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Molecular motors: thermodynamics

and the random walk
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The biochemical cycle of a molecular motor provides the essential link between its thermodynamics and
kinetics. The thermodynamics of the cycle determine the motor’s ability to perform mechanical work,
whilst the kinetics of the cycle govern its stochastic behaviour. We concentrate here on tightly coupled,
processive molecular motors, such as kinesin and myosin V, which hydrolyse one molecule of ATP per
forward step. Thermodynamics require that, when such a motor pulls against a constant load f, the ratio
of the forward and backward products of the rate constants for its cycle is exp[ — (AG +u, f ) /KT ], where
— AG 1s the free energy available from ATP hydrolysis and u, is the motor’s step size. A hypothetical one-
state motor can therefore act as a chemically driven ratchet executing a biased random walk. Treating
this random walk as a diffusion problem, we calculate the forward velocity v and the diffusion coeflicient
D and we find that its randomness parameter 7 is determined solely by thermodynamics. However, real
molecular motors pass through several states at each attachment site. They satisfy a modified diffusion
equation that follows directly from the rate equations for the biochemical cycle and their effective diffu-
sion coefficient is reduced to D —2?t, where 7 is the time-constant for the motor to reach the steady state.
Hence, the randomness of multistate motors is reduced compared with the one-state case and can be used
for determining 7. Our analysis therefore demonstrates the intimate relationship between the biochemical

cycle, the force—velocity relation and the random motion of molecular motors.
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1. INTRODUCTION

Biological molecular motors harness chemical free energy
in order to perform mechanical work inside living cells.
Important examples are the cytoskeletal motors kinesin,
myosin V and cytoplasmic dynein, which are an essential
part of the machinery for intracellular transport
(Hirokawa 1998; Mehta et al. 1999; Hodge & Cope 2000;
Kim & Endow 2000; Susalka et al. 2000). These remark-
able microscopic engines fulfil a similar role to the
internal-combustion heat engines that we use for
everyday transport at the macroscopic level. Moreover,
like heat engines, molecular motors are cyclic machines:
heat engines perform mechanical work as part of a thermo-
dynamic cycle that transfers heat from a hot to a cold
reservoir, whilst molecular motors are able to perform
work as part of a biochemical cycle, the net result of
which is a chemical reaction, such as ATP hydrolysis
(Lymn & Taylor 1971). However, an essential difference
between macroscopic and microscopic motors is that heat
engines operate deterministically and can execute their
cycle at a constant rate, whilst molecular motors operate
stochastically and are therefore subject to random fluctu-
ations. Hence, a macroscopic vehicle powered by a heat
engine can move at a constant velocity, whilst a micro-
scopic vesicle transported by a molecular motor inevitably
executes a random walk (Berg 1993).

The theory of heat engines is founded upon thermo-
dynamics. In this paper, we show that thermodynamics
also provides a fundamental basis for understanding
molecular motors. The biochemical cycle i1s of central
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importance because it provides the essential link between
thermodynamics, which determines a motor’s ability to
perform useful work and kinetics, which give rise to its
stochastic behaviour. We find that molecular motors do
indeed undergo a random walk, but it is a ‘biased’
random walk (Berg 1993; Astumian 1997) that allows
them, on average, to perform mechanical work. A key
step in the analysis is constructing the diffusion equation
that governs the biased random walk. We show here that
the diffusion equation for a motor follows directly from
the rate equations for its biochemical cycle.

Svoboda et al. (1994) developed a statistical theory for
analysing the random motion observed in single-molecule
experiments However, their
analysis is restricted to motors that only make forward
transitions, whilst real molecular motors may flip-flop
back and forth between states for at least part of their
cycle. Our more general approach takes account of both
forward and backward transitions, and it demonstrates
the intimate relationship between the biochemical cycle,
the force—velocity relation and the random motion of
molecular motors.

on molecular motors.

2. TIGHT COUPLING AND PROCESSIVE
MOLECULAR MOTORS

Figure la shows a greatly simplified three-state model
for the myosin V motor (Rief et al. 2000; Walker et al.
2000). Individual heads of this two-headed molecule are
believed to undergo a cycle that is similar to the cross-
bridge cycle in muscle, consisting of attachment, a power
stroke (Huxley 1969; Huxley & Simmons 1971) and
detachment. The shaded head in state 1 has just released
ADP following its power stroke. It then binds ATP and
detaches from actin, forming state 2. This allows the
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Figure 1. Simplified three-state cycles for tightly coupled,
processive molecular motors. (a) Two-headed myosin V
(Rief et al. 2000). () Dimeric kinesin (Thomas et al. 2001).
For more details, see text.

unshaded head to execute its power stroke and the shaded
head then rapidly attaches and releases inorganic phos-
phate (P;) to produce state 3. Having executed its power
stroke, the unshaded head is able to release ADP, which is
believed to be the rate-limiting step in the cycle (Rief
et al. 2000). The cycle then repeats with the roles of the
two heads interchanged. Myosin V molecules therefore
move processively along actin filaments (Mehta et al.
1999; Rief et al. 2000; Walker et al. 2000), remaining
attached for many hydrolysis cycles and hydrolysing one
molecule of ATP for each forward step of ca. 38 nm. By
contrast, muscle cross-bridges detach completely from
actin at the end of each hydrolysis cycle (Thomas &
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Thornhill 1998) and do not move processively. The
mechanical cycles of both motors are tightly coupled to
ATP hydrolysis, but myosin V is classified as a tightly
coupled, processive molecular motor.

In a similar vein, figure 16 shows a simplified three-
state kinetic scheme for conventional kinesin, which is
another important tightly coupled, processive molecular
motor. In this motor, neck-linker docking (Rice et al.
1999), which 1s represented schematically here by the
shortening of a spring (Thomas et al. 2001), has an analo-
gous role to the myosin power stroke (Vale & Milligan
2000). As with myosinV, the kinesin dimer moves proces-
sively, using alternating heads in order to proceed in
‘hand-over-hand’ fashion along a microtubule (Hackney
1994; Duke & Leibler 1996; Astumian & Derenyi 1999;
Hancock & Howard 1999) and hydrolysing one molecule
of ATP for each 8 nm step (Howard et al. 1989; Block et al.
1990; Hackney 1995; Hua e/ al. 1997; Schnitzer & Block
1997; Coy et al. 1999).

The molecular motors in figure 1 hydrolyse ATP and
the net reaction may be written (in simplified form) as

ATP — ADP + P, (2.1)

An important property of tightly coupled, processive
molecular motors is that the tight coupling of mechanical
stepping to ATP hydrolysis means that their average
stepping velocity v is directly related to their average
hydrolysis rate R by

v =uyR, (2.2)
where u is the fixed step size for the motor (¢z. 38 nm for
myosin V and 8nm for kinesin). This direct relation
between the stepping velocity and hydrolysis rate for
tightly coupled, processive motors makes their analysis
particularly straightforward. However, equation (2.2)
does not apply to muscle cross-bridges, because they even
hydrolyse ATP under ‘isometric’ conditions when »=0.
We therefore focus specifically in this paper on the beha-
viour of tightly coupled, processive molecular motors, the
force—velocity relation of which may be determined
analytically from the rate constants for the biochemical
cycle.

3. KINETICS AND THERMODYNAMICS

Figure 2a shows a general conceptual kinetic scheme
for a tightly coupled, processive molecular motor, which
we suppose to be subjected to a constant load f. If the
motor starts in state 1 at site z, then it must pass through
states 1 —V before it can make the transition from state N
at that site to state 1 at the adjacent site n+ 1. Tor the
purposes of illustration, we suppose that this cycle of
events hydrolyses a single molecule of ATP, as in the
kinesin and myosin V motors. As indicated in figure 2a
and following Schnitzer et al. (2000), we denote the rate
constants for the forward transitions by k;(f), ko f),
ks(f), ..., kx(f), whilst the backward rate constants are
denoted by k (/) ko f )y k_s(f hes k_n(f)

The load dependence of individual rate constants &;( /)
is determined by the molecular motor’s inner workings.
However, irrespective of how the motor actually works,
thermodynamics impose a strict constraint on the ratio
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Figure 2. Kinetic schemes for a tightly coupled motor that hydrolyses one molecule of ATP in moving forwards from site n to
n+ 1 while pulling against a constant load f. (¢) A general N-state motor. (b)) An idealized one-state motor.
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k_x(f)] of the products of the forward and backward

rate constants for the motor’s hydrolysis cycle. In order to
see how this arises, we start by applying the law of mass
action to the hydrolysis reaction in equation (1), which is
catalysed by the forward motion of the molecular motor.
Hence, we require that

U )k ()5 () oos h UDN/ TR ()R (S )= (),

-5 oy ()] o< [ATP]/([ADP][P]),  (3.3)

which assumes that the solution of ATP, ADP and in-
organic phosphate may be treated as being ideal. We also
implicitly assume here that the reaction takes place at
neutral pH and with a free-energy increase of AG per
molecule of ATP, which is given by

AG = AG), + kTIn([ADP][P;]/[ATP]), (3.4)

where AG, is the standard free-energy increase per
molecule for the hydrolysis reaction at pH 7, 7 is the abso-
lute temperature and £ is Boltzmann’s constant. (Note
that AG is therefore negative for a reaction that proceeds
spontancously.) It then follows that

oy (Vo (f ks (f ) os B ()N Ty ()R o (f Vs (f ),
k()] = dexp( — AG/KT).  (3.5)

In order to determine the pre-factor A, we invoke
Einstein’s principle of detailed balance, according to
which the forward and backward rates for each transition
in the cycle must be equal when the cycle is in thermo-
dynamic equilibrium. The products of the rate constants
on the left-hand side of equation (3.5) are therefore equal
at equilibrium. As the load f i1s pulled forwards by a
distance , for each cycle of the tightly coupled motor, the
system of load plus motor is in thermodynamic equili-
brium when

uyf = —AG. (3.6)

Hence, A=exp(—uyf/kT) and it follows that the rate
constants for the cycle must satisfy the thermodynamic
relation

Wy (S Vo (ks (S ) oes B (N Tt (S )R (S Vo5 ()5 -
k()] = expl=(AG +uy /) /kT]. (3.7)
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This equation expresses the fundamental link between
kinetics and thermodynamics for a processive motor of
step size ug, the stepping of which is tightly coupled to its
hydrolysis cycle. In essence, it arises because each full
step of the motor hydrolyses one molecule of ATP and
performs mechanical work u,f. Whatever the complex
internal workings of the motor may be, the ratio of the
forward and backward products of the rate constants for
the cycle as a whole 1s always given by equation (3.7) and
it can only depend on AG and y /.

An alternative way of deriving equation (3.7) is to
consider the thermodynamics of each individual transi-
tion in figure 24. Hill (1974) essentially applied this
approach to muscle cross-bridges and for a tightly
coupled, processive motor we may write the relation for
the forward and backward rate constants as
k() k=S ) =lexpl—(AG )+ AGy; + AW)/KT],  (3.8)
where AG,; and AG),; are the respective increases in free
energy for the ATP and for the motor in transition i,
whilst AW, is the work done by the motor on the load in
that transition. It follows that the exponent on the right-
hand side of equation (3.7) is the sum of the exponents on
the right-hand side of equation (3.8) for all the transitions
in a complete cycle. The sum of AGy; is just the overall
AG for ATP hydrolysis, whilst the sum of AW, is the work
done per step u, f. However, because the motor works in a
cycle, there is no overall change in its free energy (or,
indeed, of any other thermodynamic function of state), so
the sum of AG,; is zero. Hence, the overall relation in
equation (3.7) only depends on AG and u,f and is quite
independent of the internal workings of the motor.

An important corollary of equation (3.7) is that any
theoretical model for a tightly coupled, processive mol-
ecular motor must satisfy this relation in order to ensure
consistency with thermodynamics. Hence, if a model does
not satisfy equation (3.7), it ostensibly violates the second
law of thermodynamics, indicating that it is either incor-
rect or incomplete. As we discuss elsewhere (Thomas et al.
2001), a recent theoretical model for kinesin (Schnitzer et
al. 2000) appears to fall into this category.

Equation (3.7) only applies to a tightly coupled,
processive motor pulling against a constant load f, so we
must assume that the motor stays permanently attached
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to its track. For example, we neglect dissociation from
tubulin for the kinesin motor, as this is a very slow
process (Howard et al. 1989; Block et al. 1990; Svoboda et
al. 1993; Vale et al. 1996). Clearly, we could not apply a
constant load to individual cross-bridges in muscle,
because detachment from actin (after binding ATP) is an
integral part of the cross-bridge cycle. In that case, the
thermodynamic relation for the rate constants is estab-
lished under isometric conditions when no work is
performed on the load (Thomas & Thornhill 1998).
Cross-bridges therefore obey the laws of thermodynamics
(Thomas & Thornhill 2000), but we cannot calculate
their force—velocity relation analytically. By contrast, in
the following sections we show that the thermodynamic
relation in equation (3.7) has a central role in deter-
mining both the force—velocity relation and the random
diffusive motion of tightly coupled, processive molecular
motors.

4. THE BIASED RANDOM WALK

The simplest model to which we can apply the thermo-
dynamic relation in equation (3.7) is the one-state motor
that is shown schematically in figure 24. This model
subsumes all of the complexity of a real motor’s biochem-
ical cycle into a single transition, which represents both
the ATP hydrolysis and the stepping of the motor from
attachment site n to the adjacent site n + 1. Although this
idealized model is an enormous over-simplification of
how real motors work, it nevertheless illustrates some
important general behaviour of tightly coupled, proces-
sive molecular motors.

If we denote the forward rate constant by £,( ) and
the backward rate constant by £_( /), then the thermo-
dynamic relation in equation (3.7) applied to the one-
state motor requires that

ke (f)k-(f) = expl—=(AG +uy f)/kT]. (4.9)
The forward and backward transitions occur at
random and in general k.(f)#k_(f). Hence, the

motor executes a ‘biased’” random walk along its track
(Berg 1993; Astumian 1997). Note however that
k. (f)=k_(f) when uyf= — AG, which is the condition
in equation (3.6) for thermodynamic equilibrium. In this
special case, the motor’s random walk is unbiased, its
average velocity is zero and (on average) it does no work
on the load. The motor’s random walk must of course be
unbiased at equilibrium for consistency with the second
law of thermodynamics (Feynman 1963; Astumian 1997),
which precludes it from doing work when it is at thermal
equilibrium.

In general, if we consider an ensemble of one-state
motors, each of which is subjected to a constant load f,
then their average forward velocity is

0= ulky (f) = k().

As we are dealing with an ergodic thermal system, this
equation also determines the average velocity for an indi-
vidual, tightly coupled, processive motor executing a
biased random walk (provided of course that we neglect
dissociation of the motor from its track). It is interesting
to note that equations (4.9) and (4.10) are similar to

(4.10)
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general formulae for determining the rate of a chemical
reaction in the linear regime of non-equilibrium thermo-
dynamics (Kondepudi & Prigogine 1998). We show below
that these equations can also be applied to the multistate
kinetic scheme in figure 2a. Here, we consider three idea-
lized, simple cases of a one-state motor that are of parti-
cular interest.

(a) Case A

Suppose that the rate constant k_(f) for backward
transitions in equation (4.9) is independent of the load, in
which case

ky(f) = k_expl—(AG +uy f) [k T],

where £_ is a constant. The average forward velocity
from equations (4.10) and (4.11) is then given by

v = upk_{exp[—(AG +uy f)/kT] — 1}.

(4.11)

(4.12)

Figure 3a shows the general form of the motor’s force—
velocity relation, in this case when AG= —10k] M ~! and
k_=1s7L It has essentially the same form as Feynman’s
(1963) thermally driven ratchet, the possible application
of which to muscle cross-bridges was considered by Vale
& Oosawa (1990). Astumian (1997) also discussed several
different types of ratchet and in his terminology one
might best describe the tightly coupled, processive mol-
ecular motor as a ‘chemically driven ratchet’, as it is the
negative AG from ATP hydrolysis that drives the motor
spontaneously forwards when u, f < —AG.

(b) Case B

The second special case of a biased random walk
occurs when the forward rate constant £, ( /) is indepen-
dent of the load. In this case, instead of equation (4.11) we
have

k_(f) = kyexpl(AG +uy f) /K T],

where £, is a constant. The average stepping velocity is
then given by

v = upk {1 — exp[(AG + uy f)/ET]}.

(4.13)

(4.14)

Figure 36 shows the force—velocity relation that is
produced by this equation when AG= —10k]M~! and
k. =1s~". This motor also moves forwards spontaneously
when u,f < — AG, but this forward motion is very slow
compared with the rapid backward stepping that occurs
when u,/> —AG. A motor with this type of force—
velocity relation would therefore produce rapid ATP
synthesis when %,/ > — AG. The motor may be regarded
as a chemically driven ratchet, but its polarity is reversed
compared to case A. Note however that both motors are
driven spontaneously forwards by coupling ATP hydro-
lysis to their forward steps.

(c) Case C

The third special case of a biased random walk is
intermediate between cases A and B. Suppose that
ko (f) =kyexp(—ugf|2kT ), where k, is a constant, in
which case figure 3¢ shows the force—velocity relation
when AG=—10kf M~!and £, =1s7% As in cases A and
B, the stepping velocity is zero when u,f= — AG, but in
this case there is no asymmetry between the forward and
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Figure 3. Ratchet behaviour of one-state motors with step size #, =8 nm driven by AG= —10k] M~'. (a—) The force-velocity

relations for cases A, B and C, as discussed in the text. (d-f) The corresponding variations in the diffusion coeflicient D.

backward stepping. Hence, the motor in figure 3¢ does
not behave as a ratchet.

Case G demonstrates that the mechanical asymmetry
that produces ratchet behaviour is not in itself an essential
prerequisite for the operation of a molecular motor. The
key feature of a motor is the preferential coupling of
hydrolysis (or some other reaction) to its forward steps,
thereby leading to the thermodynamic relation in equa-
tion (3.7). This makes forward steps more probable than
backward steps when u;f < —AG. Nonetheless, one
should recognize that the ratchets in figure 34,5 represent
the limiting cases for a tightly coupled, processive motor,
where either £_ or £, is constant. The force—velocity rela-
tions for real multistate motors will in general lie some-
where between these two idealized extremes.

5. HEAT AND WORK

One might suppose that a one-state motor performs
mechanical work u,f per forward step by using energy
supplied directly from ATP. Certainly, free energy from
ATP hydrolysis is required in order to make
k. (f)>k_(f) when flies between zero and — AG/u, in
equation (4.9). This biases the random walk so that the
motor moves forwards spontancously, thereby allowing it
to perform mechanical work u,/ < —AG, in agreement
with the second law of thermodynamics. However, as the
motor works in a cycle, there is no change in its internal
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energy for a complete cycle. Hence, the first law of ther-
modynamics (which is applied, strictly speaking, to an
ensemble of motors at steady state) requires that the work
done per cycle u, f equals the heat that the motor absorbs
from the surroundings.

From a microscopic viewpoint, heat absorption causes
transitions between different states (Mandl 1971). The
motor absorbs heat in order to conduct the thermally
activated transitions that perform mechanical work on
the load, such as head attachment and detachment or
the power stroke (or neck-linker docking) in figure 1. The
details of this process depend on the inner workings of
the particular molecular motor but, as with the thermo-
dynamic relation in equation (3.7), the thermodynamic
result 1s quite general. Tor the cycle as a whole, the work
done by a motor at steady state is equal to the heat that it
absorbs from the surroundings. This result applies to all
molecular motors, including muscle cross-bridges
(Thomas & Thornhill 2000).

Heat absorption by the motor decreases the entropy of
the surroundings by u,f/T per step, whilst there can be
no change in the entropy of the motor itself for a complete
cycle. Hence, this process cannot occur spontaneously on
its own without violating the second law of thermo-
dynamics. It is essential that the forward stepping of the
motor is linked to a spontaneous process such as ATP
hydrolysis that releases free energy (— AG). The entropy
of the system is then increased by the entropy of reaction
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(AS) together with the entropy increase due to the release
of heat (—AH) to the surroundings, where A is the
enthalpy of the reaction. The net result is that the
increase in entropy of the system as a whole, i.e.
AS—AH|T—uf] T, is positive, which is equivalent to the
condition that the motor can perform mechanical work,
e uyf < —AG (as AG=AH—-TAS).

ATP hydrolysis is an exothermic reaction with a nega-
tive AH that contributes to the reaction’s negative AG.
Hence, one might be tempted to regard the exothermic
reaction itself as the source of heat that drives the motor.
However, as the motor is held isothermally at tempera-
ture 7 by virtue of its intimate thermal contact with the
surrounding fluid, the heat of the reaction cannot be
given to the motor alone. Furthermore, as discussed by
Thomas & Thornhill (2000), the motor could in principle
still perform work even if the hydrolysis reaction were
endothermic (that is, if AH > 0), provided that AG was
negative. (One can achieve AG < 0 by reducing [ADP]
and [P;] so that the entropy increase (AS) for the reaction
is large, in which case the law of mass action drives the
reaction forwards irrespective of AH.)

Hence, although ATP hydrolysis provides the free
energy for driving the motor forwards, the immediate
source of energy (or enthalpy) in order for the motor to
perform work is the heat absorbed from the surroundings.
This heat is provided by the thermal fluctuations that
produce thermally activated motion of the moving parts
of the molecular motor. In this respect, the chemically
driven ratchet in case A above is similar to an idealized
‘Brownian’ or ‘thermal’ ratchet (Astumian 1997).
However, one must recognize that both the negative AG
from the hydrolysis and the heat absorbed from the
surroundings are required for driving the ratchet.

6. RANDOMNESS AND DIFFUSION

We can analyse the biased random walk of the one-
state motor in figure 26 in much greater detail by formu-
lating it as a diffusion problem (Berg 1993). We start with
the rate equation for the probability p, of finding the
motor at site 7, i.e.

dp,/dt = ko (f )by — k- (f)bu+ k- )burr = ks ()0

(6.15)

Now we may approximate the occupation probability
b, by ugp(x, t), where the probability density p(x, ) is a
function of position x and time ¢ that is assumed to vary
very slowly with x on the scale of the site separation .
Hence, p, , ; and p,_; in equation (6.15) are given approxi-
mately by

Pt (1) = ugp(x, £) £ ugap/ax + 0.5u382p/3x2. (6.16)

It follows that the rate equation, i.e. equation (6.15),
may be rewritten as

Op/ 0t = 0.5ui[ky (f) + k- (£)10°p/0x* — gk (f)

—k_(f)10p/Ox =D& p)Ox* — vOp/Ox. (6.17)

This partial differential equation describes the diffu-
sion and drift of a one-state motor executing a biased

random walk along its track (Berg 1993). The average
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stepping velocity v agrees with the steady-state result in
equation (4.10), whilst the diffusion coefficient D is

D = 0.5k, (f) + & ()]

It 1s straightforward to show from equations (3.6), (4.9),
(4.10) and (6.18) that at thermodynamic equilibrium the
diffusion coefficient obeys the Einstein relation D = ukT,
where the drift mobility = —dv/df. Note however that
the Einstein relation only applies at the equilibrium load
determined by equation (3.6). More generally, equations
(4.9), (4.10) and (6.18) imply that v and D are related by

v=—(2D/uy)tanh[(AG + u, [ ) /2kT]. (6.19)

(6.18)

Figure 3d—f illustrates how the diffusion coeflicient D
depends on the load for the three idealized one-state
motors with the force—velocity relations in figure 3a—c,
respectively. The decrease in D with load in figure 34 is
due to the decrease of £, ( ) in equation (4.11), whilst the
increase in D with load in figure 3¢ is due to the increase
of k_(f) in equation (4.13). The behaviour of D in figure
3f is intermediate between these two extremes and, as
with the force—velocity relation in figure 3¢, it is symme-
trical about the equilibrium load, where u, f= — AG.

One way of solving the diffusion equation, i.e. equation
(6.17), for the probability density p(r, ¢) is to look for solu-
tions of the form exp[i(kx —wt)]. In that case, replacing
0/0t by —iw, 0/0x by itk and 0?/0x* by —k2, we find that
the angular frequency w and the wavenumber £ must
satisfy the dispersion relation

w = kv — iDK’. (6.20)

If the motor starts at x=0 at =0, then the initial
probability density p(x, 0)=0(x). With this initial con-
dition, the Fourier transform of p(x, ) together with
equation (6.20) produces the standard solution

plx, 1) = [1// (4nDt)lexpl—(x — vt)*/4D1].

Figure 4a shows the typical Gaussian spatial variation
in px, t) at different times. On average, the motor tends
to move forwards and its average position at time [ is
(x) =vt, whilst the random diffusive motion produces a
variance in its position that is given by (6x%) =2Dt, where
the angular brackets denote an ensemble average at time
t. One can combine these two quantities into a ‘random-
ness parameter’ 7 (Svoboda et al. 1994), which for a motor
with step size u, is defined as

(6.21)

r= (6x2)/u0(x) = 2D /uylol, (6.22)

where we have written |o| in order to allow for the possi-
bility that the velocity » may be negative. Equations
(6.19) and (6.22) imply that the randomness for a one-
state motor is

r = |cotanh[(AG + uy f) /2kT]|. (6.23)

Hence, the randomness of this simple one-state model is
determined solely by the thermodynamic parameters AG
and u f. Figure 46 shows how r varies with load for those
motors the behaviour of which is shown in figure 3.
Although the variations of v and D with load for these
three motors are quite different, their randomness is
exactly the same. Note that r tends to infinity as the
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Figure 4. Diffusion and randomness for a one-state motor.
(a) Variation in the probability density p(x, ¢) at =100, 200
and 400 ms with position x for the motor in figure 34, when
JS=0 after starting at x=0. (b)) Randomness r against load

S for a one-state motor according to equation (6.23) when
AG=—10kJ M~

motor  approaches the equilibrium load  where
uof= — AG, since the average stepping velocity v in equa-
tion (6.22) 1s zero at equilibrium. When backward transi-
tions are neglected, £_(f)=0 and we then find that
r=1, which is the expected result for a so-called ‘Poisson’
motor (Svoboda et al. 1994). However, the inclusion of
backward transitions in general produces r > 1.

7. TWO-STATE MOTORS

A two-state motor has two states per attachment site,
so we denote the occupation probabilities at site n by p;,
and p, ,. The rate equations are

dpy,/dt = kopo oy — k_opr, + k_1po, — kipr, (7.24)
and
dp?,n/dt = klpl‘rz - k—lﬁ?m + k—?ﬁl,n#—l - kQﬁQ,n’ (725>

where & and k_, are the rate constants for transitions
between states at the same site and £, and k_, are the
rate constants for intersite transitions. (The rate constants
generally depend on the applied load f, but, in order to
simplify the notation, we have not explicitly shown this
here.) In the continuum approximation, we use the prob-
ability densities p;(x, £) and py(x, f) for the two states. It
follows from equations (6.16), (7.24) and (7.25) that they
satisfy the partial differential equations

Op, /Ot =0.5ui ks 0% py | Ox* — ugkyOpy ) Ox

+ (k_y + ko)po — (k1 + k_o)p1, (7.26)
and
Opy ) 0t =0.5udk_,0p, | Ox* + ugk_,0p, | Ox

+ (k1 k_o)pr — (k4 ko) po. (7.27)
Neglecting derivatives above second order, we can

combine these two coupled equations into a single differ-
ential equation, 1.e.

Proc. R. Soc. Lond. B (2001)

Op/0t = DO*p/Ox* — vdp)Ox — ©0°p/OF, (7.28)

which is the diffusion equation for the two-state motor.

The characteristic time 7 here is
=1/ (k4o 4k k), (7.29)

whilst the velocity » and diffusion coefficient D from
equations (7.26)—(7.28) are

v =uplky (f) = k- (/)]

= upk (f){1 — exp[(AG +uy f) kT 1} (7.30)
and
D = 0563k, (f) +h_ (/)]
:0.5u§k+(f){l + exp[(AG + uy f) kT, (7.31)

where the effective forward and backward rate constants

k.(f)and k_(f) are

ky(f) = kiko/ (ky + kg + ko + k), (7.32)
and
k_(f) =k ok_\J(ky +k_y + ko + E_y). (7.33)

Note that we have made use of the thermodynamic
relation for the two-state motor in equations (7.30) and
(7.31), i.e.

ko (S)k-(S) = kiko/k ok = expl—(AG +uo [ ) /K T].
(7.34)

The velocity (see equation (7.30)) for the two-state
motor corresponds to equation (4.10) for the one-state
motor, but with £,(f) now determined by equation
(7.32). Similarly, the two-state diffusion coefficient D in
equation (7.31) corresponds to the one-state relation in
equation (6.18).

Equation (7.28), which is the two-state diffusion equa-
tion, is identical to the one-state equation, i.e. equation
(6.17), for the biased random walk except for the addi-
tional t9*p/0f* term on the right-hand side. This very
important extra term has a profound effect on the
randomness and diffusion for the two-state motor.
Consider the dispersion relation for equation (7.28),
which, in contrast to equation (6.20), may be written as

w = ko — (DK — w1). (7.35)

In the limit where £—0, the two roots of this equation
are given approximately by

w=ko—i(D— 1)k (7.36)
and
w=—i/1, (7.37)

where we have kept the terms for O (k?) in equation (7.36).
Hence, equation (7.36) is the approximate dispersion rela-
tion for diffusive solutions for the two-state model in
place of equation (6.20). It then follows that the effective

diffusion coeflicient for the two-state motor is
D =D — 1. (7.38)

The t0%/0# term in equation (7.28) therefore reduces
the diffusion coefficient by the amount 221. We discuss the
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physical basis of equation (7.38) in electronic Appendix A
and demonstrate that 7 is the characteristic time for the
stepping velocity v of the motor to reach the steady state.
Note that we require D g = 0 in equation (7.38), other-
wise equation (7.36) would produce an unphysical solu-
tion that grows exponentially with time.

It follows from equations (6.22), (7.30), (7.31) and (7.38)
that the randomness for the two-state motor is

r = 2D /uglo| = |cotanh[(AG + uy f)/2k T — 2|07 /u,.
(7.39)

Therefore, r has been reduced by 2|v|t/u, compared with
the one-state case in equation (6.23). Indeed, equation
(6.23) may be regarded as a special case of equation
(7.39) when t=0, in which case the modified diffusion
equation, i.e. equation (7.28), reduces to equation (6.17).
We show below that equation (7.39) also applies to more
complex multistate motors.

Note that, in the above analysis, we have not explicitly
taken account of the alternation of heads that is believed
to occur in two-headed processive motors such as myosin
V and kinesin, as illustrated in figure 1. The complete
cycle for a two-headed motor consists of two steps, one for
each head, resulting in the hydrolysis of two molecules of
ATP. Electronic Appendix B describes how the kinetics
should be modified in that case. We show there that,
when the two heads are identical (as in myosin V and
conventional kinesin), the cycle may indeed be considered
to be a single step for one of the heads, hydrolysing a
single molecule of ATP.

8. MULTISTATE MOTORS

The complexity of real molecular motors generally
requires us to go beyond the simple one-state or two-state
models. As an example of a multistate motor, we consider
a three-state motor, as shown for the simplified models of
myosin V and kinesin in figure la,b. As discussed by
Thomas et al. (2001) for kinesin, the stepping velocity v
may be derived most simply from the steady-state hydro-
lysis rate R in equation (2.2). For an ensemble of such
motors, each of which is subjected to a constant load f,
the average hydrolysis rate per motor at steady state is

R

k()P = ki (J) Py =y (f )Py — ko () Ps
ks (f)Ps — k_3(J )P,

(8.40)

where P, P, and P; are the probabilities of finding
motors 1n states 1, 2 and 3 in the ensemble (irrespective of
their attachment site), which satisfy the normalization
condition P+ P,+ P;=1. The steady-state solution in
equation (8.40) can be wused for establishing the
Michaelis—Menten relation for the effect of the concen-
tration of ATP on the stepping velocity of a three-state
motor (Astumian & Derenyi 1999; Thomas et al. 2001).

In order to analyse the diffusion of this motor, we start
from the rate equations for the occupation probabilities
Prw bo, and ps, for finding the motor in states 1, 2 or 3 at
site n: /
dpy,/dt = ksps (8.41)

- k*3pl,n + k*lPQ,n - klpl,na
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dpy /At = kipy,, — k_1po, +k_ops , — kapo (8.42)
and
dps, /At = kopo , — k_ops , +k_spy 1 — ksps - (8.43)

Hence, the corresponding differential equations for the
probability densities p;, p, and p; are

Op, /Ot =ks (py — ugOps/Ox + 0.5u50° p3 / Ox%)

— (k) +k_g)pr + k-1 po, (8.44)
Ops /Ot = k\py — (k_y + ko) po + k_op3, (8.45)
and
Ops /0t = k_s(py + ugOp, /Ox + 0.5u50%p, [ Ox*)

+ kopo — (k_y + k3)ps. (8.46)

One can combine these three equations into a single
partial differential equation, which (neglecting derivatives
above second order) is of exactly the same form as equa-
tion (7.28), which is the modified diffusion equation.
Alternatively, as shown in electronic Appendix C, one
can look algebraically for exponential
equations (8.44)—(8.46) that satisfy the dispersion relation
in equation (7.36). Equations analogous to equations
(8.44)—(8.46) can also be derived for even more complex
N-state motors that follow the general kinetic scheme in
figure 2¢. Combining the NN partial differential equations
leads to equation (7.28), provided that derivatives above
second order are neglected. The algebra becomes rather
complicated as N increases but it can be tackled with soft-
ware such as MaTHEMATICA (Wolfram Research, Cham-
pain, IL, USA).

The key parameters that emerge from the analysis of
any tightly coupled, processive motor are the effective
forward rate constant £,(f), as in equation (7.34) and
the time-constant 7. The former determines v and D
through equations (7.30) and (7.31), whilst the latter is
required together with v and D in order to determine D
in equation (7.38) and, hence, r in equation (7.39). Table 1
summarizes the crucial parameters £,(f) and t for
different models of molecular motors, ranging from the
simple one-state model to a four-state model. Every state
that we introduce into the model adds two more rate
constants, the values of which may be difficult to deter-
mine from limited experimental data. Hence, some
approximations are generally necessary in order to keep
the number of states in the model to a minimum, which
reduces the mathematical complexity and allows us to
estimate rate constants from experimental data.

The velocity v and time-constant T for a motor deter-
mine its randomness parameter 7 through equation (7.39).
When ADP and P; are nominally absent from the experi-
mental saline solution, AG is very large and negative, and
the thermodynamic term on the right-hand side of equa-
tion (7.39) is then essentially 1. Under these conditions,

r=1—2v|t/u. (8.47)

solutions to

Thus, we expect to find » <1 for a tightly coupled,
processive motor when [ADP]=[P;] =0. In practice, we
may use equation (8.47) together with experimental
measurements of the randomness 7 and the stepping
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Table 1. Expressions for the effective forward rate constant £, ( f) and time-constant t for the tightly coupled,

processive N-state motors in figure 2 with N=1, 2, 3 or 4.

N oY) T
1 ko(f) 0

ko 1
2

ki ko + ko + ko

3 kikoks /{ky (ko + k_o + ks) + kg (k1 + ko + ko)
+ ko (koo + k) + koks}

4 kykoksky /[kikoky 4 kykok_s + k_1k_sk_y
+ k2k73k,,1 + /Cllﬂk,Q + /C,lk.p]f,g + k]/f,gkg
+hkork_sk_o +k 1k sk g+ k sk sk o + kikoks
+ kykaks 4+ k_1kyks + kokaks + k_1k_yks + kok_4ks]

ki ko + ko + ko

(ky 4 h_y 4 ko + koo + ks + k_s) /{k1 (ko + ko + k3)
+hog(hoy + ke + ko) + ki (kg + ks) + koks}

[(ky +k_g) (ko) + ko + kg + ks + kg 4+ ki) + (k=) + ko)
X (k_g + /Cg + /C_g + k;) + (k_z + /fg>(k_fg + /f4>

—kvk_y — kok_y — ksk_g — kak_4]/Tkikoks + ki kok_s5

+ kovk_gk_y + kok_sk_y + kikak_o + k_\kak_y + k1k_3ko
+ko1k sk o +k_yk_sk o+ k_sk_sk_o + kikoks

+ kikoks + k_kaks 4 kokaks + k_yk_yks + kok_yks]

velocity v for determining the internal time-constant 7 for
a motor (Thomas et al. 2001).

9. CONCLUDING REMARKS

We have shown that the biochemical cycle provides a
fundamental link between thermodynamics and kinetics
for a molecular motor. The rate constants for a tightly
coupled, processive motor, such as kinesin and myosin 'V,
pulling against a constant load f/ must satisfy the thermo-
dynamic relation in equation (3.7) in order to ensure
consistency with thermodynamics. Furthermore, we have
shown that equation (3.7) allows us to derive an expres-
sion of the form of equation (7.30) for the force—velocity
relation for the motor.

The hypothetical one-state motor in figure 26 provides
a simple illustration of the importance of the thermo-
dynamic relation for tightly coupled, processive molecular
motors. This motor executes a biased random walk (Berg
1993; Astumian 1997) that allows it to move forwards
spontaneously, thereby performing mechanical work per
step of u,f < —AG in agreement with the second law of
thermodynamics. Indeed, figure 3a,b shows that it can
behave as an idealized chemically driven ratchet (Astumian
1997). The force—velocity relations for all tightly coupled,
processive motors generally lie somewhere between these
two extremes. However, figure 3¢ shows that the mechan-
ical asymmetry inherent in a ratchet is not in fact an
essential prerequisite for the operation of a molecular
motor.

Application of the first law of thermodynamics to the
one-state motor shows that the immediate source of energy
that allows the motor to perform steady-state mechanical
work is the heat absorbed from its surroundings. This heat
is provided by the thermal fluctuations that produce
thermally activated (loosely speaking ‘Brownian’) motion
of the moving parts of the molecular motor. However, in
order to avoid violating the second law of thermo-
dynamics, it is essential that the forward stepping of the
motor is linked to a spontaneous process such as ATP
hydrolysis that releases free energy (— AG). This 1s the
key asymmetry in the motor that allows it to perform
mechanical work u, /< — AG, whilst the decrease in the
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entropy of its surroundings (=u,f/7) is offset by the
entropy of reaction (AS) together with the entropy
increase due to the release of heat (—AH) to the
surroundings.

The biased random walk executed by the one-state
motor can be described using diffusion equation (6.17),
which follows directly from rate equation (6.15) for the
molecular motor. The diffusion equation determines both
the stepping velocity v and the diffusion coeflicient D.
When these two quantities are combined into a random-
ness parameter 7 (Svoboda et al. 1994), we find that
r=|cotanh[(AG +uy [ )/2kT ]|, so the randomness for a
one-state motor 1is determined purely by the thermo-
dynamic quantities AG and v, - Hence, the three one-state
motors with very different force—velocity relations shown
in figure 3 all have exactly the same randomness. In the
absence of backward steps (that is, when £_( /) =0), we
find that r=1, in agreement with the statistical theory of
Svoboda et al. (1994) for a ‘Poisson’ motor.

The rate equations for two-state and multistate motors
also directly give rise to a diffusion equation that governs
the biased random walk that allows them to perform
mechanical work. However, we find that their modified
diffusion equation, i.e. equation (7.28), contains an impor-
tant additional term that opposes diffusion and reduces
their effective diffusion coefficient to D —v?t. Here, the
time-constant 7 is the characteristic time for the stepping
velocity of a motor to reach a steady state. The random-
ness of a multistate motor is therefore reduced compared
with the one-state case and when [ADP] and [P;] are
negligible we find that r=1-—2]v|t/u;,. Hence, the time-
constant 7 for a tightly coupled, processive molecular
motor can be determined experimentally from measure-
ments of its randomness and stepping velocity. This
interpretation of randomness is rather different from that
of Svoboda et al. (1994), whose statistical theory requires
that the rate constants for all backward transitions are
zero. Nonetheless, as shown in electronic Appendix C,
our analysis agrees with theirs in that particular limit.

In conclusion, our thermodynamic approach to tightly
coupled, processive molecular motors emphasizes the
central importance of the biochemical cycle. Further-
more, it establishes general results that are independent of
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the detailed inner workings of a motor (provided that it
exhibits tight coupling and processivity). The theory may
be applied not only to linear motors, such as kinesin and
myosin V, but also to rotary motors, such as ATP synthase
(Boyer 1997; Weber & Senior 1997; Yasuda et al. 2001).
The ideas presented here may therefore help us to under-
stand the general principles that underlie the operation of
biological molecular motors.
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