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Abstract: Skeletal dysplasia, also called osteochondrodysplasia, is a category of disorders affect-
ing bone development and children’s growth. Up to 552 genes, including fibroblast growth factor
receptor 3 (FGFR3), have been implicated by pathogenic variations in its genesis. Frequently iden-
tified causal mutations in osteochondrodysplasia arise in the coding sequences of the FGFR3 gene:
c.1138G>A and c.1138G>C in achondroplasia and c.1620C>A and c.1620C>G in hypochondroplasia.
However, in some cases, the diagnostic investigations undertaken thus far have failed to identify the
causal anomaly, which strengthens the relevance of the diagnostic strategies being further refined.
We observed a Caucasian adult with clinical and radiographic features of achondroplasia, with no
common pathogenic variant. Exome sequencing detected an FGFR3(NM_000142.4):c.1075+95C>G
heterozygous intronic variation. In vitro studies showed that this variant results in the aberrant ex-
onization of a 90-nucleotide 5′ segment of intron 8, resulting in the substitution of the alanine (Ala359)
for a glycine (Gly) and the in-frame insertion of 30 amino acids. This change may alter FGFR3’s
function. Our report provides the first clinical description of an adult carrying this variant, which
completes the phenotype description previously provided in children and confirms the recurrence,
the autosomal-dominant pathogenicity, and the diagnostic relevance of this FGFR3 intronic variant.
We support its inclusion in routinely used diagnostic tests for osteochondrodysplasia. This may
increase the detection rate of causal variants and therefore could have a positive impact on patient
management. Finally, FGFR3 alteration via non-coding sequence exonization should be considered a
recurrent disease mechanism to be taken into account for new drug design and clinical trial strategies.

Keywords: osteochondrodysplasia; skeletal dysplasia; achondroplasia; hypochondroplasia; fibroblast
growth factor receptor 3; exonization

1. Introduction

Skeletal dysplasia, also called osteochondrodysplasia, refers to a group of skeletal
disorders resulting from abnormalities in bone development and growth [1,2]. Up to
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771 distinct entities have been identified and classified into 41 groups in the 11th updated
nosology of genetic skeletal disorders established by the Nosology Group of the Inter-
national Skeletal Dysplasia Society (ISDS) [3]. Its global incidence is estimated at 1:5000
births [1,4]. The number of identified genes reached 552 in the 2023 revised nosology [3].
These genes were functionally diverse, implicated in a broad range of biological processes,
and were altered by a variety of mutational mechanisms [5]. The molecular characteriza-
tion of osteochondrodysplasia revealed that pathogenic variants of the same gene, such
as FGFR3 (fibroblast growth factor receptor 3), can trigger strikingly different phenotypes
(phenotypic heterogeneity), and the same phenotype can result from different alterations
in different genes (genetic heterogeneity) [5].

Based on several features, including molecular criteria, FGFR3-related skeletal dys-
plasia phenotypes are defined into groups 1, 30, 33 and 40 of the nosology. Except in a
few cases of Camptodactyly, tall stature, and hearing loss syndrome (CATSHLS, MIM
phenotype number # 610474) [6], most disease-causing FGFR3 germline alterations are
autosomal-dominant mutations. The mechanism of disease causation is a gain of function,
usually associated with missense mutations or delins [7,8]. The most frequently involved
mutations are, in achondroplasia, substitutions triggering a p.Gly380Arg change in the
FGFR3 protein (c.1138G>A and c.1138G>C) [9,10], and in hypochondroplasia, p.Asn540Lys
(c.1620C>A and c.1620C>G) [9,11].

Because of its phenotypic and genetic heterogeneity, the molecular diagnosis of osteo-
chondrodysplasia remains a challenge. The usual strategies include performing targeted
analysis of frequent mutations or phenotype-based panel sequencing, looking for pre-
viously identified mutations in the origin population of the patient [12]. However, the
performance of phenotype-based panel sequencing depends on the completeness of the
panels. Moreover, most pathogenic variants have not been reported at a high enough
frequency to allow the establishment of genotype/phenotype correlations, so the prognosis
is sometimes difficult to discern.

Here, we report the first identification in a Caucasian patient with osteochondrodyspla-
sia of a pathogenic intronic variant of FGFR3. Naturally, the usual osteochondrodysplasia
panel-based sequencing strategy failed to identify the pathogenic variant, as it was an
intronic cryptic splicing variant located far from the exonic sequences, at a base position
not usually involved in variant calling during ordinary panels or exome analyses. In fact,
such analyses only include exons and a limited number (5–30) of non-coding nucleotides
(exon-intron junctions) flanking both sides of each exon. The variant’s effect on the FGFR3
gene expression was characterized using minigene assay. While the minigene analyses were
being performed, this variant was reported as likely pathogenic in three patients who were
Chinese children with skeletal dysplasia [7]. Our report provides the first clinical descrip-
tion of an adult patient carrying the FGFR3:c.1075+95C>G (GRCh37-chr4:g.1805658C>G)
variant and strengthens the relevance of including this recurrent variant in the genetic
testing of patients with osteochondrodysplasia or clinical presentation matching FGFR3
alteration. Finally, this variant leading to the exonization of an intronic sequence is here
confirmed as a recurrent disease mechanism to be considered in further exploration for
molecular diagnosis and also drug design and clinical trials.

2. Materials and Methods
2.1. Next-Generation Sequencing (NGS)

Whole-exome sequencing (WES) high-throughput paired-end sequencing was per-
formed using the NextSeq 500 platform (Illumina®, San Diego, CA, USA) and the NextSeq
500 high-throughput kit v2.5 (Illumina®, San Diego, CA, USA) for 150 cycles. Prior to se-
quencing, the exomes were captured and enriched using the Human Core Exome + RefSeq
panel (Comprehensive Exome, Twist Biosciences®, South San Francisco, CA, USA). The
sequencing data were analyzed using the SeqOne Genomics platform for read alignment,
variant calling, and annotation (SeqOne Genomics®, Montpellier, France). The variants
were filtered using the following parameters: quality score ≥ 20, depth ≥ 5×, and pres-
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ence in ≥20% of reads. The variants were interpreted and classified according to the joint
consensus recommendation of the American College of Medical Genetics and Genomics
and the Association for Molecular Pathology [13].

2.2. Sanger Sequencing

The genomic DNA was extracted from the patient’s peripheral blood sample for FGFR3
gene sequencing. The target DNA segment was amplified using specific DNA primers.
The primer sequences are available on request. The amplified sequences were fluorescently
labeled using the BigDye Terminator v1.1® cycle sequencing kit (Applied Biosystems,
Waltham, MA, USA). The labeled DNA fragments were then purified. After electrophoresis
using a capillary 3130xl genetic analyzer (Applied Biosystems, Waltham, MA, USA), the
final analysis was performed using the sequencing analysis software SeqScape v3 (Applied
Biosystems, Waltham, MA, USA).

2.3. Minigene Assay

The minigene assay was performed according to the previously reported method [14]
to determine the variant’s effect on FGFR3 transcript splicing. Briefly, a 699 bp fragment,
consisting of 185 bp IVS7 + 145 bp exon 8 + 369 bp IVS8, was cloned using PCR from the
genomic DNA of the patient with the aid of Phusion® High-Fidelity DNA Polymerase (New
England Biolabs, Ipswich, MA, USA). Notice that he was heterozygous in this substitution.
The cloned sequences were inserted into the NdeI cloning site of the minigene vector pTB
using the In-Fusion HD PCR Cloning Kit (Takara Bio, Kusatsu, Japan) [15]. Then, the quality
of the cloning, mainly the presence of c.1075+95C>G in the targeted intronic sequence of
the mutant, was confirmed using sequencing. Furthermore, a normal clone and a mutant
clone were transfected into HeLa cells. The HeLa cells were seeded at a concentration
of 5 × 104 cells per well in a 12-well cluster plate in 1 mL of medium and transiently
transfected with 1 µg of plasmid using FuGENE (Promega, Madison, Wisconsin) following
the manufacturer’s recommendations. Then, 48 hours after transfection, total RNA was
extracted using RNAqueous-4PCR Total RNA Isolation Kit (Thermo Fisher, Waltham,
MA, USA) and then treated using DNase (DNA-free DNA Removal Kit, Thermo Fisher,
Waltham, MA, USA). RT-PCR was performed using the Transcriptor High Fidelity cDNA
Synthesis Kit (Roche Molecular Diagnostics, Indianapolis, Indiana) and using 250 ng of
total RNA and random primers. cDNA amplification was performed using vector-specific
primers surrounding the cloning site and HotStarTaq Plus DNA Polymerase (Qiagen,
Hilden, Germany). The PCR products were resolved on 2% agarose gel and sequenced to
identify the splicing events. All the transfection experiments were performed in triplicate.

3. Results
3.1. Patient Clinical History and Phenotype

A 42-year-old man was referred to the genetics department for etiologic diagnosis
for unspecified osteochondrodysplasia. He presented a stocky build and a short stature
of 131 cm (<−4 DS), with an average head circumference (57 cm, +0.5 DS) and weighing
47 kg (−3 DS). (Figure 1). His upper body segment was measured as 84 cm and his arm
span as 124 cm. He had a bossing forehead. A preliminary physical examination found an
ogival palate, a shortening of the proximal and middle limb segments with small hands
and feet, a bilateral genu varum, and lumbar scoliosis. His past medical history reveals
that he was born of a normal pregnancy with the following anthropometric measurements:
a 48 cm (−1 DS) length, 34 cm (−1 DS) head circumference, and 2700 g (−2 DS) weight.
A bossing forehead and micromelia were also obvious. A continuous growth retardation
was recorded. His growth curves are recorded on a reference template of achondroplasia
growth charts in Figure 1C. [16].
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Figure 1. Clinical features of the proband. (A) Frontal and (B) profile pictures of the patient present-
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and feet, and a bilateral genu varum. (C) Growth charts (height and weight) built in blue lines with 
achondroplasia growth chart reference template [16]. 

He had developed normal intelligence, often complaining of paresthesia in the right 
upper limb due to a C5–C6 cervical radiculopathy and of spinal pain related to the scoli-
osis. He was being followed up for bilateral myopia. No inbreeding or any other case of 
osteochondrodysplasia was recorded in his pedigree (Figure 2). 

 
Figure 2. The patient family pedigree. Male II-4 is the proband, presenting with skeletal dysplasia. 
Subjects’ height (in cm) is indicated in brackets. 

Repeated medical imaging, including standard radiographs (Figure 3), computed to-
mography, and magnetic resonance imaging, confirmed the micromelia and the cervical 

Figure 1. Clinical features of the proband. (A) Frontal and (B) profile pictures of the patient presenting
a stocky build, short stature, a bossing forehead, shortening of the limb segments, small hands and
feet, and a bilateral genu varum. (C) Growth charts (height and weight) built in blue lines with
achondroplasia growth chart reference template [16].

He had developed normal intelligence, often complaining of paresthesia in the right
upper limb due to a C5–C6 cervical radiculopathy and of spinal pain related to the scoliosis.
He was being followed up for bilateral myopia. No inbreeding or any other case of
osteochondrodysplasia was recorded in his pedigree (Figure 2).
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Figure 2. The patient family pedigree. Male II-4 is the proband, presenting with skeletal dysplasia.
Subjects’ height (in cm) is indicated in brackets.

Repeated medical imaging, including standard radiographs (Figure 3), computed
tomography, and magnetic resonance imaging, confirmed the micromelia and the cervical
radiculopathy. They found an aspect of a narrowed lumbar canal staggered from L1 to
S1 with a hypertrophy of the pedicle in L5–S1 and the left posterior articulation pushing
back on the dural sac to the right. They also revealed a lumbosacral discopathy in L2-
L3 and L3-L4 right lateral foraminal stenosis. The biochemical estimation of his urinary
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glycosaminoglycans was quite normal, including the electropherograms. Early genetic
analyses, including comparative genomic hybridization, targeted analysis of the two com-
mon pathogenic variants in achondroplasia, and osteochondrodysplasia panel-based NGS
(49 genes including FGFR3), did not identify any causal anomaly.
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Figure 3. X-ray findings in proband. (A) A standard radiograph of right forearm and hand with
shortening of the radius 1⃝, the ulna 2⃝, and the metacarpal bones 3⃝. (B) Standard radiograph of
pelvis showing a major shortening of the femoral necks (arrowheads). D: right.

3.2. Variant Discovery and Analysis

We performed exome sequencing on the genomic DNA of the patient and his gen-
itors. The initial analysis included exons and exon–intron junctions flanking both sides
of each exon. Variants were filtered for a quality score ≥ 20, depth ≥ 5×, and presence
in ≥ 20% of reads. It did not detect any relevant variant. Since the presentation was
highly suggestive of a typical achondroplasia case, we extended the variant calling to
all sequenced segments of FGFR3, i.e., no longer limited to exons and junctions. The
FGFR3(NM_000142.4):c.1075+95C>G substitution variant was detected as a heterozygous
de novo intronic variant in the proband since it was absent in both parents. This transver-
sion was relevantly predicted using SpliceAI (https://spliceailookup.broadinstitute.org/)
(30 June 2020) and some other computational prediction tools to be susceptible to altering
the splicing of the FGFR3 primary transcript by activating a cryptic splice donor site five
bases upstream of the variant. The variant was not found among the genomes in gnomAD
(v4) despite a good mean coverage. It was also absent from other control databases, in-
cluding 1000 Genomes (30 June 2020) and dbSNP (v156). Moreover, a c.1075+30G>C
single-nucleotide polymorphism (SNP) paternally inherited was detected in cis with
the c.1075+95C>G variant. The NGS results were confirmed using Sanger sequencing
(Figure 4A) and multiplex amplification of short tandem repeats.

The minigene assay (Figure 4B,C) was performed to elicit the functional effect of this
variant on the FGFR3 primary transcript splicing. The wild-type construct generated a
major product at 392 bp corresponding to normal transcripts (Figure 4B,C). The results
obtained with the construction carrying the c.1075+95C>G FGFR3 variant exhibited a full
effect on the splicing. It produced a major product at 482 bp (on the scale) corresponding to
an exonization of the subsequent 90 nucleotides of the 5′ end of intron 8 adjacent to exon
8 (Figure 4B,C). This exonization did not induce a stop codon. However, it would trigger
a deletion of the amino acid Ala359 and an insertion of 31 amino acids into the FGFR3
protein. We also detected a very low proportion of correctly spliced transcripts.

The damaging effects sustained the classification of this variant as pathogenic (Table 1)
and its submission to the MobiDetails and LOVD3 databases (see data availability).

https://spliceailookup.broadinstitute.org/
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Figure 4. Confirmation of pathogenicity of FGFR3:c.1075+95C>G heterozygous intronic transversion.
(A) Sanger sequencing data showing FGFR3:c.1075+95C>G heterozygous intronic variant. (B) Design
of minigene assay displaying plasmid construct, wild-type (Wt), and mutant (Mut) inserts. Each
insert consisted of a fragment of 699 bp, made up of 185 bp IVS7 + 145 bp exon 8 + 369 bp IVS8. The
c.1075+95C>G variant is indicated as a red star and the cryptic splice donor site (indicated by vertical
red arrow) activated at five nucleotides upstream of the mutation. Normal splicing resulted from Wt
clones and aberrant splicing from mutants. In abnormal splicing, the 5′ end 90 nucleotides of IVS8
are retained as a coding sequence adjacent to exon 8 (see yellow box). Sequencing results confirming
normal (Wt) and aberrant splicing (Mut) are displayed in the lower panel. The exonized sequence
is highlighted in yellow, that of exon 8 in light red, and the plasmid sequence in light green. Black
horizontal arrows represent PCR primers and black vertical arrows point to the representation of the
splicing of the primary transcripts. (C) Picture of electrophoresis gel of RT-PCR products of RNA
extracted from cells transfected with Wt or Mut vectors. Normal splicing products 392 bp in size are
detected in cells transfected with wild-type vectors in triplicate (Wt), and abnormal splicing products
482 bp in size were generated from the mutant sequences (Mut). Bp: base pairs; F: forward; IVS:
intron; Mut: mutant; pTB: plasmid; R: reverse; Wt: wild-type.

Table 1. Provided evidence for classifying FGFR3(NM_000142.4):c.1075+95C>G.

Criteria PM2 PS2 PS3

Evidence

The variant is absent from
control databases, including

gnomAD, despite good
coverage of the genomic

region in sequencing.

The variant is confirmed to be de
novo using NGS and Sanger

sequencing, with both maternity
and paternity confirmation, in a
patient with the disorder and no

family history of this trouble.

The minigene in vitro
functional analyses confirmed,

in two independent studies,
the damaging effect on FGFR3

transcript splicing.

The variant met three criteria of pathogenicity justifying its classification as a pathogenic
variant: PM2 is a criterion of moderate evidence of pathogenicity, PS2 of strong evidence,
and PS3 of very strong evidence.
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Integrating all of the results allowed a description of the subsequent change in
the FGFR3 protein primary structure. The c.1075+30G>C SNP would trigger the sub-
stitution of a corresponding alanine (A) residue with a proline (P). This would result
in a p.(Ala359delinsGlyThrGlyPheCysCysCysCysCysSerProLeuSerGlyGlyAr gTrpLeuG-
lyThrArgGluSerCysGluAspGlyArgGluSerSer) change in the extracellular juxtamembrane
region of the receptor at the protein level.

4. Discussion

The clinical features of this patient included a short stature, facial dysmorphism (re-
stricted to frontal bossing), a stocky build, rhizomelia, mesomelia, short hands and feet,
genu varum, and cervical radiculopathy. The radiologic findings consisted of multiple
spinal abnormalities. Despite the acceptable controversy, such a clinical presentation and
the a posteriori identification of a pathogenic FGFR3 variant suggested the diagnosis of
achondroplasia or severe hypochondroplasia, although the phenotype lacked some criteria,
such as macrocephaly. Clearly, distinguishing between achondroplasia and hypochon-
droplasia is not easy even after the identification of a pathogenic FGFR3 variant because
of their overlapping features. We finally confirmed the diagnosis of achondroplasia or
severe hypochondroplasia, as recently carried out for a carrier of this variant [7]. However,
the phenotype/genotype correlation remains impertinent because of the small number
of subjects, the missing description of adulthood in the previous (pediatric) cases, and
the lack of some childhood information in our current case. Nevertheless, a comparative
description is provided in Table 2.

Table 2. Summary of phenotype description of patients with FGFR3(NM_000142.4):c.1075+95C>G
variant.

Case 1 Case 2 Case 3 Case 4 (Described in This
Report)

Gender Male Male Male Male

Origin Chinese Chinese Chinese European (France)

Prenatal findings nd Short lower limbs at third
trimester ultrasound nd nd

Age at the beginning of
genetic investigation 5 years 14 months 3 years 42 years

Birth length nd Normal (50 cm) nd Normal (48 cm)

Limb aspect at birth nd nd nd Micromelia

Head circumference Mild macrocephaly nd Normal Normal

Face morphology Low nasal bridge Bossing forehead, low
nasal bridge, thick feet

Relatively normal facial
features Bossing forehead

Intelligence Normal Normal Normal Normal

Other clinical features Shortening of limbs Short limbs, continuous
growth retardation

Short limbs (especially
upper limbs), bowing legs

Shortening of limbs
(rhizomelia and

mesomelia), continuous
growth retardation

Radiologic findings

Shortening and thickening
of femora and tibia,

metaphyseal flaring of
distal femora and

proximal tibia

Multiple skeletal
abnormalities

Metaphyseal flaring of
distal femora and

proximal tibiae

Multiple spinal
abnormalities

Diagnosis Hypochondroplasia or
mild achondroplasia

Achondroplasia or severe
hypochondroplasia Hypochondroplasia Achondroplasia or severe

hypochondroplasia

Cases 1, 2, and 3 were previously reported by Xu et al. [7]. Case 4 is the patient reported by this study. nd: not
documented.

Minigene assays confirmed the in silico prediction of the variant’s damaging effect on
the FGFR3 transcript splicing, by means of a construct different from that of the previous
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report, which used full sequences of exon 8, intron 8, and exon 9. Despite such a difference,
the results were consistent, confirming the per se pathogenicity of the transversion. Recently
(2 December 2023), the variant was reported in ClinVar as a pathogenic variation associated
with hypochondroplasia or achondroplasia, thus augmenting the number of affected
carriers to five. The predicted change in the FGFR3 protein is a substitution of Ala359 for a
glycine (Gly) and an insertion of 30 amino acids into a segment adjacent to the receptor
transmembrane domain containing the amino acid Gly380, involved in the most recurrent
pathogenic variations found in achondroplasia. This predicted delins is also near one of
the three immunoglobulin-like domains of the receptor [7], where the insertion of Ser-Phe
after the position Leu324 consecutive to a de novo 6 base pair tandem duplication in the
FGFR3 gene was previously reported as a disease-causing mechanism in a patient with
achondroplasia [17]. This insertion was shown in functional analyses to induce aberrant
dimerization, excessive spontaneous phosphorylation of the FGFR3 dimers, and excessive
ligand-independent tyrosine kinase activity, meaning pathologic hyperactivation of the
FGFR3 pathway, which is the common pathophysiological mechanism of achondroplasia
(gain of function) [17]. The exonized sequence also introduces six cysteine residues that
could be engaged in intra-chain and inter-chain disulfide bridge formation, which can
deregulate the receptor activation, as described with other proteins. In addition, the
introduction of four serine residues may cause receptor dysfunction by activating or
inhibiting serine phosphorylation. Even though this list is not exhaustive, we are able to
speculate that they may explain how the delins we describe in our patient can disturb
the receptor transmembrane domain, the adjacent immunoglobulin-like domain, or the
protein thermodynamics and induce aberrant hyperactivated downstream signals, causing
achondroplasia. Further studies should explore the consequences of this variant on the
FGFR3 protein structure, conformation, dimerization, and signal transduction. In vivo
studies may help highlight the variant’s developmental effect. Note that only de novo cases
have been reported. Moreover, our patient successfully fathered a healthy son without
any medical assistance. However, in genetic counseling, for a heterozygously affected
individual with a partner of average stature, such observations do not modify the theoretical
50% risk in each pregnancy of having a child with achondroplasia.

5. Conclusions

In summary, we detected the FGFR3(NM_000142.4):c.1075+95C>G pathogenic variant
in a heterozygous state in a Caucasian adult with achondroplasia. We provided a phenotype
description that may help further genotype/phenotype correlation or prognosis evaluation
in childhood patients or in prenatal cases. Concordantly with the first report of this variant,
our report strengthened the relevance of refining the routinely used diagnostic strategies for
osteochondrodysplasia by including this recurrent variation in targets to improve patient
management. We moreover suggest that the research on osteochondrodysplasia’s causal
mutations should be extended to the entire FGFR3 gene when initial investigations do
not find an alteration but the phenotype matches since molecular diagnosis impacts the
design and testing of new FGFR-based therapies. This report confirms the exonization
of this intronic sequence as a new disease mechanism to be considered in therapeutic
strategy design.
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