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Abstract: Characterization of gene regulatory mechanisms in cancer is a key task in cancer genomics.
CCCTC-binding factor (CTCF), a DNA binding protein, exhibits specific binding patterns in the
genome of cancer cells and has a non-canonical function to facilitate oncogenic transcription programs
by cooperating with transcription factors bound at flanking distal regions. Identification of DNA
sequence features from a broad genomic region that distinguish cancer-specific CTCF binding sites
from regular CTCF binding sites can help find oncogenic transcription factors in a cancer type.
However, the presence of long DNA sequences without localization information makes it difficult to
perform conventional motif analysis. Here, we present DNAResDualNet (DARDN), a computational
method that utilizes convolutional neural networks (CNNs) for predicting cancer-specific CTCF
binding sites from long DNA sequences and employs DeepLIFT, a method for interpretability of
deep learning models that explains the model’s output in terms of the contributions of its input
features. The method is used for identifying DNA sequence features associated with cancer-specific
CTCF binding. Evaluation on DNA sequences associated with CTCF binding sites in T-cell acute
lymphoblastic leukemia (T-ALL) and other cancer types demonstrates DARDN’s ability in classifying
DNA sequences surrounding cancer-specific CTCF binding from control constitutive CTCF binding
and identifying sequence motifs for transcription factors potentially active in each specific cancer type.
We identify potential oncogenic transcription factors in T-ALL, acute myeloid leukemia (AML), breast
cancer (BRCA), colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate cancer (PRAD).
Our work demonstrates the power of advanced machine learning and feature discovery approach in
finding biologically meaningful information from complex high-throughput sequencing data.

Keywords: CTCF; machine learning; DARDN; DeepLIFT

1. Introduction

Identification of cis-regulatory elements in the non-coding genome is a key task
in functional and regulatory genomics research. Active cis-regulatory elements usually
function as transcription factor (TF) binding sites, containing specific DNA sequence
recognized and bound by the TF(s) that regulate gene expression. Most TF binding sites are
located in distal enhancer regions in the genome that can be far away from their regulatory
target genes. This makes it difficult to identify regulatory sequence motifs from a long
DNA sequence. Distal enhancer-binding TFs interact with co-factors to execute their
regulatory functions. One such example is CCCTC-binding factor (CTCF), a zinc finger
protein that binds to DNA and can induce DNA looping, which anchors at topologically
associating domain (TAD) boundaries and blocks cross-domain interactions [1]. Disruption
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of individual CTCF binding in the genome causing aberrant chromatin interaction and
differential gene expression has been observed in many cellular systems [2,3]. Further, we
previously showed that specific CTCF binding patterns frequently occur in many cancer
types, and such aberrant CTCF binding events are induced by oncogenic TF binding at
distal regions [4]. Therefore, the wide genomic regions flanking cancer-specific CTCF
binding sites should contain sequence features for specific oncogenic TFs, and knowing the
oncogenic factors is important for understanding the mechanisms of cancer development.
In this paper, we show a deep learning-based approach for finding DNA sequence features
enriched at genomic regions associated with cancer-specific CTCF binding sites (gained
CTCF sites) but not at regions near cell type-conserved constitutive CTCF binding sites that
frequently occur at chromatin domain boundaries in most cell types.

Conventional TF motif search methods are not feasible for this problem because the rel-
ative genomic location of the target oncogenic TF binding site relative to the cancer-specific
CTCF site is unknown and can be very far, and it varies across different cancer-specific
CTCF sites. Conventional DNA sequence motif search methods are not feasible also be-
cause the search space is huge and without appropriate control sequences. In fact, direct
DNA sequence motif search in the gained sites was unable to yield any unambiguously
enriched motifs other than CTCF itself [4]. TF-binding ChIP-seq data-based methods like
BART [5] are potentially feasible but are limited to pre-identified cis-regulatory element
repertoire such as the union open chromatin regions. Therefore, new computational meth-
ods need to be developed for tackling this unique but important problem with significant
biological meaning.

Advanced machine learning approaches such as deep convolutional neural networks
(CNN) have been popular for applications in genomics and cancer research [6–9]. In addi-
tion to solving a classification problem using deep learning, we also focus on the interpreta-
tion of the CNN model to make biologically meaningful discoveries. Specifically, with a
well-trained deep neural network classifier, one can use feature discovery tools such as
DeepLIFT (Deep Learning Important FeaTures) [10] to identify features from the model
that imply functionally important biological insights. Compared with traditional bioin-
formatics algorithms, deep learning models are specifically suitable for this task because
of the complexity of the problem, i.e., ultra-long DNA sequences with a huge number of
features and relatively rare cancer-specific CTCF binding events.

To address this problem, we introduce DNAResDualNet (DARDN), a computational
method that utilizes convolutional neural networks (CNNs) coupled with feature discov-
ery using DeepLIFT, to identify DNA sequence features enriched in a set of long DNA
sequences compared with another set of DNA sequences as control. DARDN trains a pair
of deep CNN models, alongside residual connections, to enhance classification accuracy for
extended input DNA sequences. It is designed to rely exclusively on DNA sequences for
training without integrating other data types, making it simple to train and become versatile
to be applied to similar sequence data from other biological scenarios. We demonstrate the
effectiveness of DARDN in finding the simulated sequence motif from synthetic sequence
data and finding the sequence motif for known oncogenic TFs such as Notch1 for T-cell
acute lymphoblastic leukemia (T-ALL) data. We then apply DARDN to identify sequence
motifs for potential oncogenic transcription factors for acute myeloid leukemia (AML),
breast cancer (BRCA), colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate
cancer (PRAD).

2. Methods
2.1. Data and Their Representation

Genomic DNA sequences used in this study are derived from the human hg38 genome
version. Foreground cancer-specific CTCF sites and constitutive CTCF sites data are
obtained from our previous work [4], which identified cancer-specific CTCF binding
patterns by integrative analysis of over 771 high-quality CTCF ChIP-seq datasets across
a variety of different human cell types including both normal and cancer cells. For each
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of the six cancer types included in this work, tens to thousands of cancer-type-specific
CTCF binding sites are identified in each cancer type, while 22,097 constitutive sites in the
genome are conserved across cell types.

To alleviate the problem of data imbalance between the 72 T-ALL-specific CTCF sites
and 22,097 constitutive CTCF sites, we perform data augmentation by reverse comple-
menting and shifting the gained sites. Specifically, we shift the original sequences and
their reverse complements to the left and to the right stochastically between 1 and 5 base
pairs (bps) (Figure 1a). These data augmentation methods are commonly employed to
enhance the robustness and generalizability of models, particularly in addressing chal-
lenges such as data imbalance and the limited sample sizes often encountered in biological
datasets [11–14].

Figure 1. Schematic of overall computational framework design. (a) Data augmentation: original
sequence, its left/right shifts, the reverse complement, and its left/right shifts. (b) DARDN Model:
uses two deep convolutional networks to process a 2D one-hot encoded sequence for binary classifi-
cation. (c) DeepLIFT is applied for sequence feature selection. Subsequences with the highest moving
average DeepLIFT scores are selected for motif analysis. (d) HOMER motif analysis result.

Each DNA sequence containing a CTCF binding site is then represented as a one-hot
encoding in order to be processed by the deep neural network model. The matrix consisting
of one-hot encoded DNAs is passed to a deep neural network to train the model (Figure 1b).
The dimension of the matrix is 4 × L, where L is the length of the DNA sequence. Hence,
the model is flexible with DNA sequences with various length. The model produces a
binary prediction of whether there is a cancer-specific CTCF binding site for each input
sequence (0- or 1-labeled). We generate 10 kilo-base (kb) genomic DNA sequences centered
at each T-ALL-specific CTCF site as a positive signal with label 1 and those centered at
constitutive CTCF sites with label 0. We train our model to classify any 10 kb DNA sequence
as either 0 or 1.

2.2. Evaluation Metrics

We use the Matthew’s correlation coefficient (MCC) to evaluate DARDN’s classifica-
tion accuracy for predicting CTCF gained versus constitutive sites. MCC measures the
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correlation between the true labels and predicted labels, ranging from −1 to +1. A value of
+1 indicates perfect prediction, −1 indicates total disagreement between prediction and
truth, and 0 is the expected value for random guessing. MCC is calculated by dividing
the covariance of the true and predicted labels by the product of their standard deviations,
which is represented as

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

Using HOMER [15], we identify enriched motifs on CTCF gained sites in T-ALL,
guided by prior findings of oncogenic motifs. We evaluate DeepLIFT’s performance by
examining the ranking of the RBPJ motif, associated with an oncogene in T-ALL. For other
cancer types, we rely on the literature to identify highly ranked oncogenic motifs. Our
pipeline is tested for robustness using varying input sequence lengths, sampling gained
sites, and sampling constitutive sites.

2.3. Model

Due to its exceptional capability in hierarchical feature extraction and the characteristic
of being location invariant, convolutional neural networks (CNNs) have been used as a
promising approach for generating informative latent feature maps as well as for various
tasks using DNA sequences [6–9,16–20]. However, while plain CNN models are typically
location invariant and can be effective for certain types of DNA sequences, we found that
they are ineffective for our purposes, as shown in Table 1.

Table 1. Evaluation on hold-out data consisting of 78 T-ALL-specific CTCF gained sites and 5129 con-
stitutive CTCF sites of a length of 10,000 base pairs. The number of hold-out gained sites includes
augmented sites. A plain CNN model is unable to make accurate classification due to class imbalance
and sequence length, while our model, DARDN, can achieve significantly superior performance.
MCC stands for Matthew’s Correlation Coefficient.

Model True
Positives

True
Negatives

False
Positives

False
Negatives MCC

CNN 47 5067 31 62 0.5
DARDN 76 5108 2 21 0.87

To tackle the limitations of plain CNN models, we developed DARDN (DNAResD-
ualNet), a CNN-based model that is capable of learning of intricate relationships among
distant DNA sequences even in the existence of deep convolutional layers. DARDN, as the
name suggests, employs an ensemble of two CNNs with distinct initial kernel sizes for
DNA sequence classification and includes residual connections to preserve complex rela-
tionships between distant DNA sequences. Having two input kernels of different sizes
leverages the variability in gene sequence lengths to enable the CNNs to learn important
features at different levels of granularity. In our approach, we utilized kernel sizes of 4 and
8 base pairs (bps) as hyperparameters, which are subject to optimization based on the
length and type of the input DNA sequences. The selection of these particular kernel sizes
was mainly driven by biological considerations. In our previous study [4], we identified
RBPJ as the most enriched motif near newly acquired CTCF sites in T-ALL, leading us to
use its enrichment rank as an essential metric for DARDN evaluation. The RBPJ consensus
sequence, CCTGGGAA, is 8 base pairs long. Notably, its central segment, TGGGAA, which
comprises 6 base pairs, shows a higher occurrence frequency, as shown in the JASPAR
database (https://jaspar.elixir.no/matrix/MA1116.1/, accessed on 10 January 2024). To en-
compass the variability around this core segment, we chose initial kernel sizes of 4 and
8. Size 4 allows for capturing smaller patterns within the 6 base pair core, while size

https://jaspar.elixir.no/matrix/MA1116.1/
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8 matches the full length of the RBPJ motif, ensuring comprehensive analysis of both the
core and its flanking regions. In cases where specific oncogenes are being targeted and their
lengths are known, adjusting the kernel sizes to align with these lengths could yield more
precise results.

We compared the performance of using one CNN model with that of an ensemble of
two and three deep CNNs, and found that all converged to similar classification perfor-
mance. These considerations were made based on existing work that identified improved
generalization and reduced overfitting characteristics of ensemble CNN models [21]. Mod-
els with one or two CNN converged faster than the model with three networks due to
having fewer parameters. On the other hand, models with two and three networks pro-
duced significantly higher logits at the output neurons than the model with a single deep
convolutional network, suggesting higher confidence in their predictions. Given the faster
convergence and higher confidence of models with multiple CNNs, we chose to imple-
ment our DNA sequence classifier with two networks. The two-channel CNN model
yielded superior classification performance, demonstrating the benefits of our approach
for accurately classifying DNA sequences. Furthermore, within each CNN model, a skip
(residual) connection [22] was established from the input of the first CNN layer to the
second non-linear activation to maintain important signals across sequential convolutional
layers. DARDN’s architecture is visualized in Figure 1b.

Finally, the binary classification prediction of gained and constitutive CTCF sites was
generated by merging the outputs from each deep CNN and passing them through a fully
connected layer. To train the DARDN model, the binary cross-entropy (BCE) loss was
computed between the predicted probability of each sample being a CTCF gained site pi
and the true label yi for each input sequence i:

BCELoss = − 1
N

N

∑
i=1

[yi · log(pi) + (1 − yi) · log(1 − pi)],

where N is the number of input sequences. By minimizing binary cross-entropy loss, DARDN
can learn to make accurate predictions on whether a CTCF site is gained or constitutive.

In this work, we demonstrate the effectiveness of our model, DARDN (DNAResDual-
Net), in identifying oncogenic transcription factors (TFs) associated with T cell lymphoblas-
tic leukemia (T-ALL). Specifically, we show that DARDN is capable of accurately identifying
TFs that bind to known cancer-specific CTCF binding sites in long DNA sequences.

Applying DeepLIFT and Motif Analysis

DARDN, as a deep neural network (DNN)-based binary classifier, has two output
neurons, o1 and o2, outputting the logits for the input sequence being a constitutive or a
gained site. When applied to o1, DeepLIFT assigns positive contribution scores to features
positively influencing the model’s classification of the input as a constitutive site and
negative scores to features negatively influencing classification. Conversely, when applied
to o2, DeepLIFT assigns positive scores to features positively influencing classification of the
input as a gained site and negative scores to features negatively influencing classification.
Since we aimed to discover motifs positively correlated with each cancer type, we applied
DeepLIFT on o2, the neuron that produces the logits for the input being a gained site.

DeepLIFT requires a reference value, serving as a null input. It compares the differ-
ences in output values obtained by running the actual and reference inputs. This difference
is allocated to each base pair through backward propagation, assigning input contribution
scores. The resulting scores reflect the extent to which each base pair is responsible for the
output difference from the reference. We randomly sampled 80% of the constitutive sites
and used the averaged frequency at each index as the reference value. In our approach, we
processed sites to be in the shape of 4 × L, where 4 corresponds to the four nucleotides and
L represents the sequence length. Once we allocated contribution scores to each base, we
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then performed gating to retrieve the specific nucleotide that exists in the sequence at the
intended location.

After obtaining DeepLIFT scores for each gained site, we applied a sliding window of
length w bps with a single base pair stride across the scores associated with each gained
CTCF site. Each base pair was assigned a DeepLIFT score, and w base pair subsequences
were assigned a score by averaging their individual base pair scores. The sliding window
method produces a total of L − w + 1 subsequences. We explored the use of 10 and
20 window sizes to determine the optimal size for identifying enriched motifs. While the
resulting motif enrichments varied slightly across the different window sizes, we ultimately
decided to use w = 20 and 20 bp subsequences to use as a HOMER input, as this size
yielded superior results. This process of subsequence selection is demonstrated in Figure 1c.

After obtaining the list of subsequences and their corresponding DeepLIFT scores, we
filtered them for further analysis using motif enrichment software through two approaches.
The initial step involves choosing a predetermined number of subsequences. These sub-
sequences are selected based on having the highest positive mean contribution scores for
each gained site. The second approach entails aggregating all subsequences from each
gained site and then selecting a fixed number of subsequences with the highest positive
mean DeepLIFT scores. The first approach may be more suitable when dominant onco-
gene occurrences around each CTCF gained site are consistent, while the second approach
may be more advantageous when oncogene occurrences vary across CTCF gained sites.
Although both approaches are viable, we chose to implement the second approach and
selected 1000 subsequences with the highest positive scores. Those subsequences were
fed into HOMER, with which we performed known motif analysis using the findMotif-
sGenome.pl module and 200 base pair search space. This resulted in the list of most highly
enriched motifs, as summarized in Figure 1d.

3. Results
3.1. Performance Evaluation through Simulation

To evaluate the validity of our method and DARDN’s classification ability in detecting
crucial features in DNA sequences, we conducted a preliminary test using 25,762 real
DNA sequences of a length of 10,000 base pairs (bps) without CTCF binding sites. We
replaced any occurrences of the RBPJ consensus sequence (CCTGGGAA) with a random
8 bp combination. Then, we inserted the RBPJ consensus sequence at ten random locations
in each of the 33% of the sites (25, 762 × 0.33 × 10 = 8500 sites). We trained DARDN on the
classification of RBPJ-inserted sequences and achieved 100% accuracy on hold-out data.
Subsequently, we used DeepLIFT to assign contribution scores to each base pairs (bps) in
the sequence. This approach allowed us evaluation of the performance of our pipeline in
accurately identifying inserted RBPJ sequences and assigning relevant scores to each bp.

We first demonstrated the assignment of DeepLIFT scores to sequences that were
trained using DARDN without any RBPJ sites inserted. Since these sites were randomly
selected from actual DNA sequences without any specific criteria, the scores do not exhibit
any discernible pattern (Figure 2a). On the other hand, after DARDN was trained to classify
RBPJ-inserted sequences, it was evident that the DeepLIFT scores at those particular
locations with RBPJ insertions (indicated with red dots) were significantly greater than
those at other locations (Figure 2b). This provides a clear evidence that DARDN and our
score assignment work as expected.

Once the DeepLIFT score at each individual index was computed, we used a sliding
window to compute the average scores of subsequences in the input sequences. Specifically,
the average score at index Si was computed using formula 1

w+1 ∑i+w/2
i−w/2 Si, where w indi-

cates the window size. Because the RBPJ consensus sequence we inserted contains 8 bps
(CCTGGGAA), for our simulation, we used w = 8. In our primary experiments, we tested
various values of w to optimize the window size for motif enrichment identification.

Figure 2c shows the peak with the highest average DeepLIFT score for each plot in
Figure 2b, after re-indexing to center at zero. Lastly, in Figure 2d, we illustrate the sequence
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logo generated by computing the Position Weight Matrix (PWM) for the sequences that
center at the highest peak at each RBPJ-inserted site. Evidently, the inserted sequence of
CCTGGGAA is displayed with the highest frequency in the center, which further validates
our pipeline.

a

b

c

d

Figure 2. Evaluating the effectiveness of DARDN and motif discovery pipeline using simulation.
(a) DeepLIFT scores for sites without RBPJ consensus sequence insertion. (b) DeepLIFT scores for sites
containing 10 RBPJ consensus sequences per site, with red dots marking the locations of insertions.
(c) Highest average scoring peak for each site in (b). (d) Sequence logo surrounding the highest peak
from each RBPJ-inserted site.

3.2. Robustness Evaluation

To comprehensively evaluate the robustness of DARDN, we subjected it to four distinct
test conditions and observed the enrichment of RBPJ, which we noted in our previous
research as the most enriched motif for T-ALL [4]. The test conditions we considered were
(1) modifying subsequence lengths for HOMER input: this scenario involves examining
how changes in subsequence lengths influence motif rankings. This is equivalent to the
window size with which we compute the running average DeepLIFT scores; (2) altering
input sequence lengths: we explore how motif enrichment changes with input sequences
of various lengths, specifically 5000, 10,000, and 20,000 base pairs (bps); (3) sampling
background control sequences from constitutive CTCF sites: this entails studying the effect
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of sampling constitutive sites on motif rankings; (4) sampling foreground sequences from
cancer-specific CTCF sites: we investigate the impact on motif rankings when gained sites
are sampled. In our experiments, we selected 150 most statistically significant T-ALL-
specific CTCF gained sites and 22,097 constitutive CTCF sites, which were subsequently
centered within the sequences.

In our investigation, we explored subsequence lengths ranging from 10 to 20 base pairs
(bps) and discovered that adopting a subsequence length of 20 bps consistently yielded su-
perior rankings for RBPJ, irrespective of input sequence length (5 kbps, 10 kbps, or 20 kbps).
In Figure 3a, we present the percentile rank of RBPJ across various combinations of input
sequence length and subsequence length. The x-axis represents the sequence lengths of
5 kbps, 10 kbps, and 20 kbps, denoted as “short”, “moderate”, and “long”, respectively.

a b

Figure 3. Evaluating the robustness of DARDN and our motif discovery pipeline under varying
conditions, such as subsequence length, input sequence length, sampling constitutive CTCF, and sam-
pling specific CTCF sites. Short, moderate, and long indicate input sequence length of 5 k, 10 k,
and 20 kbps. (a) Observing the impact of subsequence length, ranging between 10 bps and 20 bps,
on RBPJ rank. (b) Observing the impact of sampling constitutive and gained sites.

Using 10 bp subsequences, RBPJ achieved the 91st percentile (3 out of 32 enriched mo-
tifs) for the short input sequence length, the 97.3th percentile (7 out of 264 enriched motifs)
for the moderate input sequence length, and the 96.4th percentile (9 out of 264 enriched
motifs) for the long input sequence length. On the other hand, when utilizing 20 bp sub-
sequences, RBPJ achieved the 99.7th percentile (1st out of 264 enriched motifs) for the
short input sequence length, 99.2th percentile (2nd rank among 264 enriched motifs) for the
moderate input sequence length, and 98.5th percentile (4th rank among 264 enriched motifs)
for long input sequence length. Regarding classification accuracy, DARDN demonstrated a
Matthews correlation coefficient (MCC) of 0.91 for short input sequence length, as well as
0.87 for both moderate and long input sequence lengths.

To further evaluate the robustness of DARDN, we conducted five samplings of the
background constitutive sites and five separate samplings of T-ALL-specific gained sites.
In each trial, we randomly selected 15,000 out of 22,097 (approximately 68%) background
constitutive sites and 72 out of 150 T-ALL-specific gained sites. The performance of DARDN
was individually evaluated on each set of sampled sites, and the respective results are
presented in Figure 3b.

During one of the tests using sampled background constitutive sites (Run 1 in Figure 3b),
we observed a decline in the average rank of RBPJ compared to our previous trials that
involved the complete set of 22,097 constitutive sites. RBPJ achieved the following per-
centiles and rankings in the five trials: 69 percentile (10th out of 32 enriched motifs),
97.3 percentile (7th out of 264 enriched motifs), 96.2 percentile (10th out of 264 enriched
motifs), 92.1 percentile (21st out of 264 enriched motifs), and 94.7 percentile (14th out of
264 enriched motifs). The corresponding MCC values for classification were 0.88, 0.92,
0.81, 0.80, and 0.84, respectively. This outcome was expected as reducing the number of
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background constitutive sites not only diminishes the pool of negative samples, but also
can weaken the robustness of DeepLIFT reference values.

For the first sampling of foreground-specific sites, we specifically sampled 72 most
significant T-ALL-specific CTCF sites, measured by the specificity and the enrichment of
the occurrences. Samplings 2 through 5 involved random samplings of 72 sites from the top
150 gained sites. The MCC scores for classification and the rankings of RBPJ for these trials
were notably higher than those observed in the classification involving sampled constitutive
sites: 99.2nd percentile (2nd out of 264 enriched motifs), 98.9th percentile (3rd out of
264 enriched motifs), 98.1st percentile (5th out of 264 enriched motifs), 96.4th percentile (7th
out of 264 enriched motifs), and 98.1st percentile (3rd out of 264 enriched motifs). Both the
classification accuracy and the ranking of RBPJ reached the most significant values among
the five sampling experiments of the gained sites.

In Figure 4, we present the distributions of distances between each specific CTCF
site and enriched RBPJ site under the five test criteria. Figure 4a–c showcase the distance
variations for different input sequence lengths of 5 k, 10 k, and 20 kbps, respectively.
Figure 4d,e visualize the distances obtained by independently sampling constitutive and
gained sites five times. For any input sequence length, the identified RBPJ sites may occur at
any distance from foreground-specific CTCF sites, suggesting that long-range interactions
exist between cooperating transcription factors and specific CTCF.

a b c

d e

Figure 4. The distribution of center-to-center distances between T-ALL-specific CTCF sites and
identified RBPJ sites was examined under various robustness tests. (a–c) The distributions when
the input sequence lengths are 5 k, 10 k, 20 kbps respectively. (d) The distribution obtained by
independently sampling constitutive sites 5 times. This is the aggregate distribution of the 5 sampling
experiments. (e) The distribution obtained by independently sampling gained sites 5 times. This is
the aggregate distribution of the 5 sampling experiments.

In Figure 5, we show the CTCF center to motif center distance distributions for the
most enriched motifs for T-ALL, including RBPJ. As shown in Figure 5a, individual motif’s
distances vary widely, while the median remains in the range from 3500 to 5000 bps away
from the CTCF center. In Figure 5b, the distance distributions for the motifs in Figure 5a
are plotted using 1D Gaussian smoothing. We do not observe a trend of close genomic
distance between the specific CTCF binding and identified motif sites for transcription
factor binding, further indicating that long-range interactions can occur at a long distance
through DNA looping.

Although we also have Hi-C data pertaining to T-ALL, its resolution is inadequate for
deriving meaningful insights for this project. This is because the existing resolution of Hi-C
data is 10 kb, and we only search for motifs within 10 kb.
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a b

Figure 5. Distribution of distances for the most enriched motifs for T-ALL. (a) Violin plots showing
the distribution of individual motif’s distance to the CTCF center. (b) Distance distribution for the
motifs in a after applying Gaussian smoothing.

3.3. Application of DARDN to Diverse Cancer Types

To evaluate the adaptability of the DARDN sequence feature identification method,
we applied it on five other cancer types where cancer-specific CTCF sites were identified in
our previous work [4], acute myeloid leukemia (AML), breast invasive carcinoma (BRCA),
colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate adenocarcinoma
(PRAD), using the moderate input sequence length of 10 kbps.

In all five cancer types, the motifs for CTCF or CTCFL (a.k.a. BORIS, a paralog of
CTCF) are highly enriched near the CTCF center. As both the foreground and background
sequences are centered at specific or constitutive CTCF binding sites, respectively, the en-
richment of the CTCF motif indicates additional CTCF occupancy near these specific sites.
This is consistent with the fact that CTCF binding exhibits a clustered pattern in the genome
to maintain the higher-order chromatin structure [23].

Meanwhile, the relatively uniform distribution of the remaining motifs across the se-
quence length shown in the Gaussian-smoothed line plots in Figures A1–A5 in Appendix A
indicates potential long-range interactions between CTCF and other transcription factors
through looping structures. The full list of cancer-specific enriched motifs is presented in
Tables A1–A5 in Appendix A.

Overall, this pattern of enrichment and distribution of different sequence motifs sur-
rounding cancer-specific CTCF sites suggests that the regulatory mechanisms governing
gene expression are specific to each cancer type and potentially involved in the specific
CTCF binding events to facilitate enhancer–promoter interactions for oncogenic transcrip-
tion factors to regulate their target genes.

4. Conclusions

This work presents DARDN, a novel deep learning computational method using dual
CNNs and DeepLIFT for long DNA sequence classification and regulatory feature discovery.
DARDN accurately classifies sequences surrounding cancer-specific vs constitutive CTCF
binding sites. DeepLIFT selects important subsequences for feature analysis. DARDN
identifies simulated regulatory sequences and known cancer TFs like RBPJ in T-ALL.
Application to AML, BRCA, CRC, LUAD, and PRAD reveals distinct TFs, implying cancer-
specific regulation. DARDN provides an effective framework combining deep learning
and attribution for discovering functional sequence features from long genomic data
without localization, addressing a key challenge in distal regulation. Our versatile approach
is broadly applicable for mining insights from diverse biological sequences. DARDN
represents a powerful methodology leveraging machine learning and feature discovery for
extracting biological insights from complex genomic data. It is important to acknowledge
that specific training for each cancer type is essential due to the unique gene expression
profiles involved.
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Appendix A

The DARDN pipeline was tested on five additional cancer types (AML, BRCA, CRC,
LUAD, and PRAD), and the most significantly enriched motifs are listed in Tables A1–A5.
Unlike T-ALL, the most prominent oncogenes for some of these cancers are less studied.
However, as listed in detail in the Results section of this paper, we found existing literature
support for some of the identified motifs, such as PU.1 (SPI1) [24–27], RUNX-related
genes [26–29] and the MYB gene family [27,30–32] for AML, STAT1 [33], STAT5 [34],
ASCL1 [35], for BRCA, for CRC, AP1 [36] for LUAD, and FOXA1 [37–40] and FOXP1 [41]
for PRAD.

Figures A1–A5 demonstrate the distribution of distances between the CTCF center
and the motif site center for the most significantly enriched motifs associated with AML,
BRCA, CRC, LUAD, and PRAD, complemented by the representation of each motif’s
sequence logos.

Table A1. Twenty most significantly enriched motifs in AML. BH q-values indicate the Benjamini–
Hochberg q-values, which are multiple comparison corrected. There are a total of 1301 gained sites.

Rank Motif p-Value q-Value (BH)

1 CTCF(Zf)/CD4+-CTCF [42] 1 × 10−111 <1 × 10−4

2 SpiB(ETS)/OCILY3-SPIB(GSE56857) 1 × 10−67 <1 × 10−4

3 ELF5(ETS)/T47D-ELF5(GSE30407) 1 × 10−55 <1 × 10−4

4 PU.1(ETS)/ThioMac-PU.1(GSE21512) 1 × 10−54 <1 × 10−4

5 ETS1(ETS)/Jurkat-ETS1(GSE17954) 1 × 10−46 <1 × 10−4

6 Fli1(ETS)/CD8-FLI(GSE20898) 1 × 10−37 <1 × 10−4

7 BORIS(Zf)/K562-CTCFL(GSE32465) 1 × 10−33 <1 × 10−4

8 ERG(ETS)/VCaP-ERG(GSE14097) 1 × 10−30 <1 × 10−4

9 ETV1(ETS)/GIST48-ETV1(GSE22441) 1 × 10−28 <1 × 10−4

10 PU.1-IRF(ETS:IRF)/Bcell-PU.1(GSE21512) 1 × 10−28 <1 × 10−4

11 AMYB(HTH)/Testes-AMYB(GSE44588) 1 × 10−28 <1 × 10−4

12 RUNX(Runt)/HPC7-Runx1(GSE22178) 1 × 10−22 <1 × 10−4

13 RUNX1(Runt)/Jurkat-RUNX1(GSE29180) 1 × 10−21 <1 × 10−4

14 RUNX2(Runt)/PCa-RUNX2(GSE33889) 1 × 10−21 <1 × 10−4

15 EHF(ETS)/LoVo-EHF(GSE49402) 1 × 10−19 <1 × 10−4

16 Elk4(ETS)/Hela-Elk4(GSE31477) 1 × 10−18 <1 × 10−4

17 JunD(bZIP)/K562-JunD 1 × 10−16 <1 × 10−4

18 EWS:ERG-fusion(ETS)/CADO_ES1-
EWS:ERG(SRA014231)

1 × 10−16 <1 × 10−4

19 ETS:E-box(ETS,bHLH)/HPC7-Scl(GSE22178) 1 × 10−16 <1 × 10−4

20 MYB(HTH)/ERMYB-Myb-ChIPSeq(GSE22095) 1 × 10−15 <1 × 10−4

https://zanglab.github.io/data/cancerCTCF
https://github.com/berkuva/DARDN
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Table A2. Twenty most significantly enriched motifs in BRCA. BH q-values indicate the Benjamini–
Hochberg q-values, which are multiple comparison corrected. A total of 1616 gained sites.

Rank Motif p-Value q-Value (BH)

1 CTCF(Zf)/CD4+-CTCF [42] 1 × 10−319 <1 × 10−4

2 BORIS(Zf)/K562-CTCFL(GSE32465) 1 × 10−318 <1 × 10−4

3 Tcf12(bHLH)/GM12878-Tcf12(GSE32465) 1 × 10−39 <1 × 10−4

4 NeuroD1(bHLH)/Islet-NeuroD1(GSE30298) 1 × 10−24 <1 × 10−4

5 Olig2(bHLH)/Neuron-Olig2(GSE30882) 1 × 10−20 <1 × 10−4

6 MyoD(bHLH)/Myotube-MyoD(GSE21614) 1 × 10−20 <1 × 10−4

7 Myf5(bHLH)/GM-Myf5(GSE24852) 1 × 10−19 <1 × 10−4

8 SCL(bHLH)/HPC7-Scl(GSE13511) 1 × 10−19 <1 × 10−4

9 EBF1(EBF)/Near-E2A(GSE21512) 1 × 10−14 <1 × 10−4

10 Bcl6(Zf)/Liver-Bcl6(GSE31578) 1 × 10−14 <1 × 10−4

11 Ap4(bHLH)/AML-Tfap4(GSE45738) 1 × 10−14 <1 × 10−4

12 Atoh1(bHLH)/Cerebellum-Atoh1(GSE22111) 1 × 10−14 <1 × 10−4

13 STAT1(Stat)/HelaS3-STAT1(GSE12782) 1 × 10−14 <1 × 10−4

14 Tlx(NR)/NPC-H3K4me1(GSE16256) 1 × 10−13 <1 × 10−4

15 Ptf1a(bHLH)/Panc1-Ptf1a(GSE47459) 1 × 10−13 <1 × 10−4

16 STAT5(Stat)/mCD4+-Stat5(GSE12346) 1 × 10−12 <1 × 10−4

17 Ascl1(bHLH)/NeuralTubes-Ascl1(GSE55840) 1 × 10−12 <1 × 10−4

18 E2A(bHLH),near_PU.1/Bcell-PU.1(GSE21512) 1 × 10−12 <1 × 10−4

19 MyoG(bHLH)/C2C12-MyoG(GSE36024) 1 × 10−11 <1 × 10−4

20 SPDEF(ETS)/VCaP-SPDEF(SRA014231) 1 × 10−11 <1 × 10−4

Table A3. Twenty most significantly enriched motifs in CRC. BH q-values indicate the Benjamini–
Hochberg q-values, which are multiple comparison corrected. A total of 377 gained sites.

Rank Motif p-Value q-Value (BH)

1 Tcf3(HMG)/mES-Tcf3(GSE11724) 1 × 10−19 <1 × 10−4

2 CTCF(Zf)/CD4+-CTCF [42] 1 × 10−17 <1 × 10−4

3 EWS:ERG-fusion(ETS)/CADO_ES1-
EWS:ERG(SRA014231)

1 × 10−14 <1 × 10−4

4 Stat3+il21(Stat)/CD4-Stat3(GSE19198) 1 × 10−10 <1 × 10−4

5 BORIS(Zf)/K562-CTCFL(GSE32465) 1 × 10−10 <1 × 10−4

6 EWS:FLI1-fusion(ETS)/SK_N_MC-
EWS:FLI1(SRA014231)

1 × 10−10 <1 × 10−4

7 Elk4(ETS)/Hela-Elk4(GSE31477) 1 × 10−9 <1 × 10−4

8 Elk1(ETS)/Hela-Elk1(GSE31477) 1 × 10−9 <1 × 10−4

9 Fli1(ETS)/CD8-FLI(GSE20898) 1 × 10−9 <1 × 10−4

10 ETV1(ETS)/GIST48-ETV1(GSE22441) 1 × 10−9 <1 × 10−4

11 NF1:FOXA1(CTF,Forkhead)/LNCAP-
FOXA1(GSE27824)

1 × 10−8 <1 × 10−4

12 Pit1+1bp(Homeobox)/GCrat-Pit1(GSE58009) 1 × 10−8 <1 × 10−4

13 AP-2gamma(AP2)/MCF7-TFAP2C(GSE21234) 1 × 10−8 <1 × 10−4

14 GABPA(ETS)/Jurkat-GABPa(GSE17954) 1 × 10−8 <1 × 10−4

15 ETS(ETS)/Promoter 1 × 10−8 <1 × 10−4

16 Tbet(T-box)/CD8-Tbet(GSE33802) 1 × 10−7 <1 × 10−4

17 Ets1-distal(ETS)/CD4+-PolII [42] 1 × 10−7 <1 × 10−4

18 Sp1(Zf)/Promoter 1 × 10−7 <1 × 10−4

19 PRDM1(Zf)/Hela-PRDM1(GSE31477) 1 × 10−7 <1 × 10−4

20 ELF1(ETS)/Jurkat-ELF1(SRA014231) 1 × 10−7 <1 × 10−4
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Table A4. Twenty most significantly enriched motifs in LUAD. BH q-values indicate the Benjamini–
Hochberg q-values, which are multiple comparison corrected. A total of 357 gained sites.

Rank Motif p-Value q-Value (BH)

1 BORIS(Zf)/K562-CTCFL(GSE32465) 1 × 10−56 <1 × 10−4

2 Jun-AP1(bZIP)/K562-cJun(GSE31477) 1 × 10−38 <1 × 10−4

3 Fosl2(bZIP)/3T3L1-Fosl2(GSE56872) 1 × 10−30 <1 × 10−4

4 Reverb(NR),DR2/RAW-Reverba.biotin(GSE45914) 1 × 10−29 <1 × 10−4

5 AP-1(bZIP)/ThioMac-PU.1(GSE21512) 1 × 10−27 <1 × 10−4

6 BATF(bZIP)/Th17-BATF(GSE39756) 1 × 10−24 <1 × 10−4

7 Fra1(bZIP)/BT549-Fra1(GSE46166) 1 × 10−23 <1 × 10−4

8 Usf2(bHLH)/C2C12-Usf2(GSE36030) 1 × 10−17 <1 × 10−4

9 Atf3(bZIP)/GBM-ATF3(GSE33912) 1 × 10−16 <1 × 10−4

10 MITF(bHLH)/MastCells-MITF(GSE48085) 1 × 10−14 <1 × 10−4

11 Pit1(Homeobox)/GCrat-Pit1(GSE58009) 1 × 10−13 <1 × 10−4

12 MafA(bZIP)/Islet-MafA(GSE30298) 1 × 10−13 <1 × 10−4

13 PRDM9(Zf)/Testis-DMC1(GSE35498) 1 × 10−13 <1 × 10−4

14 ERE(NR),IR3/MCF7-ERa(Unpublished) 1 × 10−11 <1 × 10−4

15 Gata4(Zf)/Heart-Gata4(GSE35151) 1 × 10−11 <1 × 10−4

16 Bach2(bZIP)/OCILy7-Bach2(GSE44420) 1 × 10−10 <1 × 10−4

17 Gata1(Zf)/K562-GATA1(GSE18829) 1 × 10−10 <1 × 10−4

18 Brachyury(T-box)/Mesoendoderm-Brachyury-ChIP-
exo(GSE54963)

1 × 10−9 <1 × 10−4

19 Gata2(Zf)/K562-GATA2(GSE18829) 1 × 10−9 <1 × 10−4

20 RUNX1(Runt)/Jurkat-RUNX1(GSE29180) 1 × 10−8 <1 × 10−4

Table A5. Twenty most significantly enriched motifs in PRAD. BH q-values indicate the Benjamini–
Hochberg q-values, which are multiple comparison corrected. A total of 309 gained sites.

Rank Motif p-Value q-Value (BH)

1 CTCF(Zf)/CD4+-CTCF [42] 1 × 10−135 <1 × 10−4

2 BORIS(Zf)/K562-CTCFL(GSE32465) 1 × 10−72 <1 × 10−4

3 NF1:FOXA1(CTF,Forkhead)/LNCAP-
FOXA1(GSE27824)

1 × 10−17 <1 × 10−4

4 STAT5(Stat)/mCD4+-Stat5(GSE12346) 1 × 10−15 <1 × 10−4

5 Pit1(Homeobox)/GCrat-Pit1(GSE58009) 1 × 10−14 <1 × 10−4

6 Pdx1(Homeobox)/Islet-Pdx1(SRA008281) 1 × 10−14 <1 × 10−4

7 FOXP1(Forkhead)/H9-FOXP1(GSE31006) 1 × 10−13 <1 × 10−4

8 AP-2gamma(AP2)/MCF7-TFAP2C(GSE21234) 1 × 10−12 <1 × 10−4

9 EKLF(Zf)/Erythrocyte-Klf1(GSE20478) 1 × 10−10 <1 × 10−4

10 Pit1+1bp(Homeobox)/GCrat-Pit1(GSE58009) 1 × 10−9 <1 × 10−4

11 Maz(Zf)/HepG2-Maz(GSE31477) 1 × 10−8 <1 × 10−4

12 RORgt(NR)/EL4-RORgt.Flag(GSE56019) 1 × 10−8 <1 × 10−4

13 FXR(NR),IR1/Liver-FXR(Chong et al.) 1 × 10−7 <1 × 10−4

14 STAT4(Stat)/CD4-Stat4(GSE22104) 1 × 10−7 <1 × 10−4

15 EHF(ETS)/LoVo-EHF(GSE49402) 1 × 10−7 <1 × 10−4

16 Pax7(Paired,Homeobox)/Myoblast-Pax7(GSE25064) 1 × 10−7 <1 × 10−4

17 Rbpj1/Panc1-Rbpj1(GSE47459) 1 × 10−7 <1 × 10−4

18 EBF1(EBF)/Near-E2A(GSE21512) 1 × 10−6 <1 × 10−4

19 NF-E2(bZIP)/K562-NFE2(GSE31477) 1 × 10−6 <1 × 10−4

20 STAT1(Stat)/HelaS3-STAT1(GSE12782) 1 × 10−6 < 1 × 10−4
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Figure A1. The distribution of center-to-center distances between cancer-specific CTCF sites and sites
of enriched motifs for AML. (a) Violin plot for AML. (b) Gaussian-smoothed line plot for AML.

Figure A2. The distribution of center-to-center distances between cancer-specific CTCF sites and sites
of enriched motifs for BRCA. (a) Violin plot for BRCA. (b) Gaussian-smoothed line plot for BRCA.

Figure A3. The distribution of center-to-center distances between cancer-specific CTCF sites and sites
of enriched motifs for CRC. (a) Violin plot for CRC. (b) Gaussian-smoothed line plot for CRC.

Figure A4. The distribution of center-to-center distances between cancer-specific CTCF sites and sites
of enriched motifs for LUAD. (a) Violin plot for LUAD. (b) Gaussian-smoothed line plot for LUAD.
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Figure A5. The distribution of center-to-center distances between cancer-specific CTCF sites and sites
of enriched motifs for PRAD. (a) Violin plot for PRAD. (b) Gaussian-smoothed line plot for PRAD.
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