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Separating the effects of predation risk and
interrupted foraging upon mass changes
in the blue tit Parus caeruleus

Sean A. Rands” and Innes C. Cuthill

Centre for Behavioural Biology, School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK

The optimal amount of reserves that a small bird should carry depends upon a number of factors,
including the availability of food and environmental predation risk levels. Theory predicts that, if
predation risk increases, then a bird should maintain a lower level of reserves. Previous experiments have
given mixed results: some have shown reduced reserves and some, increased reserves. However, the birds
in these studies may have been interpreting a staged predation event as a period when they were unable
to feed rather than a change in predation risk: theory predicts that, if the food supply within the
environment is variable, then reserves should be increased. In the present study, we presented blue tits
(Parus caeruleus) with a potential predator and compared this response (which could have been potentially
confounded by perceived interruption effects) with a response to an actual interruption in the
environment during both long and short daytime lengths. During long (but not short) days, the birds
responded in line with theoretical predictions by increasing their reserves in response to interruption and
reducing them in response to predation. These results are examined in the light of other experimental
manipulations and we discuss how well experimental tests have tested the predictions made by theoretical

models.
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1. INTRODUCTION

Predation risk has been argued to be one of the key eco-
logical factors determining the body mass of birds (Lima
1986; McNamara & Houston 1990; Houston et al. 1993;
Rogers & Smith 1993; Witter & Cuthill 1993; McNamara
et al. 1994; Cuthill & Houston 1997; Houston et al. 1997).
Maintaining a high body mass is predicted to increase the
risk of predation due to both increased amounts of fora-
ging time necessary for keeping reserve levels high and
impairment of manoeuvrability during escape from the
predator. The latter is due to mass-dependent effects on
flight performance: increasing body loads has been shown
to have an effect on aspects of take-off ability in some
species (Jones 1986; Metcalfe & Ure 1995; Kullberg et al.
1996; Lee et al. 1996; Lind et al. 1999; but see Kullberg
1998; Kullberg et al. 1998; Veasey et al. 1998; Van der Veen
& Lindstrom 2000). Theoretical models (Lima 1986;
McNamara & Houston 1990; Houston & McNamara
1993; McNamara e al. 1994) have predicted that, if
predation risk is mass-dependent, an increase in risk
should lead to a decrease in the level of reserves that the
bird carries.

Witter et al. (1994) investigated the effects of perceived
predation risk by manipulating the amount of protective
cover available to starlings and demonstrated that their
fat scores were positively related to cover availability,
although their actual wing loadings appeared unaffected.
A reduction in body mass in response to the simulated
presence of a predator has been seen in greenfinches
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(Carduelis chloris) (Lilliendahl 1997, 2000), coal tits (Parus
ater) (Carrascal & Polo 1999) and yellowhammers
(Emberiza citrinella) (Van der Veen 19994,b; Van der Veen
& Sivars 2000). However, other experiments have shown
that yellowhammers (Lilliendahl 1998), migrant black-
caps (Sylvia atricapilla) (Fransson & Weber 1997) and
tufted titmice (Baelophus bicolour) (Pravosudov & Grubb
1998) increased their mean mass in response to increased
predation risk. Coal tits have also been shown to increase
their evening mass in response to increased nocturnal
predation risk (discussed in Bautista & Lane 2000).
Theory (McNamara & Houston 1990; Houston &
McNamara 1993; Bednekoff & Houston 1994; McNamara
et al. 1994) predicts that the energetic environment is also
important in determining the optimal levels of reserves
that birds carry. Increasing the variance of gain or the
chance of foraging being interrupted should lead to an
increase in optimal reserve levels. This has been demon-
strated experimentally in various species (Ekman &
Hake 1990; Bednekoff & Krebs 1995; Witter et al. 1995;
Witter & Swaddle 1997; Cuthill et al. 2000; but see Dall
& Witter 1998), although all but one of these experi-
mental studies failed to separate the effects of being inter-
rupted from changes in the variability and predictability
of the food supply (Cuthill ¢t al. 2000), which limits the
conclusions that we can draw from them. Several authors
(Lilliendahl 1998; Pravosudov & Grubb 1998; Carrascal
& Polo 1999; Van der Veen & Sivars 2000) have suggested
that, in studies of perceived predation risk where
‘predated’ birds have increased in mass, these birds may
have been responding to the predation event as if it were
an interruption in the food supply. With the exception of
Van der Veen & Sivars (2000), few studies have attempted
to separate the effects of a predation attempt in terms of a
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perceived increase in predation risk or as an interruption
to foraging. The study by Carrascal & Polo (1999)
attempted to do so, but predation and interruption were
investigated in two separate experiments using different
timing regimes, which confounds the conclusions that we
can draw. The experiment we describe attempts to disen-
tangle these effects by subjecting birds to perceived
‘predation’ events and periods where the food supply was
removed for an identical period of time.

2. METHODS

We used 13 one-year-old female blue tits (Parus caeruleus) that
had been mist netted under English Nature licence: ten (one
replacing a bird that died during the summer phase of the
experiment) were caught between late January and early March
1998 at the University of Bristol Botanic Gardens in Leigh
Woods, North Somerset, UK and three were caught in Surrey,
UK, in mid-February 1998. Seven of the Bristol birds were used
in the ‘long day’ phase of the experiment and the rest were used
in the short day’ phase. All birds were sexed by R. Griffiths
(Griffiths et al. 1998) and had been used previously for the
(unrelated) experiments described by Hunt et al. (1998, 1999).
After capture, the birds were kept in individual cages in an
indoor aviary with a daylight-mimicking light source (UV rich)
set at natural light:dark cycles. For this experiment, the birds
were moved to individual, adjacent covered outdoor aviaries on
the roof of the University of Bristol School of Biological Sciences
(2°36'W 51°27'N) and experienced at least three days in the
roof aviary prior to any data being recorded from them. Each
aviary had an entry door and a shelf accessible from outside the
cage via a maintenance hatch. A waterproofed 32.5 cm x 20 cm
x9cm plywood box, which was designed to hold an Ohaus
E400 electronic balance, was placed on each of these shelves. A
17.5cm x 20 cm hole was cut in the top of the box and covered
with a black plastic sheet, so that a food bowl could be placed
on top of the (covered) balance. A water bowl was also placed
on the box. If the box did not contain one of the two balances
used, then the plastic sheet was held in place by placing a card-
board stand inside the box. The birds were left undisturbed by
human presence except for periods when manipulation occurred
and also when food and water were replenished (from outside,
via the hatch). During these periods all the birds were briefly
inspected and any vital maintenance was carried out.

The experiment ran from 6 to 20 June and 2 to 14 July
(the long day period) and 27 October to 20 November (the
short day period) 1998. The birds were supplied with an ad
libitum mixture of Orlux Universal Softhill food, dehusked
sunflower seeds, crushed peanuts, grit and mealworms
throughout the experiment. During the experiment, the food
supply was replenished and the water supply replaced each
day between 21.00 and 03.00h Greenwich Mean Time, when
the balance output was not being recorded and the birds were
at roost. During this period, the balances and card stands
were removed and repositioned in all the cages and the
balances were recalibrated.

The output from the balances was recorded on experi-
mental days between 03.00 and 21.00 h. The masses (to 0.01g)
of the food bowls in the treatment cages were monitored using
the ‘Nestbug’ package (Szép et al. 1995), run in MS-DOS on a
Viglen PC. The program was used for calculating the mass
and timing of a bird landing on and departing from the food
bowl.
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Each bird underwent each of the four different treatments
once. The order and timing of each bird’s treatments were
randomly allocated within a yoked, balanced design. Experi-
mental treatments occurred in pairs of pairs. On the first day of
cach quartet, the experimental bird experienced a predation
event, whilst a control bird experienced no predation. On the
second day, an experimental bird experienced an interruption
event, whilst a second control bird experienced no interruption.
Both events for each pair within the quartet occurred either in
the morning (at 08.00h) or in the afternoon (at 16.00h).
Whether an event was in the afternoon or morning was
randomly allocated following a balanced design. During a
predation event, S. A. Rands entered the cage of the experi-
mental bird wearing a laboratory coat, pursued the bird for 60 s
with one hand and then promptly exited the cage. The time
taken between the start of the predation event and the bird next
landing on the food bowl was calculated. Control birds were not
chased on predation days, but were able to hear alarm calls
from the chased birds.

On the second day of a treatment pair an interruption treat-
ment was carried out, which was designed so that feeding was
prevented for an identical duration to that experienced by the
experimental bird on the previous day. The experimental bird’s
food bowl was removed for the period calculated for the
previous day, but the cage was not entered and the bird was not
chased. The food bowl was removed via the maintenance hatch
and replaced with an identical but empty bowl during the
removal time. Any food scattered around the bowls was also
quickly removed whilst carrying out the manipulations. On
interruption days, the corresponding control bird had its food
bowl and any scattered food removed, but the bowl was
replaced immediately after it had been withdrawn from the
cage. On two afternoon treatment days of the short day experi-
ment, birds that were ‘predated’ did not return to the feeder
before the end of the day. In these cases, an estimated interrup-
tion time was calculated by taking the mean of all the short day
afternoon interruption lengths that had already been recorded.

The birds were monitored throughout the experiment and
appeared not to show any adverse reactions to the manipula-
tions. Chasing has previously been shown to have effects on allo-
cation decisions in coal tits, where the birds were chased for
6 min four times a day (Carrascal & Polo 1999). Blue tits are
broad-leaf deciduous woodland birds (Perrins 1979) and spend
most of their time foraging in or close to trees. When they
encounter predators, they will typically flee immediately to
shelter, where they will remain motionless for a period of time
(Hegner 1985). Although the aviaries did offer some shelter in
the more inaccessible corners of the cages, the tits were relent-
lessly pursued during the predation treatment without allowing
them the opportunity of hiding or resting. We judged I min of
chasing to be suitable as this was near the upper limit of the
time it can take to catch a blue tit in the cages by pursuing them
with a butterfly net during routine inspections (S. A. Rands,
personal observation). For this reason, whilst the bird is stressed,
the severity is no greater than that which can be experienced as
a part of normal husbandry (e.g. capture for veterinary inspec-
tion). After the experiments, most birds were retained in the
roof aviaries until the weather conditions were suitable for
release in the location of their capture (within six months) (see
the ethical note in Hunt et al. (1999) for details of the release
method). A number of birds were humanely killed for histolo-
gical measurements that were unrelated to the present experi-
ment.
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Table 1. Results of repeated-measures ANOVAs testing for differences in the mean mass change between the hour
before and after a perceived predation event, the number of visits to the feeder in the hour after the target-predated
bird had first returned and the mass change between the pre- and post-treatment phases of the day.

(Only the results for the main effects (which were nested in the model used) are given. None of the interaction terms approached
significance (in all cases, F| 5 < 3.47 and p > 0.120, except for the short day differences in mass change where F, ; < 0.63 and

p > 0.485). Levels of significance: "p < 0.05 and "*p > 0.05.)

mean mass change

feeding activity change

rate of mass change

phase of experiment long day short day long day short day for a long day
control versus treatment F,5=19.209and F,3=0.284 and F);=2436and F,;=1.145and F, 5=0.010 and
$»=0.007" p=0.631" p=0.179 p=0.334" p=0.925"+
time of day F,;=0.021and F,;=0.011and F,;=0.052and F,;=13.878 and F,;=4.476 and
p»=0.890" p=0.923" p=0.829"+ »=0.014" p=0.088"*
predation versus interruption  F, ;=8.102and [, 3=0.597 and F,;=1.192and F,;=1.814and F, ;=1.166 and
»=0.036" p=0.496" p=0.325"+ p=0.236"" p=0.330"+
before versus after treatment — — — — F,;=11.683 and
»=0.019"

3. STATISTICAL ANALYSIS

The data were examined for background noise (due to the
effects of wind and the weather upon the equipment) and
records that could not be attributed to a bird landing on the
feeding bowl were removed. These were taken to be values less
than 8g or greater than 15g (the mean first mass measured
during a day was 10.044+0.94¢g (s.d) and the mean final mass
was 10.91 £1.12 g, both of which were calculated from 96 obser-
vations across all individuals). In order to examine the direct
effects of the manipulation, we calculated the mean arrival
mass of each bird during the hour before the experimental
manipulation (or the corresponding period for the control
birds) and the mean arrival mass during the hour after the
target-‘predated’ bird had returned to the feeder. For the long
day treatment, we calculated the rate of mass change before
and after the treatment by conducting least-squares linear
regressions upon the complete datasets of masses from before a
target treatment began and after a target treatment had ended
(there were insufficient data for calculating these for the short
day experiment). The number of visits to the feeder during the
hour after the target bird had returned was also calculated as
a measure of the activity of an individual in direct response to
the treatments.

Because each bird was subjected to all the experimental
manipulations, we conducted a number of repeated-measures
analyses of variance (all residuals were normally distributed)
with SPSS 8.0, using ‘day type’ (whether the bird experienced a
predation day or an interruption day), ‘control’ (whether the
bird was an experimental or a control individual) and ‘time of
day’ (whether the treatment occurred in the morning or after-
noon) as within-subject factors in the design. Therefore, each
bird experienced eight treatments: two experimental treatments
and two control treatments, each at two times of day. Due to the
nesting of treatments, the maximum sample size was six birds.
However, due to some of the birds not visiting the feeding sites
in the early or late periods of the days, the corresponding
sample sizes of these periods were reduced. The equipment
malfunctioned on three days during the long day treatment,
resulting in three of the six samples having a single treatment
and a single control value missing. As none of these occurred

Proc. R. Soc. Lond. B (2001)

with the similar within-subject factor nestings, we estimated the
values for the treatment and control by taking the mean of the
other three records for the treatment or its controls under
the assumption that using a mean value would make it more
difficult to detect a significant difference between the means
calculated in the ANOVA, thereby increasing the likelihood of a
type II error. The effect of the manipulations upon the start and
end times of activity was tested using a Friedman analysis of
variance as the assumption that residuals were normally distrib-
uted was violated.

Ekman & Hake (1990) noted that greenfinch reserves fell
during the first few weeks of captivity and then levelled off. This
suggests one criticism that might be levelled at our experiment
in that, although the birds had been in captivity for at least two
months in internal aviaries before the experimental manipula-
tions were carried out, some of the birds were only moved to the
roof aviaries a few days before the experiment. The pairing of
both daily treatment types and control and treatment birds
should have minimized the effects of any continuing changes in
response that were due to being moved outside, and the entire
design was balanced for date of manipulation.

4. RESULTS

When testing for the effects of the various manipula-
tions upon the change in mean mass between 1h before
and 1h after the treatment, control and treatment birds
differed significantly in their response during the long
day phase of the experiment (table 1): treatment birds
tended to gain mass, whilst control birds lost mass
(figure la). There was no significant difference in response
to the morning or afternoon predation events. Predated
and interrupted birds (and their controls) differed signifi-
cantly in their response to the manipulation: birds
measured on predation days tended to lose mass, whereas
birds measured on interruption days increased their mass.
When examining the responses of treatment and control
birds during either predation or interruption, the control
birds lost a greater amount of mass than the treatment birds
for both treatment types, with the greatest amount of loss
occurring on predation days. During the short day phase
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Figure 1. Mean mass changes (Es.e.) between the hour
before the treatment and the hour after the target bird
returned in (@) the long day phase and () the short day phase
of the experiment for the estimated means of the various
treatment types conducted (adjusted means calculated using
SPSS 8.0). The means when considering the (non-significant)
interactions between treatment type and control type are also
shown. Levels of significance: “p < 0.05 and "*p > 0.05.

of the experiment, there were no significant effects of any
of the treatment factors upon the mass changes shown by
the birds (table 1 and figure 15). Predated birds stayed
away from the feeder for 42.50+36.82min (s.d.) (z=12)
during the long day phase of the experiment and
21.52+£8.50 min (»=10) during the short day phase.

Table 1 gives the results of the ANOVA testing for
effects upon the feeding activity of individuals in response
to the various treatments, which was measured as the
number of visits made to the feeder in the hour after the
target bird initially returned to the feeder. The long day
experiment showed no significant differences in the
responses of individuals (estimated marginal
number of visits (£s.e), morning 7.4+ 0.8, afternoon
71423, predation 5.7+£0.3, interruption 8.8=£3.0,
control 6.2+£1.1 and treatment 8.4 £2.1), whereas the
numbers of visits made after a morning treatment
(17.8 £3.9) were significantly greater than after an after-
noon treatment (2.0%0.8) during the short day experi-
ment, whilst the other responses did not significantly
differ (predation 8.6 £1.8, interruption 11.1 2.4, control
8.3 1.0 and treatment 11.5 £ 3.3).

The rates of mass change differed significantly between
pre-and post-treatment birds (table 1), with pre-treatment
birds tending to gain mass, whilst post-treatment birds
tended to lose mass (figure 2). Although not significant,

mean
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Figure 2. Estimated marginal mean rates of mass change
(£s.e.) in the periods before and after a treatment during the
long day experiment for the various treatment types
conducted. Levels of significance: “p < 0.05 and ™*p > 0.05.

there was also a tendency for birds to gain mass over the
course of days in which a treatment occurred in the
morning and to lose mass on days with afternoon treat-
ments.

As to be expected, there were no effects of treatment
upon the timing of the start of daily activity (Friedman
ANOVA, long days 7% =3.44 and p =0.841 and short days
%2=28.28 and p=0.309) and there were no effects upon
the timing of the end of activity (long days y2=6.67 and
p=0464 and short days x2=8.39 and p=0.300),
suggesting that there were no effects of treatment upon
the length of a bird’s daily routine.

5. DISCUSSION

This experiment demonstrated that, during long days,
blue tits show markedly different
changes in response to a change in perceived predation
risk and to an interruption of the food supply within the
environment. Taken at face value, these responses agree
with theoretical predictions: mass is reduced in response
to increased predation risk and is increased in response to
an increasingly unpredictable environment (McNamara
et al. 1994), as illustrated in figure 3a. Our analysis
compared the mean mass over 1 h before and 1 h after the
treatment rather than the exact masses immediately pre-
and post-treatment, as in Van der Veen & Sivars (2000),
which would have been difficult to estimate due to back-
ground noise caused by wind. Because we considered
averages, this did not allow us to ascertain the exact
mechanism behind the differing responses to the treat-
ments. It is likely that the treatment birds lost mass
during the treatment period as they did not have access
to food and so they should have been regaining this lost
mass during the post-treatment period, as in Lilliendahl
(2000) and Van der Veen & Sivars (2000).

Several mechanisms could explain the patterns of mass
change observed, as outlined in figure 3. Individuals
could have lost mass at the same rate during either treat-
ment type and differed in their post-treatment responses
(figure 3b), either through physiological differences in
their efficiency of nutrient assimilation or through beha-
vioural differences in the amount of food taken per visit

short-term mass
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Figure 3. (a) Patterns of mass change seen in response to interruption and predation and possible mechanisms explaining these
patterns: (b) differences occurring post-treatment, (¢) differences occurring during the treatment and (<) differences occurring

during both periods.

to the feeder, the rate of visiting and changes in the
amount of energetically expensive activities conducted.
Alternatively, if both the interrupted and predated birds
had fed and assimilated food at the same post-treatment
rate, this would suggest that the predated birds lost more
mass during the treatment period (figure 3¢), which could
again be through changes in physiological processes or
differences in activity (the predated birds did experience
I min of escape flight when being chased) or through
predated birds losing excess mass through defecation
(Van der Veen & Sivars 2000). Finally, a combination of
both these mechanisms could have been occurring (figure
3d). The evidence from comparing the activity rates in
this study suggested that differences in loss were not due
to changes in post-treatment feeding behaviour: the only
significant difference in activity (number of post-
treatment visits to the feeder) in response to the treat-
ments occurred in the short day experiment when
morning birds visited more than afternoon birds, but this
can be attributed to the normal pre-dusk foraging activity
of the birds rather than a response to the experimental
manipulations (which had no significant effects). The
study by Van der Veen & Sivars (2000) showed significant
differences between the immediate mass changes of
yellowhammers in response to interruption and to
combined predation and interruption, suggesting that the
differences in the rate of loss during the treatment period
was the more likely explanation. In our study, differences
did occur in the rate of mass change before and after
treatment, but this appeared to be related to time of day
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rather than predation risk. The post-treatment rates of
change tended to show a slight decrease in mass, which
may have been due to end-of-day effects: the tits may
have ensured that their reserves were sufficient for
surviving the night and, thus, were able to mobilize some
of their stored reserves in the latter part of the day.
Different mechanisms may have been in operation
immediately following the treatment, but our data were
insufficient for testing this. In order to elucidate the
mechanism in blue tits, we need to conduct experiments
that allow us to examine the immediate post-treatment
response to a finer degree than was possible with the
experiment described here.

In addition to an effect upon the levels of reserves in
response to changes in the environment, the models of
McNamara et al. (1994) and Bednekoff & Houston
(1994) (considering pre-migratory birds) also predicted
that there would be a change in the timing of allocation
decisions during the day. With an increase in predation
risk, birds will not only have lowered levels of resources
during the day, but will also postpone most of their fora-
ging (the high predation risk activity) until the last few
periods of the day, with associated increases in reserves.
This effect has been demonstrated experimentally in
yellowhammers (Van der Veen & Sivars 2000). The blue
tits in this study did not show any obvious patterns of
change in their behavioural routines or mass allocation
during the course of the day (between morning and
afternoon treatments). This could have been because the
birds in this experiment were constrained by the degree
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of response they were able to give to the treatments.
This study tested predictions generated by stochastic
dynamic programming (Mangel & Clark 1988; Houston
& McNamara 1999), which are normally presented as
the average response of a population. Because of this
averaging, the actual response of one individual may
differ greatly from that of another and should ideally be
tested for by mixing simulation with repeated measure-
ment and testing of an individual’s response (Hutchinson
& McNamara 2000).

We must also ask whether the experimental animals
perceived the effects of the manipulation in the desired
manner. The response of individuals may depend upon
whether they perceive a change in the environment to
be short-term or long-term (see, for example McNamara
& Houston 1994) and whether the manipulation is
causing a change in behaviour due to a change in
policy at a given state or due to a manipulation of an
individual’s state with no change in policy (Hutchinson
& McNamara 2000). Most of the predation risk studies
that have been carried out (including this one) may not
have directly manipulated birds’ perceptions of the
environmental predation risk and, hence, changed their
optimal policy. Instead, the birds were faced with a
direct predation event, which would have changed their
state (energetic reserves and/or immediate predation
risk) but not necessarily their optimal policy based on
long-term environmental conditions. A surprising result
from this study was that the control birds tended to
show mass loss during the long day treatments. From
theory, control birds should show less mass gain than
treatment birds following an interruption, and the
pattern seen here was consistent with this (figure 3a).
However, the control birds tended to lose more mass
than treated birds on predation days, a trend that
requires explanation. Due to the aviaries being adjacent,
all of the birds would have been able to hear the alarm
calls of the pursued bird and may have been able to see
an obscured view of the ‘predator’ during the treatment.
It may be that experiencing a predation attempt (and
being chased) had a very different effect upon an indi-
vidual’s routine when compared with gaining informa-
tion about the presence of something in the
environment that causes a close neighbour to give
repeated alarm calls (see also Van der Veen 19995).
Hearing alarm calls is likely to be interpreted as an
increase in predation risk, but, unlike the chased bird
that ‘escapes’ the predator when the latter leaves the
aviary, the control bird has no direct information that
the predator has departed. Therefore, contrary to the
design of the experiment, the control bird might experi-
ence a longer period of elevated predation risk than the
chased bird. This hypothesis could be tested by exam-
mning the responses of individuals to recorded alarm
calls, where the arrival and departure of the predator is
or is not clearly signalled. A similar response to that
observed here, when predator departure is uncertain,
would suggest that information from neighbours is inte-
grated with direct personal experience when an indivi-
dual makes decisions about its routine. Another possible
effect upon perceived predation risks could have been
through human presence during the routine main-
tenance of the birds (which was conducted at night in
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order to minimize interruption), although the experiment
was designed so that any maintenance (and, hence, poten-
tial predation risk) effects were experienced equally by all
the birds (regardless of whether they were being experi-
mented upon during the previous or following days).

Another way around the problem of knowing what
effects a manipulation has upon birds’ perceptions of their
environment would be to measure the changes in the
daily routines of birds that are subjected to a regime
where risk is manipulated through the continuous appear-
ance of a predator. Van der Veen (19995) showed that the
schedules of yellowhammers changed in response to the
repeated appearance of a model predator over several
days. Therefore, investigating only the immediate
response of a bird to the presence of a predator may not
reveal the longer-term response of the individual to
changes in its environment.

Comparison between the results of this and other
studies is confused by different studies using birds at
different stages of their annual cycle, as some birds were
tested mid-migration (e.g. Fransson & Weber 1997) and
others during their wintering period (e.g. Lilliendahl
1997): this may have great effects on their priorities in the
allocation of their time and resources. This experiment
suggested that differences can exist within a species at
differing times of year. The blue tits apparently responded
as predicted by theory during the long day phase, but
failed to show any significant patterns of response to the
short day phase. This could be because the shortened
daylight foraging period meant that the birds had to
forage constantly in order to maintain reserves, thereby
reducing the impact that predation risk has upon their
behavioural policies. If reserves are so important when
days are short, it could be asked why birds experiencing
interruption do not increase their foraging rates after
being unable to access food for a period of time. It may
be that the birds are already working at the upper limits
of their energetic expenditure (Hammond & Diamond
1997) and are unable to increase their efforts to compen-
sate for the lack of food collected during the interruption
period.

Although we have demonstrated here that blue tits can
respond to predation and interruption with the responses
predicted, the fact that some previous studies (Iransson
& Weber 1997; Lilliendahl 1998; Pravosudov & Grubb
1998) have not demonstrated these responses does not
necessarily mean that the birds in these studies were
responding to the predation treatment as an interruption
rather than a predator. All the studies conducted to date
have used very different methods for testing predation
risk (see Carrascal & Polo 1999). Many authors (Metcalfe
& Ure 1995; Kullberg et al. 1996; Fransson & Weber 1997,
Lilliendahl 1998; Pravosudov & Grubb 1998; Carrascal &
Polo 1999; Van der Veen & Lindstréom 2000) have
suggested that the difference between the habitats of the
test species and their responses to predators could have a
large effect upon their patterns of response to experi-
mental predation. However, comparison is impossible at
present due to the great differences in experimental
design and the problems of most manipulations failing to
disentangle predation and interruption. The study
described here suggests that it is possible to separate these
effects experimentally and, hence, we may eventually be
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both able to test theoretical predictions satisfactorily and
compare the responses of species with different life
histories and ecologies.

Zoltan 16th (Department of Genetics, Eo6tvos University,
Mutzeum Korat. 4/A, 1088 Budapest, Hungary, e-mail tothz@
falco.elte.hu) very kindly provided the Nestbug software and
customized it for our electronic balances. Sam Maddocks, Sarah
Hunt and Stuart Church helped with the experimental work.
Sadie Iles-Ryan and Rob Massie tended to the birds during
non-experimental periods. Linda TTeagle helped with the
electronic equipment. Comments and suggestions were kindly
made by Alasdair Houston, John McNamara, Jan Ekman, Alex
Kacelnik, Ineke Van der Veen, Lena Sivars, Cecilia Kullberg,
Johan Lind, Thord Fransson and three anonymous referees. This
work was funded by a Biotechnology and Biological Sciences
Research Council studentship to S.A.R.
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