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Abstract: Atrial fibrillation (AF), characterized by structural remodeling involving atrial myocardial
degradation and fibrosis, is linked with obesity and transforming growth factor beta 1 (TGF-β1).
Aldehyde dehydrogenase 2 (ALDH2) deficiency, highly prevalent in East Asian people, is paradoxi-
cally associated with a lower AF risk. This study investigated the impact of ALDH2 deficiency on
diet-induced obesity and AF vulnerability in mice, exploring potential compensatory upregulation
of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1). Wild-type (WT)
and ALDH2*2 knock-in (KI) mice were administered a high-fat diet (HFD) for 16 weeks. Despite
heightened levels of reactive oxygen species (ROS) post HFD, the ALDH2*2 KI mice did not exhibit
a greater propensity for AF compared to the WT controls. The ALDH2*2 KI mice showed equiv-
alent myofibril degradation in cardiomyocytes compared to WT after chronic HFD consumption,
indicating suppressed ALDH2 production in the WT mice. Atrial fibrosis did not proportionally
increase with TGF-β1 expression in ALDH2*2 KI mice, suggesting compensatory upregulation of
the Nrf2 and HO-1 pathway, attenuating fibrosis. In summary, ALDH2 deficiency did not heighten
AF susceptibility in obesity, highlighting Nrf2/HO-1 pathway activation as an adaptive mechanism.
Despite limitations, these findings reveal a complex molecular interplay, providing insights into the
paradoxical AF–ALDH2 relationship in the setting of obesity.
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1. Introduction

Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with substantial
public health implications [1]. AF is characterized by atrial structural and electrical re-
modeling, encompassing interstitial fibrosis, myocyte alterations, and shortened atrial
refractoriness [2]. On the other hand, obesity has emerged as a global pandemic, inde-
pendently linked to an increased risk of AF [3]. Weight reduction has been shown to
mitigate AF burden [4,5], yet the precise molecular mechanisms underpinning obesity-
related AF remain elusive. A growing body of research indicates that obesity contributes
to atrial structural remodeling. In animal studies, high-calorie diets induce left atrial
enlargement, fibrosis, lipid infiltration, and electrophysiological changes, collectively pro-
moting AF susceptibility [6,7]. Notably, inflammatory processes and fibrosis are implicated
as substrates for AF in diet-induced obese animals [8–10]. Recent findings have high-
lighted the importance of specific molecular pathways, notably transforming growth factor
beta 1 (TGF-β1), which predominantly enhances the production of type I collagen, in the
complex landscape of atrial structural remodeling associated with obesity [11]. Obesity
also affects atrial electrical remodeling. Altered ion channel expression and action potential
duration have been observed in obese animal models with AF susceptibility [12–14]. Ox-
idative stress and reactive oxygen species (ROS) generation, associated with obesity, may
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contribute to AF pathogenesis [15]. The intricate interplay between structural and electrical
remodeling in obesity-mediated AF remains an active area of investigation.

Aldehyde dehydrogenase 2 (ALDH2), an enzyme involved in detoxifying aldehydes,
is a potential player in obesity-related AF pathogenesis. ALDH2 deficiency, prevalent in
East Asian people, has been linked to various cardiovascular conditions, including alcohol
sensitivity, myocardial infarction, and ischemic stroke [16–19]; intriguingly, it seems to con-
fer a paradoxical protection against AF [20,21]. Our recent research indicates that ALDH2
may also play a role in alcohol-related AF by mitigating oxidative stress and aldehyde
accumulation, thereby ameliorating myofibril degradation and collagen deposition in the
atria [22]. Despite these insights, the intricate relationship between ALDH2 deficiency,
obesity, and AF susceptibility remains elusive. This study seeks to investigate the impact of
ALDH2 deficiency on diet-induced obesity and AF vulnerability. Additionally, we aim to
explore potential compensatory regulatory pathways associated with ALDH2 deficiency,
particularly focusing on the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2)
and heme-oxygenase 1 (HO-1). By shedding light on these mechanisms, our research aims
to unravel the involvement of ALDH2 in the complex interplay between obesity, oxidative
stress, and AF, providing valuable insights into potential therapeutic targets.

2. Results
2.1. High-Fat Diet Inducing Obesity

The ALDH2*2 knock-in (KI) mutation, created using CRISPR/Cas9 in mouse embry-
onic stem cells, introduced a G-to-A substitution in exon 12 of the aldh2 locus, mirroring
the human ALDH2 (E487K) mutation. This led to reduced ALDH2 enzymatic activity in the
liver and decreased protein expression in the heart (Figure 1A). To assess the chronic impact
of obesity on AF, wild-type (WT) and homozygous ALDH2*2 KI mice were subjected to
either a high-fat diet (HFD: 60% fat, 20% protein, 20% carbohydrates) or a normal diet
(ND: 10% fat, 20% protein, 70% carbohydrates) from 8 to 24 weeks of age. Body weights
were monitored weekly (Figure 2). After 16 weeks of HFD consumption, both the WT
and ALDH2*2 KI mice showed significant weight increases compared to the ND-fed mice.
Although the homozygous ALDH2*2 KI mice on the HFD displayed slightly lower mean
body weights than their WT counterparts, these differences were not statistically significant.
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Figure 1. (A) Representative Western blot and quantification relative to α-tubulin of (B) aldehyde
dehydrogenase 2 (ALDH2) and (C) 4-hydroxy-trans-2-nonenal (4-HNE) production in the heart
of wild-type (WT) and homozygous ALDH2*2 KI mice treated with either a normal diet (ND) or
high-fat-diet (HFD) for 16 weeks. * p < 0.05, *** p < 0.001.
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ALDH2*2. 
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Figure 2. Body weight (BW) change of wild-type (WT) and homozygous ALDH2*2 KI mice treated
with either a normal diet (ND) or high-fat-diet (HFD) for 16 weeks. *** p < 0.0001: HFD-WT vs. ND-
WT and HFD-ALDH2*2 KI vs. ND-ALDH2*2; no significant difference: HFD-WT vs. HFD-ALDH2*2.

2.2. 4-HNE and ALDH2 Production in Wild-Type and ALDH2*2 KI Mice with High-Fat Diets

In a previous investigation [22], both heterozygous and homozygous ALDH2*2 KI
mice exhibited comparable 4-hydroxy-trans-2-nonenal (4-HNE) production in cardiomy-
ocytes compared to WT mice under baseline conditions. In the current 16-week HFD
study, both WT and ALDH2*2 KI mice demonstrated a significant increase in 4-HNE pro-
duction within cardiomyocytes compared to mice on a normal diet (Figure 1C). Notably,
the ALDH2*2 KI mice exhibited 4-HNE production similar to their WT counterparts after
prolonged exposure to the HFD (Figure 1C). This phenomenon could be attributed to the
marked decrease in ALDH2 production in the hearts of the WT mice following chronic
HFD consumption (Figure 1B). Conversely, ALDH2 production in the hearts of the ho-
mozygous ALDH2*2 KI mice remained notably low despite prolonged exposure to the
HFD. These observations suggest a potential compensatory mechanism in ALDH2*2 KI
mice, maintaining 4-HNE production levels similar to WT mice, despite reduced ALDH2
enzyme levels. This intricate interplay between ALDH2 and 4-HNE highlights the impact
of genetic mutations on oxidative stress responses in the context of diet-induced obesity.

2.3. AF Inducibility in ALDH2*2 KI Mice with Chronic Diet-Induced Obesity

To assess the susceptibility of WT and homozygous ALDH2*2 KI mice to AF, trans-
esophageal burst pacing was employed following chronic HFD exposure. In line with our
previous work, prior to HFD exposure, AF inducibility levels in the ALDH2*2 KI mice
mirrored those in their WT counterparts. As depicted in Figure 3, after extended HFD
consumption, both groups exhibited significantly increased AF inducibility compared to
their same-genotype mice on an ND. Intriguingly, the ALDH2*2 KI mice demonstrated
a lower AF inducibility response compared to their WT counterparts following chronic
HFD treatment. No significant difference in AF inducibility was observed between the
ALDH2*2 KI mice after their prolonged HFD and the WT mice on an ND. Our results
suggest that significant differences in AF inducibility are attributed more to the HFD than
to the ALDH2*2 genotype. The graphical representation in Figure 3 illustrates the distinc-
tive impact of a chronic HFD on AF susceptibility in ALDH2*2 KI mice compared to WT
controls. However, the statistical analysis indicated that the interaction effect between diet-
induced obesity and genotype on AF inducibility did not reach significance, underscoring
the nuanced relationship between the ALDH2 genotype and chronic HFD exposure in
modulating AF vulnerability.
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Figure 3. Impact of transesophageal burst pacing on atrial fibrillation (AF) occurrence in wild-type
(WT) and ALDH2*2 KI mice consuming either a normal diet (ND) or chronic high-fat-diet (HFD) for
16 weeks. *: p < 0.05; ns: non-significant (p > 0.05).

2.4. Increased Fat Accumulation and Oxidative Stress in ALDH2*2 KI Mice with Chronic HFD
Consumption

To scrutinize the influence of ALDH2*2 on obesity-related oxidative stress, we exam-
ined the interplay between ALDH2*2, fat deposition, and oxidative stress within mouse
atria subjected to chronic HFD consumption. Notably, our investigation unveiled a sig-
nificant increase in left atrial fat accumulation for both WT and ALDH2*2 KI mice com-
pared to their respective counterparts on an ND, evident in intense Lipi-Deep red staining
(Figure 4A). Crucially, this increase was notably more pronounced in the ALDH2*2 KI mice
following prolonged HFD exposure. Moreover, oxidative stress, indicated by heightened
ROS generation (Figure 4B), displayed a similar pattern. Both the WT and ALDH2*2 KI
mice exposed to the chronic HFD exhibited increased ROS levels in their atria compared
to their ND-fed counterparts. Emphasizing this, the rise in ROS levels was more substan-
tial in ALDH2*2 KI mice, accentuating their heightened susceptibility to oxidative stress
under diet-induced obesity conditions. This observation underscores increased atrial fat
deposition and ROS levels in both WT and ALDH2*2 KI mice following HFD consumption,
with the ALDH2*2 KI group showing a more pronounced response compared to their
WT counterparts.

2.5. Atrial Fibrosis and Structure Remodeling in ALDH2*2 KI Mice with Chronic HFD Consumption

Atrial fibrosis, a key player in AF pathogenesis, is associated with acetaldehyde-
induced collagen upregulation [22,23]. In our investigation on mice subjected to a chronic
HFD, we explored ALDH2’s potential protective role against collagen expression in the atria.
The results revealed a significant upregulation of TGF-β1 in the atria of both ALDH2*2
KI mice and WT controls after chronic HFD consumption, compared to their respective
ND-fed counterparts. Notably, the rise in TGF-β1 expression was more pronounced in
the ALDH2*2 KI mice than in the WT controls post chronic HFD exposure (Figure 4C).
Intriguingly, a contrary trend was observed in atrial fibrosis, with heightened collagen
I generation being less pronounced in the atria of ALDH2*2 KI mice compared to WT
controls following chronic HFD consumption (Figure 4D). Specifically, atrial fibrosis was
more evident in the atria of the WT controls compared to the ALDH2*2 KI mice after
prolonged HFD consumption. Similarly, myofibril degradation (indicated by decreased
myosin heavy chain (MHC) expression) was more severe in the atria of both the ALDH2*2
KI mice and WT controls after chronic HFD consumption, compared to their respective
ND-fed counterparts, while the ALDH2*2 KI mice exhibited myofibril degradation similar
to their WT counterparts after prolonged exposure to an HFD (Figure 4E). These findings
underscore a complex interplay involving ALDH2, TGF-β1, and collagen I expressions,
suggesting a potential modulatory role of ALDH2 in mitigating atrial fibrosis and structure
remodeling induced by chronic HFD exposure.
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Figure 4. Representative confocal images: (A) fat deposition (Lipi-Deep red), (B) reactive oxygen
species (ROS), (C) transforming growth factor beta 1 (TGF-β1), (D) collagen I, and (E) myosin heavy
chain (MHC) production in the atria of wild-type (WT) and homozygous ALDH2*2 KI mice treated
with either a normal diet (ND) or a high-fat diet (HFD) for 16 weeks. Quantification of relative
fluorescence density is shown on the right. A minimum of 10 random fields were selected for
scanning and averaging; data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

2.6. Role of HO-1 in the Differential Effect of Chronic HFD Consumption on ALDH2*2 KI Mice

To unravel the nuanced effects of chronic HFD consumption on AF susceptibility in
ALDH2*2 KI mice compared to WT controls, we delved into the potential role of HO-1.
Our investigation revealed that, even before HFD consumption, the atria of the ALDH2*2
KI mice exhibited a trend toward a greater expression of HO-1 compared to the WT
controls, albeit non-significant (Figure 5A). Following HFD treatment, Nrf2 activation was
observed, and this activation was more pronounced and significant in the ALDH2*2 KI
mice compared to the WT controls (Figure 5A,B). Acetaldehyde oxidase-derived ROS in
the atria of ALDH2*2 KI mice might activate Nrf2, promoting its binding to the antioxidant
response element (ARE) region in the HO-1 promoter, ultimately inducing significant
HO-1 expression (Figure 5A,B). As demonstrated in our previous study [24], this induction
exhibits a protective effect against AF-related remodeling. These findings illuminate an
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adaptive mechanism that shields cells from escalating oxidative stress, potentially clarifying
the differential impact of chronic HFD consumption on AF susceptibility in ALDH2*2 KI
mice compared to WT controls. This study sheds light on the intricate interplay between
ALDH2, Nrf2, HO-1, and ROS in the context of diet-induced AF vulnerability.
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Figure 5. (A) Representative Western blot and quantification relative to α-tubulin of heme
oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) production in the heart
of wild-type (WT) and homozygous ALDH2*2 KI mice treated with either a normal diet (ND) or a
high-fat-diet (HFD) for 16 weeks. (B) Relative fold change of mRNA expression of Nrf2 and HO-1 in
the heart of WT and homozygous ALDH2*2 KI mice treated with either an ND or HFD for 16 weeks,
as measured with real-time quantitative PCR. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Discussion

Our investigation reaffirms previous findings indicating that HFD-induced obesity
heightens susceptibility to AF in WT mice [7,8]. Strikingly, ALDH2*2 KI mice, despite
sharing the obesogenic environment, did not exhibit a greater propensity for AF com-pared
to WT controls following chronic HFD treatment. This unexpected resilience in ALDH2*2
KI mice is particularly intriguing, considering the higher ROS levels and lipid accumulation
observed in their atria after chronic HFD exposure compared to WT mice. Intriguingly,
while the ALDH2*2 KI mice displayed heightened ROS, they produced equivalent levels of
4-HNE and myofibril degradation in their cardiomyocytes compared to their WT counter-
parts after chronic HFD consumption, indicating suppressed ALDH2 production in WT
mice. Moreover, the upregulation of TGF-β1 and collagen I expression in the ALDH2*2 KI
mice did not mirror the expected proportional increase seen in a chronic alcohol consump-
tion model [22]. This incongruity prompts an exploration into potential mitigating factors,
with a focus on the role of HO-1 as a mediator in this context.

3.1. Role of ALDH2 in Obesity-Induced Cardiac Dysfunction

Obesity, induced by an HFD, is intricately linked with heightened ROS generation and
subsequent oxidative stress in the body [15]. This oxidative environment has been increas-
ingly associated with the pathogenesis of AF [25]. Moreover, defects in the antioxidant
system may contribute to atrial remodeling, with cytotoxic and reactive aldehydes, such as
malondialdehyde (MDA) and 4-HNE, emerging as key players in impairing cardiac func-
tions [26,27]. These aldehydes, resulting from lipid peroxidation, form adducts with lipids,
proteins, and DNA, leading to their inactivation [28]. Studies, such as Mali et al.’s investiga-
tion in mice with metabolic syndrome induced by an HFD, highlight the role of decreased
myocardial ALDH2 activity due to 4-HNE adduct formation in contributing to cardiac
hypertrophy [29]. In a different approach, Li et al. demonstrated that overexpression of
ALDH2 effectively attenuated myocardial remodeling and contractile defects induced by
an HFD through the regulation of JNK/AP-1 and IRS-1/Akt signaling pathways [30]. The
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protective effect of ALDH2 against cardiac remodeling in HFD-induced obesity was further
affirmed by Wang et al., who utilized an ALDH2 transgenic mice model [31]. Adminis-
tration of Alda-1/chaetocin, aimed at enhancing ALDH2 activity, exhibited therapeutic
potential by mitigating the impact of palmitic acid on autophagy and contractile function,
suggesting a broader role for ALDH2 in obesity-related cardiomyopathy [31]. Our study
aligns with these findings, revealing that diet-induced obesity leads to suppressed ALDH2
production, resulting in increased 4-HNE-related oxidative stress and heightened vulnera-
bility to AF. In obesity, characterized by elevated oxidative stress and ROS accumulation, the
demand on ALDH2 for the detoxification of acetaldehyde, a toxic byproduct of metabolism,
may increase. This heightened demand on ALDH2 may potentially lead to its deficiency,
impacting its protective role against oxidative stress. Several factors, including altered
gene expression, insulin resistance, fatty liver disease, disrupted signaling pathways, and
nutrient imbalances, may contribute to the nuanced relationship between obesity-related
changes in metabolism, inflammatory processes, and the expression and activity of ALDH2.
Further studies are warranted to unravel the intricate molecular mechanisms underlying
the crosstalk between obesity, ALDH2, and cardiac health, shedding light on potential
therapeutic targets for obesity-related cardiac complications.

3.2. Impact of ALDH2*2 on Body Weight and Metabolic Parameters in Obesity

Our study revealed intriguing observations regarding the body weight of homozygous
ALDH2*2 KI mice subjected to an HFD. Notably, despite a visual trend towards lower
body weights compared to their WT counterparts on the same diet, these differences did
not achieve statistical significance. This contrasts with a recent report indicating that
ALDH2*2 homozygous KI male mice are predisposed to diet-induced obesity, presenting
with glucose intolerance, insulin resistance, and fatty liver when exposed to a high-fat
high-sucrose diet [32]. The underlying mechanisms suggested in this study involve reduced
fatty acid oxidation rates and mitochondrial electron transport activity due to increased
4-HNE-adducted proteins in the brown adipose tissue of ALDH2*2 KI mice, leading to
decreased thermogenesis and energy expenditure [32]. Interestingly, our findings appear
more aligned with human genetic studies than with the reported outcomes in ALDH2*2 KI
mice. Human genome-wide association studies (GWASs) and case–control investigations
have highlighted that the ALDH2*1 WT allele, rather than the ALDH2*2 allele, is associated
with a higher predisposition to metabolic syndrome, hypertension, diabetes, and obesity,
particularly in males or individuals with alcohol consumption habits [33,34]. These parallels
between our study and human genetic associations underscore the potential translational
relevance of our findings. However, it is crucial to acknowledge the limitations of our study,
particularly the absence of examinations related to sugar metabolism, insulin resistance,
lipid profiles, and blood pressure. Further comprehensive investigations are warranted to
unravel the intricate interplay between ALDH2*2, diet-induced obesity, and the broader
spectrum of metabolic parameters. Such endeavors will enhance our understanding of the
clinical implications of ALDH2*2 in obesity-related metabolic disturbances, paving the way
for more-targeted therapeutic strategies.

3.3. Expanding beyond Alcohol Metabolism: ALDH2*2 in Obesity-Related
Cardiovascular Complications

Traditionally, the research focus on ALDH2*2 has centered on its implications in al-
cohol metabolism, linking it to increased risks of alcohol-related cancers, cardiovascular
diseases, and alcohol use disorders. This heightened risk is attributed to its role in diminish-
ing acetaldehyde metabolism efficiency. However, our understanding of the genetic variant
has evolved, transcending its conventional role. GWASs and phenome-wide association
studies have underscored its intriguing potential to decouple obesity from associated health
complications [35,36]. In a study by Hu et al., the impact of ALDH2*2 on the osteogenic
and adipogenic differentiation of 3T3-L1 preadipocytes was investigated [36]. Notably,
ALDH2-WT cells exhibited significantly higher collagen type I mRNA expression and
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more mineralized nodules than control cells or those expressing ALDH2*2. Aligning with
these findings, our study observed less-pronounced atrial fibrosis, reflected by collagen
production in the atria of ALDH2*2 KI mice compared to wild-type controls following
chronic HFD consumption. While acetaldehyde has been recognized for its fibrogenic role
in upregulating the transcription of collagen I directly and indirectly inducing the synthesis
of TGF-β1 in alcohol-induced hepatic fibrosis [23], our previous study demonstrated that
ALDH2*2 KI mice subjected to chronic alcohol intoxication exhibited a higher degree of
4-HNE accumulation, increased TGF-β1 expression, and enhanced collagen deposition
in their atria compared to wild-type mice [22]. Importantly, these effects were mitigated
by the ALDH2-selective activator, Alda-1 [22]. Contrary to the pronounced increase in
ROS and TGF-β1 in the atria of ALDH2*2 KI mice following chronic HFD consumption,
our study revealed that compensatory upregulation of the Nrf2 and HO-1 pathway might
attenuate atrial fibrosis in these mice. In the context of ALDH2 deficiency, ROS triggers the
inactivation of the E3 ubiquitin ligase within the Keap1 complex, preventing Nrf2 ubiquiti-
nation and inhibiting its degradation by the proteasome, ultimately resulting in heightened
Nrf2 protein expression [37]. This identified signaling pathway likely serves as the basis
for the compensatory upregulation of the Nrf2 and HO-1 pathway observed in our study,
offering insight into the intricate regulatory dynamics in response to ALDH2 deficiency and
chronic HFD consumption. This observation aligns with the lower degree of AF inducibility
response demonstrated by ALDH2*2 KI mice compared to their wild-type counterparts
following chronic HFD treatment. Human studies have further hinted at a potential benefi-
cial effect of ALDH2*2 on AF [20,21]. There might be additional compensatory regulatory
pathways associated with ALDH2 deficiency to counteract susceptibility to obesity-related
AF. Recent research has implicated the short-chain fatty acid propionate in activating free
fatty acid receptor-3, a process frequently observed in obesity, leading to inflammation and
fibrosis in cardiac cells. Notably, the regulator of G-protein signaling, (RGS)-4, acts as a
‘molecular brake’, counteracting these effects and modulating parasympathetic signaling.
It regulates heart rate and suppresses arrhythmogenic calcium signaling [38,39]. This
underscores a broader cardioprotective potential against AF pathogenesis, indicating a
promising avenue for further research into its role in AF development within the context
of obesity and ALDH2 deficiency. Our findings unravel a complex interplay between the
ALDH2*2 genetic variant, obesity, and associated complications such as AF. This expands
the narrative surrounding ALDH2*2, emphasizing its role not only in alcohol-related health
risks but also in the broader context of cardiovascular remodeling influenced by obesity.

3.4. Limitations

Our study has limitations, including not examining insulin resistance, lipid profiles,
and blood pressure in our mouse model. Although our specific pacing protocol demon-
strated reproducibility in assessing AF inducibility, alternative pacing protocols may yield
different results. Previous GWASs have suggested that ALDH2*2’s association with obesity
and cardiovascular risk factors may be influenced by alcohol consumption habits [33,34].
Future investigations combining an HFD and chronic alcohol consumption in our mouse
model, along with a broader spectrum of pacing approaches, could enhance understanding
of AF susceptibility in obesity with ALDH2 deficiency. Additionally, we did not elucidate
the detailed signaling mechanisms explaining the reduced AF inducibility in ALDH2*2
mice with obesity. Further studies, incorporating multi-omics and gut microbiota analyses,
are needed to untangle ALDH2*2′s decoupling of excess AF inducibility from obesity.
Finally, our study did not explore the potential role of electrical remodeling in AF suscepti-
bility within the context of ALDH2 deficiency and diet-induced obesity. Addressing these
limitations in future research will contribute to a more comprehensive understanding of
the intricate relationship between ALDH2 deficiency, obesity, and AF susceptibility.
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4. Materials and Methods
4.1. Ethics Statement

All animal experimental procedures were approved by the Institutional Animal Care
and Use Committee of Chang Gung University (Taoyuan, Taiwan; IACUC No. CGU110-006,
12 May 2021), and the experiments were conducted following the relevant guidelines.

4.2. Generation of ALDH2*2 KI Mice Using CRISPR/CAS9 to Mimic Humans with ALDH2*2

ALDH2 is highly conserved in mice and humans. To replicate the ALDH2*2 variant
found in humans, we employed a CRISPR/Cas9 system to generate an ALDH2*2 KI mouse
model on a C57BL/6J background. This model involved introducing a single nucleotide
substitution (G to A) within exon 12 of the aldh2 genomic fragment, precisely mimicking
the position of the human E487K mutation. This inactivating point mutation was designed
to simulate the genetic alteration associated with ALDH2*2, allowing for a detailed inves-
tigation of its effects in a murine context. The methodology for creating this model was
consistent with established procedures, as outlined in previous research [22]. This approach
ensured the accurate representation of the ALDH2*2 mutation in mice, providing a valuable
tool for studying the impact of this genetic variant on various physiological processes.

4.3. Mice Maintenance and Diet-Induced Obesity Model

ALDH2*2 KI mice were bred and maintained in a barrier facility under pathogen-
free conditions at Chang Gung University. Wild-type littermates of the ALDH2*2 KI
mice served as controls for all analyses. The mice were housed on a 12 h light/12 h
dark cycle and provided with food and water ad libitum. The mice were older than
8 weeks at the beginning of the experiments. A chronic diet-induced obesity model was
established by administering a high-fat diet (HFD; containing 60 kcal.% fat, 20 kcal.%
protein, and 20 kcal.% carbohydrates) compared to a normal diet (ND; containing 10 kcal.%
fat, 20 kcal.% protein, and 70 kcal.% carbohydrates) at the age of 8 weeks to 16 weeks. Body
weights were recorded weekly.

4.4. Programmed Electrical Stimulation to Evaluate AF Vulnerability

Transesophageal stimulation, conducted in accordance with established procedures [40]
and featuring adjustments from decremental atrial pacing to burst atrial pacing at a fixed
cycle length [24], was conducted to assess AF vulnerability. The mice were anesthetized
with Zoletil (50mg/kg) and Xylazine (10mg/kg) intraperitoneally. Utilizing a 4F electrode
catheter (ST. JUDE MEDICAL, St. Paul, MN, USA) inserted into the esophagus, connected to
an isolated stimulator (SI-200, iWork Systems Inc., WA, USA), atrial pacing was performed.
IX-TA-220 and LabScribe software v3 (iWork Systems Inc., WA, USA) managed the pacing
programs and EKG recordings. Pacing parameters included an amplitude of 1.5x diastolic
capture threshold and a duration of 2 ms. A pre-test burst ensured atrial stimulation
capture, followed by 10 repeats of pacing bursts at a cycle frequency of 30 Hz for 3 s. AF,
defined as a period of rapid irregular atrial rhythm lasting over 3 s, was assessed. AF
inducibility was expressed as the ratio of pacing-triggered AF episodes to 10 pacing bursts
in each mouse.

4.5. Western Blot Analysis to Study ALDH2-Related Oxidative Stress and Atrial Remodeling

Equal amounts of proteins were extracted from tissue and subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis. After transferring them to nitro-
cellulose membranes (Perkin Elmer, Waltham, MA, USA), the proteins were incubated
with primary antibodies against ALDH2, 4-HNE, HO-1 (Abcam, Cambridge, UK), Nrf2,
(ABclonal, MA, USA), tubulin and GAPDH (Santa Cruz, TX, USA). Signals were detected
with electrochemiluminescence (Santa Cruz, TX, USA) and quantified by densitometry.
Data in the linear immunoreactive range were normalized to GAPDH or α-tubulin as a
loading control.
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4.6. Histology and Immunohistochemistry Analyses to Examine Atrial ALDH2-Related Oxidative
Stress and Atrial Remodeling

Mouse atrial tissues, embedded in O.C.T compound (Sakura Finetek, St. Torrance,
CA, USA), were sectioned into five-micrometer cross-sections. Lipid accumulation in
the left atrium myocardium was examined using Lipi-Deep red staining (LD-04, Dojindo
Laboratories, Kumamoto, Japan). Confocal microscopy, employing primary antibodies
against MHC, TGF-β1, and collagen I (Abcam, Cambridge, UK, Delaware Avenue, CA,
and Santa Cruz, TX, USA, respectively), followed by FITC or Cy3-conjugated secondary
antibodies (Abcam), facilitated immunohistochemical and cytochemical analyses. Nuclei
were visualized through DAPI staining. Protein expression levels were quantified by
calculating the protein-occupied area in the tissue divided by the nuclear area. ROS levels
in the atria were assessed using the fluorescent dye dihydroethidium. Tissue samples were
pre-incubated with 10 µmol/L dihydroethidium for 30 min at room temperature, and ROS-
mediated fluorescence was observed under a confocal microscope (Leica TCS SP8, Wetzlar,
Germany). Excitation at 518 nm using an argon laser and emission recording (>600 nm)
allowed the acquisition of two-dimensional images (512 × 512 pixels).

4.7. Real-Time Quantitative Reverse Transcription–PCR (RT-PCR)

Total cellular RNA was extracted from tissues using the TRIzol reagent (Life Technolo-
gies, Rockville, MD, USA) and real-time quantitative RT-PCR was performed as described
previously [41]. GAPDH mRNA was used as an internal control. The primers were
listed as follows: mNrf2: forward: 5′-CTGAACTCCTGGACGGGACTA-3′ and reverse: 5′-
CGGTGGGTCTCCGTAAATGG-3′; mHO-1: forward: 5′-CACTCTGGAGATGACACCTGAG-
3′ and reverse: 5′-GTGTTCCTCTGTCAGCATCACC-3′; mGAPDH: forward: 5′-
CGACTTCAACAGCAACTCCCACTCTTCC-3′ and reverse: 5′- TGGGTGGTCCAGGGTT
TCTTACTCCTT-3′. Relative expressions of Nrf2 and HO-1 were calculated using the 2−∆∆ct

method via the SYBR green detection mechanism.

4.8. Statistical Analysis

Continuous variables, expressed as their mean ± SD, were assessed for normal distri-
bution using the Kolmogorov–Smirnov test. An independent Student’s t-test and one-way
ANOVA with post hoc Tukey’s test were applied for the two groups and multiple compar-
isons, respectively. Interactions between diet and genotype in relation to AF inducibility
were tested with a two-way ANOVA. A p value of <0.05, using the two-way test, was con-
sidered statistically significant. SPSS software, version 20.0 (SPSS Inc., Chicago, IL, USA),
performed all statistical analyses.

5. Conclusions

Our study on ALDH2 deficiency and pacing-induced AF in a murine model treated
with a chronic HFD revealed unexpected insights. Contrary to expectations, ALDH2
deficiency did not significantly heighten AF susceptibility in obesity; instead, the activation
of the Nrf2/HO-1 pathway suggests an adaptive mechanism. Additionally, our results
indicate that significant differences in AF inducibility were primarily attributed to the
HFD rather than the ALDH2*2 genotype. These unexpected findings emphasize the
need for further investigation into the nuanced relationships between ALDH2 deficiency,
obesity, and AF susceptibility. Such insights may guide targeted treatments, especially in
populations with a high prevalence of the ALDH2*2 allele.
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