the signaling cues is critical in cancer. An example
of this is the crosstalk of Cav1 and Rho GTPases, including RhoC, that promotes the
emergence of metastases through inducing the expression of α5 integrin and the Src kinase-
facilitated activation of the p130Cas/Rac1, FAK/Pyk2, and Ras/Erk1/2 signal transduction
pathways [43,44]. It is important to note nonetheless that Cav1 also acts as a tumor
suppressor by helping E-cadherin in the sequestration of β-catenin, thereby impairing the
β-catenin/Tcf-Lef-dependent transcriptional activation of genes encompassing survivin,
cyclooxygenase-2, cyclin D1, and multiple other proteins fostering the development of
cancer [45,46]. Therefore, Cav1 fulfills functions of opposite outcomes, such as tumor
suppressor and promotor in cancer, which have been reviewed in [41,47,48].

Cav1 suppresses tumor formation via regulation of contractile tension in epithelia [49].
In specific detail, caveolin’s contractile tension control is required to remove oncogene-
transfected cells through the process of apical extrusion. Lack of caveolin-1 enhanced
steady-state tensile stresses within epithelial monolayers, and consequently, the lack of Cav1
in the epithelial cells encircling oncogene-expressing cells hampered their apical extrusion.

Contractile force at the adherent junctions (AJs) mirrors the action of the actomyosin
cortex, which is linked to E-cadherin-driven cell-cell adherence [50]. To comprehend how
caveolae modulate junctional tension, first the actomyosin cortex at AJs was analyzed.
Unexpectedly, the concentrations of non-muscle myosin II and phosphorylated myosin
regulatory light chain (pMLC) concentrations at the junctions of Cav1-KD cells could not
be determined even though mechanical tension was elevated. This suggests that although
myosin II is required for tension, alterations in this motor cannot straightforwardly account
for the elevation of tension within Cav1-KD cells. Neither the expression of E-cadherin nor
the dynamics of the junctions were changed. In confocal microscopy, the F-actin values
were slightly but persistently increased. This indicates that an actin modulatory signaling
mechanism could be in charge of the junctional tension enhancement in Cav1 KD.

To this end, the architecture of the F-actin network was primarily characterized using
structured illumination microscopy (SIM). Apical junctional F-actin occurred with greater
condensation in Cav1-KD cells, and fewer superimposed filaments and bundles were
visible after the skeletonization of the microscopic images. Thus, the junctional cytoskeletal
organization was modified through the knockdown of Cav1. This assumption was con-
firmed based on the measurement of the nematic order of F-actin at the junctions following
the Fourier transformation of the fluorescence signals obtained from SIM images [51].
The nematic order coefficient was decreased in Cav1-KD cells, which is in line with a
stronger co-linear or bundled arrangement of actin filaments. Ultimately, actin dynamics
were characterized based on the expression of G-actin labeled with photoactivatable GFP
(PAGFP-G-actin), and its fluorescence loss after photoactivation (FLAP) was assessed at the
junctions. The T1/2 half-life of fluorescence decay was markedly elevated at the junctions of
Cav1-KD and Cavin1-KD cells relative to controls, indicating that the F-actin pool remained
more stable. Altogether, these results imply a mechanism that functions to stabilize F-actin
and facilitate its bundling at AJs to be hyperactive in Cav1 KD cells. Formins seemed to
be appealing contenders for imparting these effects, as they facilitate the assembly and
stabilization of non-branched F-actin structures and operate at cell-cell junctions [52–54].
Similarly, the broad-spectrum formin inhibitor SMIFH2 applied to Cav1-KD cells restored
F-actin levels at the junctions and normalized F-actin architecture and dynamics. It is
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important to emphasize that SMIFH2 compensated for the increased junctional tension
observed in Cav1-KD cells. This suggests that an excessively active formin is likely in
charge of the elevation of junctional tension when Cav1 is knocked down. Caveolae have
lately been identified as mechanically active organelles that contribute to the mechanical
damage protection of tissues, such as mechanical stress [55,56]. An understanding of this
protective mechanism emerged from the finding that the caveolae become flattened when
membrane tension rises. It was suggested that a membrane reservoir is thereby freed to
buffer the changing membrane tension in a passive manner [57–60]. These results high-
light another way in which caveolae can impact the mechanics of epithelial monolayers.
In this case, the removal of caveolae enhances cortical contractility through stimulation
of a phospholipid signal transduction pathway that aims at the actin cytoskeleton. It is
proposed that caveolae modify active tissue tension by limiting the activity of this sig-
naling mechanism. In this way, caveolae contribute to establishing an acceptable mode
of epithelial tension for oncogenic cells that can be eradicated through apical extrusion.
Cav1, known to be suppressed in a variety of cancer cells and oncogene-transformed cells,
controls the mechanical phenotype [61,62]. Cav1-driven elevation of RhoA activity and
Y397FAK phosphorylation guided actin cap production, which was positively associated
with cell elasticity and stiffness perception in fibroblasts. Ha-RasV12-induced cell transfor-
mation and alterations in mechanical phenotype can be reverted by re-expression of Cav1
and mimicked when Cav1 is silenced in normal fibroblasts. Finally, this study revealed a
novel function of Cav1 and identified a connection between mechanical phenotype and the
transformation of cells. Consequently, mechanical properties can also be used as indicators
of cell transformation. In summary, the role of Cav1 in cancer, in particular the comprehen-
sion of the canonical (Cav1 located in the plasma membrane) and non-canonical pathways
(Cav1 situated in organelles and exosomes), is connected to the protein’s double function
as tumor suppressor and facilitator of metastasis [63].

The general heterogeneity of tumors argues against the universal nature of the charac-
teristics of cancer cells. Cell shape heterogeneity was found to be more tightly coupled to
the mechanical state of the cells. However, single cells in multicellular spheroids display
a lower level of mechanical heterogeneity than individual cells grown in monodisperse
3D culture systems. The reduced heterogeneity among cells found in spheroids implies
that there is mechanical cooperation among the cells that comprise a solitary spheroid.
Another possibility for the reduced heterogeneity within multicellular spheroids lies in
their rather simple composition and architecture. There are also more intricate multicellular
models available, such as organoids or even better tumoroids, which means tumor-like
organoids. Organoids comprise three-dimensional complex ex vivo tissue cultures that can
be obtained from embryonic stem cells, induced pluripotent stem cells, or tissue-resident
progenitor cells. They have spatially limited lineage connectivity and higher-order self-
organization, which renders them attractive quasi-physiological models [64]. Organoids
still lack the full composition of cells, molecules, and factors that reside within a patient’s
solid tumor. Although organoid cultures are superior to spheroid culture models, they still
have weaknesses. Therefore, it is advantageous to generate samples directly from freshly
isolated (resected or biopsy) patients’ cancer tissue and to preserve the complete structural
organization of the TME and the ECM [65].

Organoids provide a biologically meaningful stage for enhancing translatability. Co-
cultures represent no novel concept in the experimental work, as they are frequently utilized
to investigate interferences between epithelial cells and other relevant cell populations,
for example, lymphocytes, neurons, and blood vessels, as recently reviewed in [66]. The
cultivation of epithelial cancer organoids with immune cells has provided valuable findings
on the pathogenesis of various cancers, and the opportunity to genetically engineer these
types of organoids in the absence or presence of immune cells offers a distinct and pertinent
model for the examination of carcinogenesis [67–69]. The co-culture of mouse tumor
organoids and adipocytes delivered new findings on colorectal cancer. For example, it has
been demonstrated that adipocytes stimulate the proliferation and dedifferentiation, which
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is evidenced by elevated Lgr5 and CD44 and reduced mucin-2 and sucrase-isomaltase
mRNA expression levels, of colon cancer organoids [70]. The researchers also hypothesize
that adipocytes act as a metabolic regulator and energy supplier to support the growth of
colon cancer cells, which is a candidate mechanism to account for the association between
obesity and colon cancer. The ECM is not a mere passive spectator in cancer biology;
nevertheless, the biological implications are frequently not investigated or considered in
conventional laboratory experiments [71]. Co-culture experiments can solve this problem.
Established organoids of pancreatic ductal adenocarcinoma, for instance, normally form
ductal and basement membrane architectures, but this structure is destroyed upon co-
culture with pancreatic stellate cells within a collagen matrix, resulting in deterioration of
the basement membrane and enhanced invasion of the collagen matrix [72]. In addition,
co-cultivation of pancreatic cancer organoids together with both stromal and immune cells
results in the activation of myofibroblast-like cancer-associated fibroblasts, a phenomenon
that was not evident in 2D cell culture models [73]. A model system that enables the
interplay between cancer cells, stromal cells, and immune cells is consequently crucial for
examining the pathogenesis of cancer.

New techniques are constantly being developed to optimize organoid cultures, such as
the incorporation of self-generating hydrogels consisting of an ECM extracted from human
tissue in place of mouse Matrigel. For instance, a methodology has been developed for
preparing extracts from the ECM of breast mammary glands that can undergo spontaneous
gelling and produce hydrogels [74]. The important point is that these hydrogels sustain
biological signaling reactions that differ between cancer and normal epithelial organoid
cultures [74]. Culture systems with air-liquid boundaries, in which the basal surface of the
stem cells is in direct physical exposure to the culture medium and the apical surface is in
contact with air, are equally interesting. This arrangement can more precisely reproduce the
characteristics of the TME in specific types of cancer, like the luminal surface of colorectal
carcinoma [75].

Based on the issues discussed, the question can be asked whether it is likely that cancer
cells have the same mechanical properties from patient to patient, regardless of the type
of cancer and the variables. However, the stage of cancer seems to have an influence on
the mechanical phenotype, as there appears to be a strong correlation. The majority of
research carried out to date has shown that individual cancer cells are softer compared
to healthy cells, as illustrated in several review articles [76–78], which all focus on AFM
stiffness analysis. The differences in the stiffness of cancer cells with varying invasive
abilities, however, are subject to less agreement.

Recently, it has been revealed that mechanical characteristics at the level of the cell
(stiffness, viscoelasticity) and at the level of the plasma membrane (fluidity) are inter-
linked [79]. More invasive cancer cells have been shown to either soften with magnetic
tweezers with fibronectin-coated superparamagnetic beads, such as ovarian cancer cell
lines [80] and with AFM, such as ovarian HEY, HEY A8, OVCAR-3, and OVCAR-4 cancer
cells [81] and B16 melanoma cell variants [82], or stiffen, such as prostate, liver, and breast
cancer cell lines [83–86], during the course of cancer advancement. Moreover, even when
breast cancer cells are measured in an adherent and non-adherent state using AFM, there is
still the finding that the softer breast cancer cells are more invasive into 3D collagen matrices
and cause more fiber displacement when invading these 3D collagen fiber scaffolds [87].
Some of the observed inconsistencies may be attributable to the considerable diversity
of cancer cells and the signaling pathways participating in the process of invasion [88].
Within this, higher stiffness (apparent elastic modulus and E0) was observed in cells with
a mesenchymal phenotype and the highest migration performance (SW480), and lower
stiffness in cells with an epithelial phenotype and low migration performance (HT29) [79].
Cell height and power-law exponent were increased in the softer HT29 cells, which is
consistent with earlier findings [89,90]. The Newtonian viscosity coefficient η of the utilized
viscoelastic model exhibited a positive correlation with stiffness. This result is not entirely
clear, as it could be related to the viscosity of the cytoplasm in the vicinity of the cortex,
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which is also investigated at the penetration depths used (800–1500 nm, typically) [79].
However, there is currently no further data to substantiate this conclusion, and further
research is needed to make a statement [79].

4. Malignant Cancer Progression (Cancer Metastasis)

Cancer that has disseminated to other areas of the body, which is commonly referred to
as metastatic disease, is the leading contributor to the majority of cancer deaths. Cancer cells
surmount numerous hurdles, such as surveillance by the immune system, to propagate
to secondary sites effectively [91]. A plethora of research performed over the last two
decades heavily implies that mechanical forces are also implicated in cancer progression
and responses to traditional therapeutic regimens [92–94]. These forces also include fluid
mechanics, which are increasingly coming into focus. On their route to establishing a
metastasis, cancer cells and factors released by the cancer utilize and harness three key
body fluids: the blood, lymph, and interstitial fluid [95–97]. The important fact is that
fewer than 0.01% of the thousands of cancer cells penetrate the bloodstream and survive
to develop metastases [98,99]. Thus, it is not likely that all cancer cells can be cleared
from the patient by surgery. Thus, it is critical to comprehend the specific steps of the
metastatic cascade to develop inhibitory treatments. All of these steps are concerned
with mechanical encounters between the cancer cells and the various microenvironments
they experience during metastasis [95]. Circulating tumor cells (CTCs) and their derived
products, comprising soluble factors, cell-free DNA, and extracellular vesicles (EVs), can
migrate directly through the hematogenous circulation [91,100] or sequentially exploit both
the lymphatic and vascular systems to populate distant organs [101–103].

This idea that fluid mechanics can influence metastasis goes back to an early inves-
tigation that pioneered the “hemodynamic theory” and demonstrated that arterial blood
flow in specific organs is positively correlated with the occurrence and patterns of metas-
tasis [104], which demonstrates a connection between fluid mechanics and the secondary
location of metastasis.

During transportation in liquids, CTCs are exposed to and act on different mechanical
forces, which can affect their destiny in a variety of ways. For example, high shear forces
acting on CTCs can trigger mechanical stress that results in cell fracture and death [105],
while intermediate shear forces have been demonstrated to promote the intravascular
dormancy phase and the extravasation of CTCs [106]. A better understanding of the
mechanical forces to which CTCs and tumor-associated material are subjected in fluids is
therefore critical to completely unraveling the metastatic cascade and defining susceptible
CTC stages for therapeutic interference. This investigation reveals a novel mechanism by
which a VEGF-VEGFR2-AKT-ATOH8 signaling axis induced through cyclic laminar shear
stress (LSS) confers survival to mimic circulating tumor cells (m-CTCs) [107].

4.1. Increased Vascular Permeability around Cancers

The effect of enhanced permeability and retention (EPR) involves the extravasation
of blood components from leaking tumor-induced vessels and their retention in the TME,
thereby increasing interstitial pressure. Cancer cells can easily enter the leaky vessels
to spread to targeted tissues and organs. As expected, these suspended cells with a
CK8+/CD45−/DAPI+ phenotype have been seen in blood vessels and are referred to as
m-CTCs. Quantitative polymerase chain reaction, western blotting, and immunofluores-
cence were employed to assess the alterations in gene expression of m-CTCs that exhibit
sensitivity to LSS pacing. In addition, the expression of atonal bHLH transcription factor
8 (ATOH8) in CTCs of 156 CRC patients and mice was investigated using fluorescence in
situ hybridization and flow cytometry [107]. The m-CTCs actively reacted to LSS by induc-
ing the expression of ATOH8, which is a fluid mechanosensor involved in intravascular
surveillance and the plasticity of metabolism. Notably, ATOH8 was observed to be upreg-
ulated through activation of the VEGFR2/AKT signal transduction pathway facilitated
through LSS-triggered VEGF secretion. ATOH8 subsequently transcriptionally induced
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HK2-driven glycolysis, thereby enhancing the intravascular survival of colorectal cancer
cells within the blood circulation.

The onset of fluid mechanics was the detection of diffusive transport of oxygen
around blood capillaries, which was reviewed in [108]. Pioneering contributions have
been identified that advance the application of fluid mechanics concepts to accompany
genomic and molecular signaling investigations for cancer research [109–113]. The fluid
mechanics of the cancer microenvironment were also explored in the work by Maeda and
colleagues [114]. With the concept of the enhanced permeability and retention (EPR) effect,
Maeda and colleagues [114] advocated the critical contribution of fluids extravasating
from the tumor vasculature leading to elevated interstitial pressure, which constitutes a
dominant element in the TME and a governing mechanism for cancer treatment.

4.2. Bodily Fluids

Blood, lymph, and interstitial fluid properties can be characterized based on their
biophysical attributes, which are affected by their unique constitution and features, pro-
viding an appreciation of the mechanical stress that each fluid can exert on CTCs and
other tumor-derived constituents [115,116]. These interconnected partitions exhibit various
flow modes (which rely on the magnitude of the dimensionless Reynolds number, among
other factors) and flow velocities that are encountered or utilized by the CTCs and/or
tumor-secreted matter during transport. In the lymphatic system, for example, it is a
generally laminar, pulsating flow with low amplitude, which is primarily powered by
viscosity and exhibits low velocities [117]. Conversely, blood possesses a far higher density
of circulating particles (blood cells and other factors) and has faster flow rates because of
the heart’s pumping capacity. Moreover, the blood flow in arteries can be pulsating with
high amplitude and turbulent flow, while the flow in veins is generally laminar [118]. In
addition, the biophysical cues vary based on the flow and type of vessel, as well as the
nature of the organ. In total, CTCs and tumor-derived material moving in the circulatory
system are subjected to shear rates ranging from around 10 s−1 in the lymph [117] to around
1000 s−1 in large arteries [118,119].

Blood and lymph play a part in the interstitial fluid flow that typifies cancer [94].
The interstitial fluid produced due to high capillary blood pressure and cellular pressure
within the solid primary tumor [120] is dissipated through the lymphatic system and its
primary valves, which are under lower pressure. This directional shift was characterized in
a model [121] on the principle of Darcy’s law and is primarily related to the variations in
pressure, surface area, and hydraulic conductivity among these networks. The interstitial
fluid pressure (IFP), intriguingly, not only eases the spreading of cancer cells and tumor-
associated material [96], but also has key implications for the infiltration of drugs into the
primary cancer site [94].

4.3. Tumor Interstitial Fluid Facilitates the Cancer Cell’s Migration and Invasion

Solid primary cancers create a complex microenvironment comprising cancer cells,
stromal cells, the ECM, blood vessels, and lymphatic vessels. When cancers grow to
1–2 mm, they need to become vascularized to elevate oxygen levels, and hence they need to
recruit nearby blood vessels or induce the growth of new blood vessels [122]. The growth
of the primary solid tumor depends on angiogenesis, which offers oxygen and required
nutrients through the de novo formation of new blood vessels, and lymphangiogenesis,
which functions in the elimination of excessive fluids and the dehydration of cancer cells
and tumor-secreted factors released from the tumor [123]. Moreover, both fluid systems
enable the transportation of immune cells into and out of the tumor, and the lymphatic
circulatory system directs local immune surveillance through the oversight of adjacent
lymph nodes [124].

The Darcy model accounts for variations in IFP inside the tumor that promote the
diffusion and convection of fluids from the blood into the outflowing lymphatic system [96].
In primary tumors, the IFP gradient is exacerbated by the incompleteness of the immature
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tumor-associated blood vessel system, which contains many “holes” [125]. Moreover,
fast tumor growth leads to massive solid stress, which subjects the tumor-associated
vascular network to additional vasoconstriction due to compression and tension [126,127].
Thereby, a high IFP is produced inside the tumor tissue. In an autochthonous mouse model
for pancreatic ductal adenocarcinoma, the intratumoral IFP was over nine times higher
compared to the IFP found in equivalent healthy tissue [128,129]. Even though a high IFP
value is evident in the core of the tumor [128], the IFP value decreases at the tumor periphery,
resulting in an interstitial fluid flow across the peritumoral stroma into the lymphatic
vessels [96]. The interstitial fluid flow consists of both convection and diffusion fluxes
in the direction of the periphery [130], with velocities of about 0.001–0.004 mm s−1 [131].
At the same time, the stress puts pressure on the blood and lymph vessels [132], which
impedes the oxygen supply and homeostasis of the solid tumor. Conversely, cancer cells are
prone to enhance the liberation of pro-angiogenic factors [120], resulting in an abnormal and
hyperpermeable blood circulation (low velocity and very heterogeneous), which further
promotes the malignant response of cancer cells.

A typical case of vascular flow and transport is presented in, in which scientists explain
a conceptual approach for incorporating a discrete 1D model of tissue vasculature into a
3D continuum model of interstitial trafficking [133]. Fluid shear flow across a meshwork
of vessels is characterized by Poiseuille’s law, which links blood flow to channel radius,
pressure, and the viscosity of the blood liquid. The transfer through vessel walls can be
characterized by Starling’s law, which links the rate of extravasation to vessel permeability
and the pressure mismatch between the vessel and the tissue. The speed and direction
of the interstitial flux can be determined by Darcy’s law, which connects these variables
with the pressure gradient and the tissue’s hydraulic conductivity. To maintain the unique
architectural structure of the vascular system, an approach associated with a continuous
3D model of the interstitial space that is not limited to a spatially averaged variable was
established. These three essential relations are illustrated in Figure 3, which are employed
to determine the characterization of intravascular and interstitial flow. Poiseuille’s and
Starling’s laws are integrated into this drawing (Figure 3). Poiseuille’s law (Equation (1))
inks the intravascular flux Qv (Figure 3, gray arrow) to the radium of the vessel R, the
dynamic blood fluid viscosity µ, and the intravascular pressure gradient pv. Starling’s law
(Equation (2)) links the rate of extravasation Jv (Figure 3, yellow arrows) to the hydraulic
conductivity of the vascular wall Lp, the vascular surface area S, the reflection coefficient
σ, the vascular oncotic pressure πv, and the interstitial oncotic pressure πi. Darcy’s law
(Equation (3)) connects the interstitial flow speed ut (Figure 3, orange arrows) to the
interstitial tissue hydraulic conductivity k and the interstitial pressure gradient pt. These
three linkages can be found within the overall published literature on the physical modeling
of tumor-based vascular flux and angiogenesis.

Poiseuille’s law is provided in the following Equation (1):

Qv =
πR4

8µ
∇pv (1)

Starling’s law is described in Equation (2) below:

Jv = LpS((pv − pi)− σ(πv − πi)) (2)

Darcy’s law is given in Equation (3) as follows:

ut = −k∇pt (3)
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Figure 3. Model of flows between blood vessels and tissues. The Poiseuille (grey arrow), Starling
(yellow arrows), and Darcy (orange arrows) laws can describe the flux within blood vessels and
tissues. The extravasation flow can be characterized by Starling’s law, which takes into account the
pressure on both faces of the capillary, such as vascular (arterial or venous) and interstitial pressure.
The overall hydrodynamics can be described using hydraulic conductivity coefficients for the arterial
and venous flows to determine the singular performance of the vascular resistance. Darcy’s law
can be used as a model for the movement of cancer cells with both inhomogeneous and isotropic
conductivity. Therein, the cancer cells are treated as a fluid with constant density. This “cancer cell
fluid” flows through a porous environment, such as the ECM, which is defined as rigid and immobile.
Thus, the porosity is constant. Simulations have shown that the tumor mass increases from regions
with high conductivity to regions with low conductivity if the tumor form is not altered. Thus, Darcy’s
law states that a higher flow velocity is present in areas exhibiting higher conductivity. Poiseuille’s
law states that the flow is highest at the vessel wall due to the enhanced fluid shear stress, which
has an impact on cancer cell survival within vessels. In addition, there is high interstitial pressure
(light blue arrows) from the TME, which compresses the tumor mass. The dark blue arrows indicate
the expansion pressure caused by the proliferating tumor mass in the direction of surrounding
tissue. Hypoxic conditions prevail in the core of a tumor mass due to fewer blood vessels, and some
tumor masses are necrotic in their core area. Aerobic glycolysis, which requires oxygen, is one of the
hallmarks of cancer and can only take place where sufficient oxygen is available.

The interstitial fluid of cancer cells promotes the migration and invasion of cancer
cells. The interstitial convection flux holds the capability to accelerate the invasion of
glioblastoma cells and to promote the migration of amoeboid human breast carcinoma
cells towards the lymphatic drainage system, where cancer cells can exit the primary
tumor with the support of macrophages [134]. Interstitial fluid flow alters stromal cells
by enhancing the polarization of macrophages, which encourages the migration of cancer
cells [135]. In a mouse model of breast cancer, migrating macrophages are transformed into
sessile perivascular macrophages [136]. However, the effect of the interstitial flux is still
elusive. As collagen I stimulates mesenchymal motility, cancer cells may migrate in the
opposite direction of convective flux. The flux of interstitial fluid interacts with the flux of
luminal vascular tissue to promote the intravasation of cancer cells [137]. The motion of
the interstitial fluid affects the migration of cancer cells toward the lymphatic and blood
vessels. It has been hypothesized that convective pressures associated with lymphatic
and blood circulation push tumor-related contents and cells to aid their targeted spread
(as well as the spread of soluble melanoma factors, or EVs), toward the vascular events
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or ECM at the circumference of tumors. There is not enough scientific substantiation for
this hypothesis. Other mechanisms, like postnatal angiogenesis (the formation of new
blood vessels through recruited endothelial progenitor cells from the bone marrow) and
vasculogenic mimicry, are possibly accountable for the formation of blood vessels [138].

5. Chromosomal Instability, Exosomes, and Cell-Free DNA Foster Cancer Metastasis

Cancer metastasis is the hallmark of cancer, accounting for the majority of cancer-
related deaths. However, it is still not clearly revealed. Invasion marks the first point in the
metastatic cascade, when cancer cells gain the capacity to migrate, invade nearby tissue, and
penetrate lymphatic and blood vessels to spread. A contributing part of genetic alterations
in invasion is not generally agreed upon. The skeptical argument is that cell motility
depends exclusively on external stimuli like hypoxia, chemoattractants, and mechanical
factors such as the stiffness and/or viscoelasticity of the ECM. In tumor hypoxia, the
content of oxygen is lowered from 4.6% to 9.5% in healthy tissues to less than 1–2% [139].
However, there is growing evidence that mutations can initiate and enhance the migration
and invasion of various types of cancer cells. The published literature on the implications
of chromosomal instability and genetic mutations on the migration and invasion of cancer
cells is presented in a recent review [140]. Chromosomal instability, release of exosomes,
and cell-free DNA (cfDNA) of primary tumors, normal cells, or cancer cells have emerged
as hallmarks for the malignant progression of cancers. All of these features appear to
be triggered by mechanical influences such as interstitial flow, external forces, and/or
stiffness. As cancer cells are subject to mechanical cues, chromosomal instability may
enable cancer cells to adjust to different environmental conditions by potentially adjusting
their mechanophenotype and may help them to disengage from the primary tumor and
subsequently metastasize. The stiffness-driven release of exosomes can reduce the response
of immune cells by provoking their apoptosis. The cfDNA, which can also be released from
exosomes, can protect cancer cells in the vascular system from destruction by the immune
response, as the specific receptors existing on the cancer cells cannot be identified. Finally,
these events can all contribute to cancer metastasis.

5.1. Chromosomal Instability

Cancer cells start to spread from the primary tumor before the first steps of the invasion-
metastasis cascade take place [141]. The metastatic cascade is the result of chromosomal
instability due to ongoing errors in the separation of chromosomes at the time of mitosis
(Figure 4). Errors in chromosome segregation lead to disruption of micronuclei and release
of genomic DNA into the cytosol, which consequently activates cytosolic DNA-sensing
signaling pathways (cyclic GMP-AMP synthase stimulator of interferon (IFN) genes) and
subsequent nuclear factor-κ-light-chain-enhancer of activated B (NF-κB) signaling down-
stream pathways [142]. Research indicates that the type of primary seeding cancer cell
dictates the varying metastatic characteristics in terms of growth and responsiveness to
treatment [143,144]. In vivo and in vitro trials demonstrate that metastatic cancer cells
migrate alone [145]. In humans, the assumption is that cancer cell seeding involves the
collective action of a cluster of cancer cells migrating in concert [146], which is the timepoint
at which epithelial-mesenchymal transition (EMT, see Section 5) comes into play.

Nuclear abnormalities comprise small nuclei (micronuclei) that harbor intact chromo-
somes or fragments of them. These micronuclei can cause intricate chromosome rearrange-
ments during cancer development and progression [147]. Nuclear mechanophenotype
alteration, such as nuclear envelope blebbing (softening), can induce invaginations that
engulf actin and intermediate filaments [148], which result in epigenetic modifications.
In addition, chromosomal abnormalities can lead to polyploidy in cancer cells and, sub-
sequently, to different daughter cancer cells with different mechanophenotypes, which
metastasize to varying degrees.
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Figure 4. Chromosomal instability (CIN) represents a hallmark of cancers that function in the
migration and invasion of cancer cells. CIN can be caused by a gain or loss of entire chromosomes,
which is referred to as numerical CIN (lilac), or structural reorganization, which is referred to as
structural CIN (orange). The loss of heterozygosity (LOH) contributes to numerical and structural
CIN, whereby genomic alterations, such as allele loss, impact cancer cell invasiveness. Polyploidy
is the existence of additional sets of chromosomes that consequently alter the genetic profile of
cancer cells and increase their invasive capacity. Polyploid giant cancer cells (POCC) are seen in
numerous cancers and indicate extreme tumorigenic, invasive, and metastatic capacity. Aneuploidy,
such as loss of chromosomes (monosomy) or acquired chromosomes (trisomy), can impact cancer
cell motility differently. Various gene fusions due to chromosomal rearrangements impact cancer
cell invasiveness via different regulatory pathways and mechanisms. Amplification, which is a copy
number enhancement of a specific region of the genome, causes elevated gene expression. In this
case, when the specific gene is linked to cellular migration, it can increase cancer cell invasion.

5.2. Exosomes

Exosomes comprise a class of small extracellular vesicles that are liberated by all
kinds of cells. They exhibit a size spectrum of 30–200 nm [149]. Exosomes are formed
when the boundary membranes of the endosomes expand towards the lumen and generate
multivesicular endosomes. When multivesicular endosomes are trafficked toward the cell
surface and merge with the plasma membrane, their intraluminal vesicles are secreted by
the cells in the form of exosomes [150–152]. Exosomes act in intercellular communication
between cancer cells and their microenvironment via the exchange of information through
the cargo of the recipient cell, comprising proteins, lipids, DNAs (ssDNA, dsDNA, mtDNA),
RNAs (mRNA), and microRNAs (miRNA, long non-coding RNA) [153]. Exosomes can
prevent their cargo, such as miRNAs, from being destroyed by environmental cues, and thus
exosome miRNAs can be maintained within human blood plasma and other bodily fluids.
Thus, these exosome miRNAs may serve as a non-invasive biomarker for cancer prognosis,
treatment, and monitoring, including cervical cancer and malignant glioma [154,155].
Exosomes, which are extracellular vesicles holding genetic material, proteins, and lipids,
also play a pivotal role in the creation of the pre-metastatic niche [156]. Increasing stiffening
of the TME triggers the release of exosomes from cancer cells via the Akt pathway and
Notch pathway activation [157]. Stiffening of the ECM is associated with activation of
Akt, in turn stimulating GTP charging of the small GTPase Rab8, which ultimately propels
the release of exosomes [157]. Exosomes derived from cancer cells exposed to a stiff ECM
stimulate tumor growth in an efficient manner. Proteomic profiling revealed that the Notch
signaling pathway is induced in cells subjected to exosomes of cancer cells cultured on stiff
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ECM [157]. Luminal soluble proteins and membrane proteins of exosomes, such as lipid-
anchored proteins, molecules bound to the periphery of the membrane, and transmembrane
proteins, can be released into the TME [158]. The membrane proteins of the exosomes
permit them to target specific cells. When they are attached to the targeted cells, exosomes
can initiate signaling via receptor-ligand engagement and become endocytosed and/or
phagocytosed. Exosomes are able to merge with the membrane of the target cell, thereby
liberating their cargo into the cytosol and altering the physiological condition within the
cell [159]. Thereby, the exosomes of a particular cancer cell can impact the performance of
surrounding cells, the cellular environment, and the phenotype of remote cells and tissues,
which has a strong capacity for systemic implications [160]. For example, exosomes of
cancer cells can impede the immune response against themselves, primarily by causing
apoptosis of T lymphocytes [161]. Exosomes of pancreatic cancer cells target T lymphocytes
and interfere with their gene expression profile, e.g., genes such as ATF4, MAPK, and
EIF2α, which are involved in the onset of apoptosis, and consequently compromise their
antitumor capabilities [162].

Exosomes can also be captured by adjacent or distant cells, where they are involved
in the post-transcriptional regulation of gene expression through the targeting of mRNA.
Exosomal miRNAs may fulfill various purposes, such as involvement in inflammatory
responses, cell migration, proliferation, apoptosis, autophagy, and epithelial-mesenchymal
transition [163,164]. Once the exosome miR-132 is captured by endothelial cells, the expres-
sion of RabGAP-P120 is decreased through signaling, which encourages the tubularization
of endothelial cells [165].

Exosomes originating from the primary tumor possess a set of integrins on their outer
surface that control adhesion of exosomes to specific cell types; this may permit cancer cells
to bind the ECM or translocate its cargo into recipient cells to establish organtropism [166].
New evidence indicates that tumor-derived exosomes can trigger the creation of pre-
metastatic niches that facilitate the progression to metastatic disease [167,168]. Importantly,
exosomal tumor RNAs are found to activate the Toll-like receptor 3 (TLR3) of the alveolar
epithelium to activate chemokines (CXCL1, CXCL2, CXCL5, and CXCL12) that are key
for neutrophil recruitment and pre-metastatic niche creation inside the lung [169]. Tumor-
derived exosomes may also induce N2 polarization in neutrophils to drive the migration of
gastric cancer cells [170] and neutrophil extracellular traps (NETs) and cause cancer-related
thrombosis [171]. Moreover, exosomes can transport PD-L1 from the primary tumor to other
locations in the organism to inhibit the immune defense in the pre-metastatic niche [172]. In
an appropriate pre-metastatic space, cancer cells need to undergo an angiogenic switch to
attract various cells that alter the surrounding tissue and create an environment that eases
the growth and spread of metastases [173]. While organ tropism is poorly comprehended,
the study of exosomes and pre-metastatic niche creation is advancing knowledge in this
field. Targeting exosomes or any other factors that are critical for pre-metastatic niche
establishment may be able to avoid the seeding of metastatic cancer, but there is still a long
way to go before the formation of pre-metastatic niches is completely clear.

5.3. Cell-Free DNA (cfDNA)

Cell-free (cf) DNA can be released by exosomes that emerge increasingly after a
stiffness increase in tumors. As an alternative option to liquid biopsy, circulating cfDNA
is steadily secreted from clonal cancer cells into the bloodstream [174,175]. Variations
in cfDNA can be detected by ultra-deep NGS even at extremely low frequencies (<1%)
and have been employed for the early identification of relapses in different tumors (e.g.,
colorectal cancer, pancreatic cancer, neuroblastoma) and recently also in premalignant lung
and bladder forms of the disorder [176–179]. Currently, several platform technologies offer
adequate sensitivity in detecting circulating tumor (ct) DNA to accurately diagnose lung
tumor patients who recur within one year of subclone detection and for accurate screening
of premalignant cervical cancer [176,180]. However, methods for identifying and profiling
ctDNA need to be enhanced, and methods should have improved sensitivity and more
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specificity with quantitative thresholds to prevent overdiagnosis. An important biological
constraint is the quantity of ctDNA collected from early-stage cancer patients, such as when
there is even less than 0.1% of ctDNA identified in plasma using digital droplet PCR or NGS
techniques [181]. The enrichment process has to be conducted on the basis of biological or
physical characteristics. The results are distorted by cancer-related mutations, which are
not limited to cancer patients, and the presence of clonal changes in blood cells resulting
from aging and clonal hematopoiesis, which are both considered critical issues [182,183].
Genomic driver alterations of cancers in the BRAF, CDKN2A, EGFR, FGFR3, HER2, NF1/2,
PIK3CA, RAS, and TP53 genes may also be detected in non-tumor probes. In addition,
identifying the tissue of neoplastic lesion origin can be very difficult [178]. Therefore,
the restrictions on the clinical benefit of ctDNA analysis are obvious. Apart from cancer
diagnosis, cfDNA can protect cancer cells from being identified and, hence, destroyed by
the immune system.

6. Altered Mechanical Cues in Primary Tumor Tissues Establish the Tumor
Microenvironment (TME)

Solid tumors and their accompanying TME are composed of cancer cells and stromal
elements, comprising the ECM, basement membrane (BM), vasculature, immune cells, and
fibroblasts (Figure 5). As the tumor advances, all elements alter their physical appear-
ance and functionality [184–186]. In many types of cancer, although there are a handful
of exceptions, primary tumors are usually mechanically stiffer than their healthy source
tissue [185,187–189]. For instance, human breast tumors are five times stiffer than healthy
tissue, and this high level of stiffness is positively related to malignancy [190]. Mammary
tissue from mice with tumors is 24 times stiffer compared to healthy mammary tissue [191].
The stiffness of human liver tissue has a positive relationship with the incidence of hepato-
cellular carcinoma, with a threshold value of 20 kPa [192]. In addition to general stiffening,
heterogeneity of intratumoral stiffness represents another salient mechanical feature of
tumor tissue [193]. The measurement with ultrasound elastography reveals the enormous
spatial variability of tissue stiffness in breast and liver tumors [194]. In human breast
cancer biopsies, the periphery of the primary tumor is 7-fold stiffer (E = 5.51 ± 1.70 kPa)
compared to its center (E = 0.74 ± 0.26 kPa), whereas healthy breast tissue exhibits a
stiffness of 1.13–1.83 kPa [195]. In addition to stiffness, the viscoelasticity of cancerous
tissue also distinguishes it from that of normal tissue. For instance, in vivo assessment
using magnetic resonance elastography (MRE) indicates that the fluidity of human benign
meningioma tissue remains 3.6 times higher than that of aggressive glioblastoma tissue.
This solid-like characteristic of glioblastomas eases their aggressive infiltration into the
adjacent tissue [196].

The increased stiffness of the cancer tissue is primarily attributable to over-deposition
and enhanced cross-linking of the ECM, particularly of collagen [197]. The TME is con-
stantly reorganized by tumor and stromal cells and delivers physicochemical information to
control the gene expression and functioning of these cells through the activation of a range
of intra- and extracellular molecular receptors and signal transduction pathways, including
integrin, PIEZO ½, and Rho/ROCK. These receptors pick up extracellular biophysical
cues and transmit them to the cell nucleus. They then transmit intracellular feedback
to the restructuring of the extracellular TME [198,199]. The constitution, stiffness, and
organization of the ECM define its regulatory function in the progression of tumors. The
ECM consists of fibrous proteins, glycoproteins, polysaccharides, and proteoglycans [200].
High expression of different ECM proteins is associated with a worse outcome in various
types of cancer [197]. Aberrant expression of ECM enzymes, like matrix metalloproteinases
(MMPs), which control ECM restructuring, is an indicator of a negative prognosis [189,198].
As the principal structural elements of the ECM, collagens account for up to 60% of the
mass of the tumor and the stiffness of the tumor tissue [199,200]. High collagen levels
encourage the formation of breast cancer and invasive phenotypes [201]. The ECM is
a three-dimensional network that, besides the main constituent collagen, is composed
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of other macromolecules, including elastin, fibronectin, glycoproteins, hyaluronic acid,
laminin, lysyl oxidase (LOX), proteoglycans, and tenascins, which are upregulated in cancer
and thus provide structural, mechanical, and biochemical cues to cells such as cancer cells
and CSCs [202]. All this modifies the mechanical properties, such as increasing stiffness,
of the in vitro collagen matrixes [203] and TME of solid tumors [204]. The stiffness of the
ECM has a decisive impact on the transformation, proliferation, and motility of cancer
cells. For instance, high ECM stiffness eases the positioning of the yes-associated protein
(YAP) in the cell nucleus, which is necessary for the transformation of normal, healthy
breast cells triggered via the RTK-Ras oncogene [205]. Human breast cancer cells have
a higher concentration of miR-18a in the stiffer ECM, which favors the growth of cancer
cells [206]. Stiff ECM enhances breast cancer cell growth and invasion by producing high
cell tension. High stiffness of the ECM upregulates TWIST1, thereby enhancing EMT
and consequently promoting metastasis of these breast cancer cells [207]. High ECM
stiffness in pancreatic ductal cancer cells triggers the signal transducer and activator of
the transcription 3 (STAT3) signaling pathway, which enhances matricellular fibrosis and
ductal epithelial tension and drives progression of the tumor via decreased transforming
growth factor-β (TGF-β) signaling and elevated activation of β1-integrins [208]. High
ECM stiffness and cell contractility enhance the MMP activity of pancreatic cancer cells
three to tenfold, which facilitates migration, invasion, and angiogenesis [209]. During
the progression of various solid tumors, sequestration, restructuring, and networking of
the ECM constitution alter and cause the stroma to stiffen in a gradient formation going
from the tumor periphery (highest stiffness) to the tumor core (lowest stiffness). Since the
center of the tumor mass is less rigid, the cancer cells migrate durotactically outward to
higher stiffness, which leads to metastatic cancer cells. The spatial distribution of liver
CSCs corresponds to the stiffness of the tumor tissue, such as when the circumference of the
tumor is 13 times stiffer and comprises 13 times more CSCs compared to the center of the
tumor [210]. Thus, there are indications that the plasticity of cancers can result in a dynamic
alteration of the frequency of CSCs. Matrix stiffness also has an impact on CSC function, as
it causes the activation of mechanosensitive cell surface receptors that subsequently activate
mechanosensory and/or mechanoregulatory molecules including integrins, vinculin, talin,
paxillin, FAK, and YAP [211]. The mechanoregulatory molecules can alter both cancer
cells and CSCs by impacting various signal transduction cascades [212]. For example, FAK
is able to trigger via the integrin-FAK-Src signal transduction pathway the activation of
serine/threonine-protein kinase (AKT), β-catenin (Wnt signaling pathway), cyclin D1, ERK
(Ras-ERK signaling pathway), JNK (RhoA-JNK pathway), phosphatidylinositol-3-kinase
(PI3K), and other proteins, whereas tumor suppressing genes like phosphatase and tensin
homolog (PTEN) and glycogen synthase kinase 3α/β (GSK3α/β) are blocked [213,214].
In addition, CSCs can transmit mechanical signals via the RhoA/Rho-associated protein
kinase (ROCK) signaling pathway [35]. Beyond that, tumor stiffness impacts cancer cells,
CSCs, and stromal cells through activation and nuclear translocation of the transcriptional
activators YAP1 and WW domain-containing transcription regulator 1 (WWDR1) (TAZ)
(Hippo pathway) [205,215].

In reaction to increased ECM stiffness, glioma cells trigger Piezo1 activation in focal
adhesion sites and enhance calcium influx; thereby, the integrin-FAK signal transduction
is activated and ECM stiffening is even further enhanced [216]. High tissue stiffness
stimulates the Rho/ROCK signaling pathway to enhance actomyosin-based cell tension
and collagen sequestration, which reinforces tissue stiffness [217]. In addition, the stiffness
of the tumor tissue affects the morphology of the vessels, the vascular barrier performance,
and the vascular integrity [218–221]. For instance, FAK activity triggered by the stiffness of
the matrix stimulates Src and high levels of phosphorylated vascular endothelial cadherin
(VE-cadherin) at endothelial cells’ adherent junctions [220]. Enhanced stiffness of the ECM
causes improved angiogenic dispersion and leakage, which unwantedly encourages the
dissemination of cancer cells into the vascular system [218]. Even though the density
and the level of cross-linking of the collagens determine the stiffness of the ECM, they



Biomolecules 2024, 14, 184 18 of 46

can impact angiogenesis in opposite directions. In an in vitro 3D organ culture system
model of sprouting angiogenesis, enhanced matrix density decreases angiogenesis and
vascular meshwork development, probably due to the fact that a stiff ECM is more difficult
for endothelial cells to reshape [222]. Enhanced collagen cross-linking encourages the
angiogenic sprouting of the spheroid and improves the stiffness of the substrate [189,218].
Especially in the area surrounding the tumor vessels, the ECM is thicker and increasingly
linearized [223]. These results indicate that the impact of enhanced ECM density and
alignment, including cross-linking and linearization, on the stiffening of the primary tumor
and tumor progression appears to be mutually exclusive. The impact of ECM stiffness
on angiogenesis relies on cell-ECM adhesion. On 2D polyacrylamide (PA) gels, which
are coated with type I collagen, a softer ECM (200 Pa for soft ECMs vs. 10 kPa for stiff
ECMs) stimulates endothelial cell loop generation, mimicking the onset of angiogenesis, but
shifts to a suppressive mode when collagen concentration is decreased from 100 µg/mL to
1 µg/mL.
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Figure 5. Functions of ECMs, such as TME. The ECM represents an attachment scaffold for cells
that is needed for maintaining the tissue polarity and asymmetric division of stem cells. Due
to its composition, it can foster or impair cancer cell migration. The ECM can sequester growth
factors and hinder their free diffusion. There are also other constituents of ECMs that can tether to
growth factors and act as co-receptors or signal presenters, which aid in determining the cell-cell
interaction direction. The breakdown of the ECM by matrix metalloproteinases (MMPs) can modify
the functionality of cancer cells. The physical characteristics of the ECM can be perceived through
focal adhesions of cancer cells, which may result in various alterations of the cell phenotype, including
the rearrangement of the 3D genome.

7. Impact of Tumor Microenvironment (TME) Stiffness on Cancer Advancement

The impact of ECM stiffness on tumor progression is, nevertheless, debatable. Ovarian
cancer cells, for instance, tend to be more invasive when they are in a softer environ-
ment [224]. In contrast, higher matrix stiffness in solid tumors is linked to enhanced
invasion and metastasis, which is attributed at least in part to the rise in CSC population
and biomarkers [225,226]. There is evidence that matrix stiffness is able to activate recep-
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tors and mechanosensor/mechanoregulator proteins like integrin, FAK, and YAP, which
modulate the features of cancer cells and CSCs via various molecular signal transduction
pathways. A sudden shift to a low ECM stiffness has been found to sustain stem cell
formation of malignant tumor repopulating cells (TRCs) or CSCs in a soft ECM of 90 Pa
but not in a stiff ECM of 1.05 kPa [212,227–229]. At the edge of the softer core of a primary
tumor, cancer cells undergo cell death and necrosis, which is referred to as necroptosis.
Consequently, the core region of primary tumors becomes softer. Thus, at the boundary
between a softer tumor core and a stiffer tumor belt, the cancer cells of the core undergo
an increase in stiffness that can induce changes in these cancer cells towards an invasive
phenotype, enabling metastatic progression of the cancer. In addition, epigenetic modifica-
tions triggered by extracellular or intracellular factors can prepare cells for effective escape
from the primary site and encourage the development of disseminated cancer cells that can
settle at distant sites and create metastatic entities.

It has been revealed that the compliance of a magnetic platform, which displays high
ligand tether mobility, increases the stemness and tumorigenicity of cancer cells [230].
CD133+ liver CSCs soften regional niches to sustain their stemness, increase resistance
to medication, and alleviate metastasis [231]. These varying reactions to ECM stiffness
could be attributed to the reliance of mechanosensing on the particular cancer type, the
heterogeneity of TME, and the heterogeneity of cancer cell subpopulations. Collagen,
as a fibrous substance, exhibits the properties of strain hardening, nonlinear elasticity,
and natural anisotropy [232,233]. Stiffening of the ECM can be induced by collagenous
stretch-hardening in the presence of even low levels of cell contraction-induced stretch and,
conversely, promotes cancer propagation when stretch-hardening is not reversible [234,235].
The nonlinearity of collagen fibers, such as compressive buckling and tensile stiffening,
has been observed in a finite element model to ease the transmission of mechanical cues
over long distances of about nine cell lengths to faraway cells [236]. In addition to stiffness,
ECM architecture, like fiber alignment, interconnectivity, porosity, and topography, is also
responsible for the invasive phenotypes of cancer cells, comprising locomotion, protrusions,
and MMP activity in self-assembled 3D collagen matrices [237,238]. Elevated collagen
density can decrease ECM pore size, and an intermediate pore size of 5 to 12 µm is regarded
as an effective enhancer of glioma invasion [239]. By utilizing an interconnecting matrix
of hydrogels from 30 Pa to 310 Pa, the impacts of pore size and stiffness on cancer cells
have been separated [240]. The boundary in the pores increases the polarization, traction,
and migratory velocity of cancer cells. The speed of cell migration correlates positively
with the stiffness of the ECM within the constrained ECM, whereas this relationship is
biphasic in the unconstrained ECM [5,241]. In breast cancer, collagen fibers that orient
themselves vertically to the border of the primary tumor are observed to enhance invasion
and promote metastasis [242]. A high degree of collagen cross-linking, along with enhanced
ECM stiffness, eases cancer cell invasion via increasing integrin-regulated FAK-Src signal
transduction [211].

Apart from the matrix mechanics and acellular elements of the stroma surrounding the
tumor, the stroma provides a harbor for various types of immunoregulatory cells, like fibrob-
lasts and endothelial cells, that supply oxygen and substances to sustain and support the
development, advancement, invasion, and metastasis of the cancer via stromagenesis and
angiogenesis [243]. In colorectal cancer (CRC), the metastatic capacity depends heavily on
the stroma. Fibroblasts in the stroma, the most prominent cell type of the stromal cell com-
munity [244], are key contributors to stromal cross-talk and cancer advancement. A subset
of these fibroblasts undergoes activation to form cancer-associated fibroblasts (CAFs), which
are synonymously referred to as myofibroblasts and express alpha-smooth muscle actin
(α-SMA) [244–248]. Fibroblasts become CAFs when activated through TGF-β [248,249].
These CAFs promote a compacted myofibroblastic moiety and the accumulation of ECM
proteins accompanying cancer fibrosis [250]. CAFs produce an accelerating force, result-
ing in their enhanced cell stiffness on 2D soft substrates in vitro [251,252]. In vivo, CAFs
secrete growth factors that enhance metastatic advancement of cancer cells [253], and they
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synthesize collagen and the collagen cross-linker (LOX), both of which stiffen the ECM
and reshape the ECM’s constitution and organization [204]. The contractile force of the
CAFs can also alter the biomechanical characteristics of the tumor by causing compressive
stresses in the tumor and gradients of pressure on the proliferating epithelial cancer cells
due to mechanical nonlinear stress-strain deformation [132,254]. Extra stress is created
through the growth of cancer cells in a restricted spatial environment [254]. Hence, stromal
cells and CAFs are crucial biophysical participants in cancer propagation. The mechanics
of stroma are especially pertinent to intestinal and pancreatic cancer.

8. Intravascular Spread of Cancer Cells

The evolution of secondary tumors in a section of the body far away from the original
primary cancer is referred to as metastasis. Although metastasis is the main contributor to
cancer treatment breakdown and death, it is still barely explained. Cancer patients release a
high number of cancer cells into the bloodstream every day; melanoma research in animal
models, nonetheless, indicates that less than 0.1% of cancer cells metastasize [255]. The
evolution of metastases demands that the cancer cells abandon their primary site, travel in
the bloodstream, withstand the pressure in the blood vessels, adapt to a new cellular setting
in a secondary location, and avoid the deadly battle with immune cells [91,256]. According
to Hanahan and Weinberg, “activating invasion and metastasis” constitute a hallmark of
cancer [88]. In fact, invasion of adjacent tissues and dissemination to remote sites to generate
metastases is a key symptom of the malignancy of cancer (Figure 6). Finally, metastasis is
the leading reason for death in over 90% of cancer patients [257]. Improving knowledge of
the dynamics of this process will contribute to identifying targets for molecular treatments
that can stop or possibly even reverse cancer growth and progression.
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Figure 6. Primary solid tumors interact with the tumor stroma, such as the ECM scaffold, immune
cells (TAMs and TANs), and stroma cells (CAFs). The cancer cells remodel the surrounding ECM,
and consequently, the ECM stiffens.

When cancer cells infiltrate the vasculature through intravasation, they are typically
eliminated through shear stress or immune surveillance. Fewer than 0.01% of cells that
manage to escape a primary tumor undergo extravasation when they approach a secondary
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target site [258–260]. Intravasation can be of two different types, such as active and passive
(Figure 6) [261]. During the process of passive intravasation, the majority of cells either
die or undergo apoptosis [261]. It is assumed that these cells are shed due to the waning
nutrient delivery caused by the hypoxic environment of the tumor and the leaky blood
vessel circulation [261,262]. In active intravasation, the cells travel along nutrient and
growth factor gradients towards a blood vessel by the mechanism of chemotaxis [263,264].
These cells are able to break down the ECM and the basement membrane and actively
penetrate into a blood vessel [261]. Alternatively, these cancer cells can squeeze through the
ECM and the basement membrane pores [265,266]. In the bloodstream, these cancer cells
combine with blood platelets, enabling the cancer cells to resist the shear force [258,267].
The process of inducing EMT (see Section 11) in these circulating cancer cells enables the
rearrangement of intermediate filaments to resist this sheer force [268]. Cancer cells can
evade elimination through the immune system by various mechanisms (Figure 7), such
as coating with immune cells, such as macrophages, platelets, or neutrophils, or masking
their receptors by the secretion of broadly immunosuppressive cytokines.
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Figure 7. Consecutive steps of the metastatic cascade.

The liberation of soluble factors like VEGF, IL-10, TGF-β, prostaglandin E, and Fas out
of cancer cells supports the establishment of an immunosuppressive environment [269–273].
These factors are secreted by tumor-associated cells through the increased stiffness of
primary tumors and their TME. For instance, VEGF release causes the enrolment of
immature dendritic cells and macrophages [274,275]. Tumor-associated dendritic cells
and tumor-associated macrophages (TAMs) inhibit the capacity of mature dendritic cells
and macrophages to eradicate cancer cells via inhibiting T cell activation and phago-
cytosis [269,276]. The expression of inhibitory receptors, including programmed death
receptor-1 (PD1) and its ligands PD-L1 and PD-L2, by cancer cells, such as CTCs, impairs
the activation of T lymphocytes [277]. In addition, antigen presentation, especially by the
major histocompatibility complex (MHC), is diminished on the cancer cell surface, enabling
them to circumvent immune surveillance [278]. In addition, platelet coating can protect
circulating cancer cells against natural killer cells (NK cells) and T cells, and platelets can
transfer MHC to cancer cells and thus mislead the immune system [279]. Adherent platelets
can encourage the shedding of the NKG2D ligands MICA and MICB from the surface of
cancer cells via ADAM10/17-facilitated cleavage (Figure 8) [280,281]. Moreover, platelet-
coated cancer cells exhibit less detectable CD112 and CD155 on their cell surface, which
act as ligands for the activating NK cell receptor DNAM-1 [281], which further reduces
the immune response toward cancer cells. The coating of cancer cells with platelets is
referred to as cloaking. Immune checkpoint proteins depress the immune response as they
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inactivate immune cells competent to destroy tumors. Therefore, treatments with immune
checkpoint blockers can bypass immune escape by boosting T cell-based clearance of cancer
cells [282,283]. Consequently, the blockade of immune checkpoints has revealed impressive
outcomes in a broad range of solid cancers, like melanoma [284,285] and non-small cell
lung cancer [286].
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9. Dual Functions of Tumor-Associated Macrophages (TAMs)

Macrophages are double-edged swords among myelomonocytic cells with dual ca-
pacity in cancer, which mirrors their plasticity as a reaction to environmental circum-
stances [8,287–289]. The switch between the two main states of macrophages is induced
by increased stiffness of the TME. Macrophages are able to eradicate cancer cells, promote
antibody-dependent cellular cytotoxicity and phagocytosis, induce vascular injury and
tumor necrosis [290], and trigger mechanisms of tumor resistance facilitated through innate
or adaptive lymphoid cells. In sharp distinction, macrophages in the majority of estab-
lished tumors promote cancer progression and metastasis through various mechanisms,
among them fostering the survival and proliferation of cancer cells, angiogenesis, and
the suppression of innate and adaptive immune mechanisms [291–295]. These diverse
functions of macrophages can be explained by their mechanical stimulation by the primary
tumor and/or the TME. Thus, a change in the mechanophenotype of TMEs can induce a
switch in TAMs.

TAMs have emerged as a prototype for the interplay between inflammation and can-
cer [296]. Macrophages play an essential role in the anti-tumor effects of chemotherapy,
monoclonal antibodies (mAbs), and radiotherapy [297,298] by facilitating anti-tumor activ-
ity and triggering adaptive immune reactions. In addition, they are an attractive target of
modern checkpoint blocker immunotherapies, as they express inhibitory counter-receptors
(such as PDL1 and PDL2) and therefore inhibit adaptive immune reactions [290,299–302].
As TAMs exhibit pro-tumoral functions and immunosuppressive activity, they may aid or
hinder cancer cell intravasation and survival (Figure 9).
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Figure 9. TAMs fulfill tumor-promoting tasks that help at various stages of tumor development.
TAMs secrete nitric oxide (NO) and reactive oxygen intermediates (ROI), leading to DNA injury and
genetic instability during the initiator stage of the primary tumor. TAMs secrete epidermal growth
factor (EGF) and various mediators like hepatocyte growth factor (HGF), IL-6, and glycoprotein
NMB (GPNMB), which promote the growth of CSCs. In later phases, TAMs participate in metastatic
dissemination by liberating IL-1 and TGF-β, which are also implicated, along with various proteases,
in reconstructing the ECM and pathological fibrosis. TAMs are an important supplier of angiogenic
determinants: vascular endothelial growth factor (VEGF) and pro-angiogenic chemokines. TAMs are
key players in immunosuppression in TME. The release of TGF-β, IL-10, indoleamine 2,3-dioxygenase
(IDO), and prostaglandins encourages the expansion of regulatory T cells (Treg cells), an improper
displacement of dendritic cells towards an immature and tolerogenic condition, and a deficit of T
cells in metabolism. Immunosuppressive TAMs feature a high expression of immune checkpoint
molecules (PD-L1, PD-L2, and B7-H4), which lead to T cell depletion. EMT = epithelial-mesenchymal
transition; ILC3 = type-3 innate lymphoid cell; TH17 = T helper 17.

In a similar fashion to TAMs, neutrophils can act as a double-edged sword [303].
In human peripheral blood, neutrophils are the largest leukocyte subgroup and play an
essential part in the immune reaction to infectious pathogens. It is also hypothesized
that the opposite functions of neutrophils can be due to their altered mechanophenotype
induced by the elevated TME stiffness. Due to their short longevity and terminal dif-
ferentiation, they have for a long time been assumed to perform a marginal function in
cancer-related inflammation. Recently, however, animal models have demonstrated that
tumor-associated neutrophils (TAN) may also polarize into various phenotypes in reaction
to tumor-derived excitatory stimuli, including mechanical cues. TAN can therefore exercise
pro- and antitumor responses (Figure 10) [304–306].
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Figure 10. Bidirectionality of TANs: Cancer cells with mutations in distinct genes, such as TLE1,
attract neutrophils toward the primary tumor region and elevate the number of CTC-neutrophil
clusters within the bloodstream. Expression of the vascular cell adhesion molecule-1 (VCAM-1)
in cancer cells fosters the assembly of CTC-neutrophil clusters, probably by tethering to distinct
integrins on the cell surface of neutrophils. These neutrophils express IL-6 and IL-1β, which are cues
that encourage CTC’s cell-cycle progression. In contrast, CTCs express neutrophil-stimulating factors
like G-CSF. CTC-neutrophil clusters are extremely effective in the initiation of metastasis, and their
existence is connected with a negative prognosis.

9.1. TAMs Foster the Intravasation of Cancer Cells

Another crucial step in metastasis is that cancer cells squeeze through small gaps in the
vascular endothelium to obtain entry into the host vasculature [307]. An experiment with
intravital multiphoton imaging provided direct and kinetic imaging of the intravasation.
Based on this experiment, an intravasating cancer cell is consistently chaperoned by a
macrophage within a single cell diameter, providing direct proof of the involvement of
TAMs in the intravasation of cancer cells [308,309]. Clinical observations have concordantly
revealed the tripartite organization of TAMs, cancer cells, and endothelial cells as the TME
of metastasis. This specific metastatic environment is a marker for enhanced hematogenous
metastasis and a bad outcome, at a minimum, in breast cancer [310]. The mechanisms
behind this synergistic encounter are intricate. On the one hand, macrophages degrade the
ECM surrounding the endothelium through a series of proteolytic enzymes like cathepsins,
MMPs, and serine proteases [311–313]. Activated TAMs have a direct impact on the
enhancement of metastasis by directly secreting soluble factors [314]. M2 macrophages can
disrupt the matrix membrane of endothelial cells through the deposition of MMPs, serine
proteases, and cathepsins and break down different collagens and other constituents of the
ECM, thereby promoting the migration of cancer cells and tumor stromal cells [315,316].
In addition, cytokines secreted by cancer cells that have undergone EMT (see Section 11)
also stimulate the differentiation pathway of TAMs, creating a positive feedback circuit
between TAMs and EMT [317]. On the other hand, TAMs channel cancer cells into the
bloodstream through a positive feedback circuit comprising CSF-1 secreted by the cancer
cells and EGF secreted by TAMs [318]. The first-named cytokine promotes macrophage
movement and stimulates EGF secretion, which in turn sends messages to the cancer cells
and facilitates chemotactic migration in the direction of the blood vessels [318,319]. Thus,
hampering either the CSF-1 or the EGF pathway interferes with the movement of both cell
types and also decreases the circulating tumor cell count.
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9.2. TAMs Promote Cancer Cell Survival Inside the Circulation

As soon as the cancer cells have invaded the vasculature, they must be prepared
for survival and exit from the bloodstream. Clots packaged around cancer cells decrease
survival stress by NK cells in response to tissue factor (TF) in the bloodstream and in the cap-
illaries [320,321]. A strategy in which macrophage functions were perturbed using genetic
techniques reduced the survival of cancer cells in the pulmonary capillaries and prevented
tumor invasion into the lungs, notwithstanding the development of blood clots, suggesting
an instrumental involvement of macrophages in this process [322]. Two conceivable mech-
anisms could be responsible for this phenomenon. A recent investigation revealed that the
recruited macrophages induced the PI3K/Akt survival signaling pathway in newly spread
breast cancer cells by activating vascular cell adhesion molecule-1 (VCAM-1) through α4
integrins [323,324]. Activation of the PI3K/Akt survival pathway thereafter protected the
cancer cells against proapoptotic cytokines, such as TNF-related apoptosis-inducing ligand
(TRAIL) [323]. In addition, numerous cancer cells protected by the chemokines or cytokines
released directly from the macrophages manage to survive [322].

9.3. Role of Macrophages in the Presence of Flows

Several studies have demonstrated that tumor interstitial fluid fosters the migration
and/or invasion of cancer cells. For example, interstitial convection flow can enhance the
invasion of glioblastoma cells [325] and induce the amoeboid migration of breast cancer
cells [134,326] in the direction of the lymphatic drainage, in which cancer cells can evade
the primary tumor with the assistance of macrophages [136]. The interstitial fluid stream
can also impact stromal cells, for instance, by encouraging macrophage differentiation
into polarized populations, which, for their part, can enhance the directional migration of
cancer cells [327]. As innate immune cells, macrophages are capable of vastly adopting
a wide range of phenotypes that are evoked by cues macrophages sense in their local
microenvironment. In one extreme, these functionally plastic cells can become polarized
into an inflammation-supporting M1 phenotype, whereas in the other extreme, an immuno-
suppressive M2 phenotype arises [328]. Macrophages in TME frequently exhibit M2 status,
and the amount of M2-like macrophages invading close to or into tumor tissue has been
determined to have a correlation with poor prognosis [329]. In fact, M2-like macrophages
within tumors can secrete various growth factors and cytokines that encourage metasta-
sis by facilitating the invasion and intravasation of cancer cells and fleeing the immune
system [328,330]. Conversely, M1-like macrophages in tumors are hypothesized to induce
tumor suppression through activation of anti-tumor immunity [331]. The opposing roles of
the two subtypes of macrophages could be influenced by the TME and represent a potential
target for tumor therapy [332].

Migratory macrophages switch to sessile perivascular macrophages and assist cancer
cells during intravasation in a mouse model of breast cancer [333]. However, whether
this mechanism can be impacted by interstitial flow is uncertain. Convective flow is a
stream that is directed down a gradient. For example, a convective flow can be a pressure
gradient in the case of a primary solid tumor. Cancer cells can migrate in opposition to
convective flow by utilizing supports like collagen I fibers, which can facilitate the acqui-
sition of mesenchymal phenotypic locomotion [334]. An extensive in vitro investigation
also demonstrated that interstitial fluid flow can interact with luminal vascular flow to
increase the intravasation of cancer cells into lymphatic vessels [335]. However, it is unclear
whether this also takes place in vivo. The interstitial fluid flow is able to channel cancer
cells and tumor-associated factors into the vicinity of lymphatic or blood vessels by manip-
ulating the route of cancer cell trafficking. In fact, it is reasonable to speculate that such
convective forces, in conjunction with blood and lymphatic circulations, dislodge cancer
material and cells. Thereby, the metastatic spreading of cancer cells is fostered, as is the
propagation of soluble cancer factors, or EVs, in the direction of the vasculature or ECM at
the circumference. At the same time, therapeutic delivery is somehow restricted within
solid tumors [120].
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Macrophages support cancer cells in the primary tumor by facilitating cancer cell
growth, migration, and invasion. They are referred to as TAMs. TAMs have been found
to release EGF and travel in streams together with cancer cells in the direction of blood
vessels [319,336,337]. In the perivascular area, a subpopulation of macrophages expressing
Tie2high, together with stationary cancer cells in a network termed the TMEM gateway,
performs an essential function in cancer cell intravasation. These macrophages facilitate
intravasation through the formation of a regional, temporary aperture in the blood ves-
sels [338]. Perivascular macrophages also trigger cancer stem cells and the dormant phase
that primes cancer cells to settle and persist in remote organs [339,340]. Additional evi-
dence pointing to the significance of macrophages in metastases highlights the necessity
of colony-stimulating factor 1 (CSF-1) for metastatic propagation, an integral component
of macrophage survival and proliferation [341,342]. In addition, a special macrophage
population, the so-called metastasis-associated macrophages (MAMs), which are labeled by
the surface markers F4/80+/CSF-1R+/CD11b+/Gr1-CX3CR1high/CCR2high/VEGFR1high,
are attracted to the lung and are relevant for the amount and extent of metastases in the ex-
perimental PyMT metastasis model [343,344]. Moreover, MAMs are necessary for effective
metastatic sprouting and have a distinct expression profile that favors their aggregation
and metastatic colonization [345,346].

Intravital time-lapse recordings have already demonstrated that the interference between
cancer cells and macrophages increases considerably when cancer cells extravasate [347]. This
encounter took place even though 70% of the cancer cells were retained in the vessels. When
the cancer cells were trapped while extravasating (traversing the vessel), the macrophages
also interacted directly with the extravasated portion of the cancer cell [348,349]. In addition,
macrophages connected to cancer cells stretched out incredibly long, whereby they formed
fine pseudorods that could not be detected at a lower resolution [348].

10. Extravasation and the Function of Microchannels

Cancer cells have to accomplish the challenging process of extravasation, which com-
prises attachment to endothelial cells at the secondary target region, modification of the
endothelial barrier (or interface), and transendothelial migration into the subjacent tissue,
before they can metastasize [276]. Similar to TAMs and TANs, the endothelium can act as a
double-edged sword. The endothelial cells can act either as a promotor, induce cancer cell
transmigration and invasion into the ECM, or act as a barrier [5,350–352]. The predominant
type of extravasation is paracellular migration, where cancer cells pass through between
two adjacent endothelial cells [276]. Throughout this process, numerous ligands and recep-
tors, among them selectins, cadherins, and integrins, promote adhesion between the cancer
cell and the endothelial cells, which is extensively time-regulated [353,354]. Moreover,
extravasation is based on the cooperation between cancer cells and blood cells, comprising
platelets, myeloid-derived suppressor cells (MDSCs), and TAMs [276]. Platelets act to initi-
ate an invasive mesenchymal phenotype through the liberation of TGFβ1 and ATP from
granules, thereby inducing endothelial junction modification and enhancing transendothe-
lial migration of cancer cells [276,355,356]. Myeloid cells upregulate VCAM1 and VAP1 on
TAMs, which then secrete VEGF to enhance vessel permeability [345]. Cancer cells also
develop invadopodia on their basal surface as they acquire mesenchymal characteristics.
These structures are protrusive and adhesive and secrete matrix metalloproteinases like
MMP-9 and MMP-2 to break through the endothelial barrier [357,358]. After successful
spread, disseminated cancer cells acquire a cell plasticity that promotes their survival by
escaping the immune system and subsequently promotes the overgrowth of metastases.

Microchannel Structures Caused by Macrophages

The presence of membranous connections between cells in vivo was first proven
in 2008, when membranous nanotubes between immune cells and stromal cells were
seen within the mouse cornea [359]. There are similar structures between perivascular
macrophages and residing tissue cells, as well as between pericytes in discrete capillary
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networks [360,361]. Membrane-like interconnections have been reported in several types
of cancer [362]. In glioblastoma, these structures contribute to chemoresistance, and analo-
gous structures have been found in MDA-MB-231 brain metastases with the aid of light
sheet microscopy [363,364]. These structures are frequently designated by various names,
including membrane nanotubes [359], tumor microtubes [363], or tunneling nanotubes
(TNTs) [362,365]. These structures differ according to their diameter, their cytoskeletal
constituents, and whether they are closed or open. All of them, nevertheless, are classified
under the wide category of thin membranous connections (TMC). These structures have
been demonstrated to be able to facilitate various processes such as the replacement of
mitochondrial and nuclear elements, the enhancement of growth factor responses, and
the exchange of ions [364,366–368]. All these various processes are facilitated through
the formation of direct cell-to-cell connections and remote cell-to-cell interactions [369].
M-Sec (TNFAIP2) is a key regulatory factor of TNT-like membranous linkages found in
macrophages, cancer cells, and other cell types [370,371]. M-Sec belongs to a 73 kDa cy-
tosolic protein with an N-terminal polybasic domain that is involved in the recruitment
of M-Sec to the plasma membrane and a C-terminal domain that engages RalA, thereby
controlling the exocyst function necessary for TMC generation [372,373]. Earlier work
has demonstrated that TNTs originating from macrophages increase cancer cell invasion
in vitro and in a zebrafish-based invasion model [374].

Although macrophages are implicated in the extravasation of cancer cells, the pro-
cesses underlying extravasation are not yet fully understood. In an in vitro assay that
imitates extravasation, TMCs from macrophages were found to be important in stimulating
extravasation of cancer cells. The importance of macrophage TMCs could be verified
in vivo with the aid of an M-Sec-deficient mouse in which the macrophages are faulty in
TMC generation. In addition, high-resolution intravital imaging (IVI) revealed macrophage
engagement with cancer cells in the extravasation phase and how a macrophage in the lung
parenchyma interfaces with a cancer cell through a TMC before extravasation. The microen-
vironment may play a crucial role in this process. Unfortunately, most mechanistic in vitro
investigations on TMCs have been carried out using 2D cell culture systems, whereby TMCs
are developed on top of the substrate in a 3D space. The presence of cancer cell TMCs
has been identified in 3D collagen fiber matrices [368] and in 3D bioprinted scaffolds [375].
These findings lead to the conclusion that the TME may serve as an important regulator of
cancer cell processes that depend on TMCs, such as extravasation.

11. Epithelial–Mesenchymal Transition (EMT): What Is New?

The EMT has been known for quite a while, and it seems to be able to understand the
process of cancer metastasis. Many regulatory factors have been identified as potential
anti-cancer therapy targets. However, the states of EMT are not so clearly defined, and
there seem to be a lot of intermediary states in this reversible process. Even new mechanical
triggers for the EMT have been identified.

11.1. New View on Epithelial-Mesenchymal Transition

EMT refers to the transdifferentiation process by which transformed epithelial cells
acquire the capacity to invade, withstand stress, and propagate [88,376]. Epithelial cells
remain motionless and are closely attached to one another and to the adjacent ECM [377].
EMT controls the reversible biochemical changes that allow a given epithelial cell to
adopt a mesenchymal phenotype and imparts epithelial cells with epithelial-mesenchymal
plasticity [378], which is crucial for cancer advancement and metastasis (Figure 11). Not
all cells derived from the primary cancer, of course, promote the formation of metastases.
An investigation of the determinants of metastatic risk in a mouse model of breast cancer
found that asparagine synthetase, which is a metabolic enzyme, is linked to the progression
of metastases [379]. Reducing asparagine concentrations by L-asparaginase treatment or
food restriction reduced the spread of metastases. Thus, the availability of asparagine
supported the EMT [379].
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Figure 11. The primary cancer cells can undergo an epithelial-mesenchymal transition (EMT) and the
reverse process, the mesenchymal-epithelial transition (MET). Thereby, different intermediate states
are possible. A successful metastasis can also include polyploidization. The molecules designated
denote representative examples that promote and foster the malignant progression of cancer. How-
ever, there are also downregulated molecules, which are indicated by an arrow and would impair the
process of metastasis if they were not downregulated.

More recently, it is now widely recognized that the EMT program is a broad range of
transitional stages in between the epithelial and mesenchymal phenotypes, as opposed to a
history of progression that involves a dichotomous decision between a fully epithelial and
a fully mesenchymal phenotype [380]. The transformation from one phase to the next is
regulated through a series of growth factors [381] and signal transduction pathways [382].
In primary cancer cells, a spontaneous EMT alternates between various intermediate
states with varying invasive, metastatic, and differentiation features [383]. Cancer cells
with a mixture of epithelial and mesenchymal phenotypes are much more effective in
circulation, colonization of the secondary location, and progression to metastasis [383]. In
addition, transcriptional, chromatin, and single-cell RNA sequencing reveal that the various
different states exhibit distinct cellular features, chromatin maps, and gene expression
signatures that are governed by common and differing transcription factors and signal
transduction pathways. Additionally, the distinct EMT phases are located in different
microenvironments and are in close proximity to various stromal cells. [383]. For instance,
metastatic cancer cells displaying the most distinctive mesenchymal phenotype multiply
in the vicinity of endothelial and inflammatory cells. These cancer cells secrete large
quantities of chemokines and proteins to recruit immune cells and encourage angiogenesis,
thereby stimulating the formation of a unique inflammatory and highly vascularized
cavity [383]. CAFs have also been found to stimulate and regulate cancer cell migration
mediated by fibronectin alignment [384]. Moreover, hypoxia [385], metabolic stress agents,
and matrix stiffness [386] induce the EMT shift within cancer cells. The transition is
frequently controlled through transcription factors that are specifically programmed to
repress epithelial genes and stimulate mesenchymal genes [387]. Epigenetic and post-
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translational regulators, like DNA or RNA methylation, as well as miRNAs, also have an
important role to play in regulating the EMT mechanism [380].

Over the last few years, there has been an intense discussion about whether EMT
plays a pivotal role in cancer metastasis and cancer chemotherapy resistance [382,388–390].
Lung and pancreatic cancer studies indicate that while EMT is not essential for metastasis,
it still plays a role in chemoresistance [388,389]. The EMT not only impacts the biochemical
phenotype of cancer cells; it is also impacting the mechano-phenotype of cancer cells. In
specific detail, post-EMT interphase cells exhibit a softer actin cytoskeleton [391], which is
in agreement with a study that revealed softening of adherent cells following EMT [392].
Nonetheless, more conclusive evidence is required to fully clarify the involvement of EMT
in cancer progression and the metastatic cascade.

11.2. Non-Classical E-Selectin-Induced EMT

Although EMT may be necessary for the initial formation of metastases, the oppos-
ing mesenchymal-epithelial transition (MET) pathway is necessary for the progression of
metastasis (Figure 11). In bone metastasis, E-selectin in the bone vasculature triggers the in-
duction of MET and WNT in cancer cells to encourage the development of metastases [393].
E-selectin attachment activity, which is conveyed by the α1-3-fucosyltransferases Fut3/Fut6
and Glg1, is crucial in the development of bone metastases. In contrast to conventional
EMT models, E-selectin-induced MET had no effect on the RNA expression of the main
transcriptional regulators of EMT, including Snail1/2, Twist1/2, and Zeb1/2. In addi-
tion, EMT maker N-cadherin staining revealed no reduced expression but rather altered
localization and altered apparent molecular weight, whereas the protein concentration of
transcription factor Slug was significantly lower following E-selectin engagement. These
observations, collectively, point to a non-canonical MET scheme that appears not to be the
binary inverse of conventional EMT schemes. Extraction of the enriched nuclear genes
in the “Sarrio EMT” [394] and “Hallmark EMT” gene panels revealed that the majority
of the upregulated EMT-associated genes were implicated in immune-related pathways,
whereas the downregulated genes involved were mainly released or extracellular proteins.
Collectively, these findings suggest that engagement of E-selectin triggers a non-canonical
MET-like switch in cancer cells. Ultimately, staining of epithelial markers demonstrated
ubiquitous E-cadherin and intermittent EpCAM staining within BM2 bone lesions, which
confirms the presence of MET throughout bone metastasis in vivo.

Numerous studies have demonstrated that EMT is frequently required to evade a
primary tumor [395], and others have found that these cells must return to an epithelial
state to repopulate an organ effectively [396–398]. The paucity of proof of how MET is
derived, specifically in the context-dependent fashion necessary for metastatic colonization
of a remote organ, has led to substantial debate in the field. Evidence indicates, however,
that a unique underlying stromal cue—the binding to E-selectin via Fut3/6 and Glg1 that
are expressed by bone metastatic cells—triggers MET to promote bone metastasis. The
data also implies that this non-canonical MET operates Wnt signaling to stimulate stem cell
generation through Sox2/9 expression and enhances the expression of Glg1 and Fut3/6.

E-selectin-triggered MET represents a non-canonical type of behavior in comparison
to MET inducers like miR-200, which act on the main transcription factors of EMT [399].
Instead, a key role of E-selectin-induced MET involves activation of the Wnt signaling
pathway, which is associated with self-renewal, CSC properties, and EMT initiation [400].
This proposed association between Wnt-induced stem cell formation and EMT is incon-
sistent with the necessity of MET in metastatic settlement, which thus poses an intriguing
contradiction: How can MET and cancer stem cell formation coexist throughout metastatic
dissemination? Coupling E-selectin-induced MET with Wnt signaling and Sox2/9 in-
ducement revealed how E-selectin commitment could unravel this paradox during bone
metastasis, which is similar to recent findings demonstrating that Prrx1 decouples EMT
from stemness characteristics in lung metastasis [397]. The non-canonical EMT transcription
factor paired-related homeobox 1 (PRRX1) overexpression activates EMT in specific cancers,
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comprising those of the stomach [401], colorectum [402], pancreas [403], or breast [397], and
fosters a migratory and invasive phenotype. At a later phase of the metastatic progression,
however, its expression needs to be silenced to encourage MET, metastatic colonization,
and an epithelial phenotype exhibiting stem cell characteristics [397]. More specifically,
two isoforms of PRRX1, PRRX1a, and PRRX1b play distinct roles in EMT and MET within
pancreatic ductal adenocarcinoma [404]. PRRX1b enhances dedifferentiation, invasiveness,
and EMT, while PRRX1a participates in differentiation and MET [404]. Alternative splicing
generates two isoforms of the transcription factor paired-related homeobox 1 (PRRX1):
PRRX1a and PRRX1b, which may be regulated by mechanical pacing during cancer cell
metastasis. Moreover, alternative splicing may also be induced by hypoxia [405].

12. Conclusions and Future Directions

Throughout the complex process of the metastatic cascade, bidirectional interferences
can be seen. These interferences seem to be key in regulating the malignant progression of
cancers. The TME plays an important role in mediating the interplay between cellular and
acellular components of the TME and cancer cells. These two new paradigms can strongly
influence the clinical trials of new effective therapeutics against metastases. In addition, the
mechanical cues of the TME, embedded stromal and immune cells, and the mechanical flow
induced pressures on primary tumors and cancer cells. Moreover, epigenetic cues play a
crucial role and can additionally impact cancer metastasis. The focus of the current vascular
route for cancer cell metastasis may not be sufficient, as targeting embryonic factors linked
to migration and identified during cancer metastasis may not be of special relevance for the
alternative avascular route of pericyte migration/extravascular migratory metastasis. Thus,
it may be possible that cancer cells can switch the traveling route for cancer metastasis to
escape treatment.

Macrophages have emerged as a key regulatory player in the cancer cell intravascular
metastatic cascade. However, TAMs fulfill contradictory functions in cancer metastasis.
Similarly, TANs exhibit this contradictory behavior. Due to the heterogeneous nature of
CAFs, they fulfill contradictory functions. For example, the multiplicity of CAF origins
shapes the complexity of CAF biomarkers, and CAF subpopulations expressing diverse
biomarkers are likely to exert divergent effects on tumor progression [406]. The interplay
between cancer cells and other cell types, such as TAMs/CAMs and TAFs/CAFs, and the
transition of neighboring normal cells into cancer-associated cells need to be explored more
precisely from a physical viewpoint. These cross-talks can impact the outcome of cancer
treatment. Apart from the cellular bidirectionality of cancer-associated cells, alternatively
spliced transcription factors can act in a bidirectional manner. As the microenvironment,
such as hypoxia or mechanical cues, can impact alternative splicing, it is necessary to
re-analyze biochemical cues in a TME. The complexity of the TME needs to be rebuilt in ex-
perimental approaches by including embedded stromal and immune cells and endothelial
vessels. Thereby, organoids with vascularization may be of benefit. The dynamics of TME
and cancer cells need to be included in terms of phenotypic alterations and mechanical
characteristic changes. Finally, the efficiency of cancer therapy and drug development may
depend on the biochemical and mechanical complexity of the TME.
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