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Abstract: Primary biliary cholangitis (PBC) is an autoimmune liver disease characterised by the
immune-mediated destruction of small and medium intrahepatic bile ducts, with variable outcomes
and progression. This review summarises the state of the art regarding the risk of neoplastic pro-
gression in PBC patients, with a particular focus on the molecular alterations present in PBC and in
hepatocellular carcinoma (HCC), which is the most frequent liver cancer in these patients. Major risk
factors are male gender, viral infections, e.g., HBV and HCV, non-response to UDCA, and high alcohol
intake, as well as some metabolic-associated factors. Overall, HCC development is significantly more
frequent in patients with advanced histological stages, being related to liver cirrhosis. It seems to be
of fundamental importance to unravel eventual dysfunctional molecular pathways in PBC patients
that may be used as biomarkers for HCC development. In the near future, this will possibly take
advantage of artificial intelligence-designed algorithms.
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1. Introduction

Primary biliary cholangitis (PBC) is an autoimmune cholestatic chronic disease af-
fecting the liver, characterised by a T cell-mediated destruction of small and medium
intrahepatic bile ducts [1]. Its prevalence in Europe has an overall rate of 22.27 cases per
100,000 inhabitants and a pooled incidence rate of 1.7 new cases per 100,000 inhabitants
per year [2], with a female predominance (1.6–4.8:1 female:male ratio). PBC may progress
slowly and with a variable course over many years, leading to fibrosis and cirrhosis. These
complications are more aggressive and have a worse prognosis in males than in females [3].

Many studies have evaluated the correlation between PBC and the risk of cancer
development in the liver, biliary system, and extrahepatic organs. In this context, it is
well known that a potentially fatal complication of PBC is the development of hepato-
cellular carcinoma (HCC). This cancer is the primary malignancy of the liver and has an
incidence of 13 per 1000 person-years in patients with PBC and cirrhosis, which is much
lower (2.7 per 1000 person-years) among PBC patients without cirrhosis [4]. HCC mostly
occurs in patients with chronic liver disease, and cirrhosis represents the main risk factor
independent of the liver disease aetiology [5]. Epidemiological data suggest that one-third
of cirrhotic patients are at risk of developing liver cancer during their lifetime. The highest
incidence of HCC has been observed in cirrhotic patients with viral aetiology (2% for HBV
and 3–8% for HCV [6]) and lower in those with alcohol-related and metabolic dysfunction-
associated steatohepatitis (MASH)-related cirrhosis. However, it should be stressed that
metabolic-associated liver disease is becoming a more and more common HCC aetiology
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worldwide, and its impact may be underestimated [7]. Other less common causes of cirrho-
sis are autoimmune liver diseases, e.g., PBC, autoimmune hepatitis, and haemochromatosis,
even though increased risk for HCC is present in these patients with respect to healthy
subjects. Other important environmental and sociodemographic risk factors for HCC are
cigarette smoking, ethnic differences, and exposure to aflatoxin B1 deriving from fungal
contamination of foodstuffs (e.g., grains). The last risk factor is particularly relevant in
some areas of Africa and Asia [8,9].

Notably, a systematic literature review analysing published data obtained from
Japanese studies observed that the interval between HCC diagnosis and death in PBC
patients (8.4 ± 14 months) is notably shorter than that observed in all HCC patients and in
patients with autoimmune hepatitis (AIH), another autoimmune chronic liver disease [10].

The second primary liver cancer is cholangiocarcinoma (CCA), which derives from
the tumoural transition of bile duct-lining epithelial cells, mainly cholangiocytes. Notably,
although having a higher prevalence than other cholestatic liver diseases, such as, for
example, primary sclerosing cholangitis (PSC) [11], PBC has never been associated with an
increased risk of developing CCA. Accordingly, the cases of CCA are extremely rare among
PBC patients (between 0.3% and 4.22%) and are mainly linked to liver cirrhosis [12].

PBC has also been associated with extrahepatic tumours, but data regarding the inci-
dence of these diseases in PBC patients are scarce and inconclusive. The first systematic
meta-analysis, including 16,300 PBC patients from several countries, showed that PBC
patients had a significantly higher overall risk of developing cancer (especially HCC, as out-
lined above). However, no significant association was found between PBC and extrahepatic
malignancies, including colorectal cancer, lung cancer, kidney cancer, oesophagus cancer,
uterus cancer, cervical cancer, prostate cancer, bladder cancer, thyroid cancer, melanoma,
nonmelanoma skin cancer, Hodgkin disease, and non-Hodgkin lymphoma. However, it
should be underlined that this lack of correlation may be due to the extremely limited
number of available studies evaluating this association [13]. In 2014, we published an epi-
demiological study conducted on two series of PBC patients followed up by two European
centres (361 in Padova, Italy and 397 in Barcelona, Spain) [14]. The cancer incidence was
compared with the standardised incidence ratio (SIR) calculated using the Cancer Registry
of the Veneto Region and the Cancer Registry of Tarragona (Spain). The prevalence of
cases with extrahepatic malignancy was similar in Padova (97%) and Barcelona (94%). The
overall cancer incidence was similar to the expected incidence for the general population in
the same geographical areas. Advanced histological stage and the presence of extrahepatic
autoimmune diseases were risk factors significantly associated with the development of
extrahepatic malignancy in PBC patients. A recently published multicentric cooperative
study examining PBC patients admitted to Brazilian hepatology tertiary centres evaluated
the frequency of HCC and extrahepatic malignancies [15]. In this cohort, cirrhosis, obesity,
and azathioprine therapy were independent risk factors for HCC development, whereas
Sjögren’s syndrome and psoriasis were associated with extrahepatic malignancies. These
authors also suggested that pharmacotherapy with fibrates may be a protective factor
toward the development of extrahepatic tumours, even if the mechanistic reasons for this
observation remain to be understood.

In this review, we summarise the recent evidence regarding the risk of developing
HCC in PBC patients, starting from a focus on the molecular mechanisms linking PBC
pathogenesis and HCC development.

2. Shared Molecular Alterations in PBC and HCC

The main pathological features of PBC are immune dysregulation and abnormal bile
metabolism [16], which progress to fibrosis and ultimately lead to cirrhosis and liver failure
in approximately 10–20 years if not pharmacologically treated [17]. In PBC, the loss of
immune tolerance against the E2 component of the pyruvate dehydrogenase complex
(PDC-E2) causes the dysregulation of both innate and adaptive immunity. In turn, this
results in the hyperactivation of the immune response towards the biliary epithelial cells.
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The increase in anti-mitochondrial autoantibodies (AMAs), a typical immune signature
of PBC patients, targets the PDC-E2 in cholangiocytes, causing the apoptosis of biliary
epithelial cells and thereby hampering the physiological architecture of small and medium
intrahepatic bile ducts [18]. PBC patients are also characterised by a great infiltration of
autoreactive CD4+ and CD8+ T cells, responsible for chronic inflammation and, ultimately,
hepatic cirrhosis.

The molecular mechanisms favouring tumoural development in PBC patients have
been only partially understood, and mechanistic studies are still warranted in this context.
However, some common pathways could be recognised in PBC and HCC development
(Figure 1). For example, HCC and PBC show an overlapping of hepatic dysfunction, among
other inflammation. It should be noticed that when the carcinogenesis process occurs in a
liver with cirrhosis, the causal relationship between the presence of an inflammatory context
and the onset of the neoplastic transition in hepatic cells is difficult to establish. However,
a hepatic microenvironment characterised by chronic inflammation and oxidative stress,
both features of PBC patients’ livers, helps the accumulation of genetic alterations in hepa-
tocytes [19], a phenomenon with pathological relevance in the HCC transition [20]. From
a mechanistic point of view, it has been extensively demonstrated that pro-inflammatory
cytokines, such as interleukin 6 (IL6), secreted by resident or recruited immune cells or
their progenitors exert a stimulatory action on the growth of both normal and neoplastic
hepatocytes [21]. Interestingly, IL6 and other IL17-related cytokines are upregulated in
PBC patients [17]. Mechanistic details revealed that IL6 induces cell proliferation by a
STAT3-dependent mechanism and by the activation and direct interaction with the p65 sub-
unit of NF-kB, a transcription factor known to exert a complex panel of pro-inflammatory
actions [22]. Notably, IL6 hepatic secretion is differently regulated in men and women
due to estrogens [23], which are able to counteract IL6 secretion by Kupffer cells in the
liver and decrease tumour growth [24]. These observations came from a preclinical in vivo
study, which also demonstrated that IL6 ablation abolished the observed sex differences
in hepatocarcinogenesis, suggesting IL6 as a pharmacological target for HCC [25]. This
gender difference in the production of inflammatory cytokines may at least partially ex-
plain the fact that male sex is a risk factor for HCC development, although PBC is more
frequent in females. Another signalling pathway known to be altered in PBC patients
and related to STAT3 is NOTCH. Proteins of this molecular pathway are overexpressed
in PBC [26]. In particular, an immunohistochemical study demonstrated that NOTCH1
expression was increased in the reactive ductuli of cirrhotic PBC samples [27]. Interestingly,
a gain in NOTCH signalling has also been associated with hepatocarcinogenesis, notably
in HCC. The pioneering study of Villanueva and collaborators [28] paved the route for un-
derstanding the role of this molecular pathway in HCC. These authors, besides confirming
that NOTCH signalling is activated in human HCC samples, observed that it promotes
the formation of liver tumours in mice. More recent evidence further investigated the
role of NOTCH in HCC development. First, it is clear that NOTCH acts as a cancer pro-
moter since its target genes are transcription factors that control numerous tumour-related
cellular processes, including proliferation, differentiation, and apoptosis [29]. A more
complex picture is depicted when considering not only cancer cells but also the tumour
microenvironment (TME). Notably, NOTCH signalling agonists promote the activation of
macrophages [30], whose role in the TME is extensively described [31]. Other cells present
in the TME, playing a peculiar role in HCC progression, are cancer-associated fibroblasts
(CAFs). Besides modulating the biological activities of HCC [32], their presence has been
linked to HCC cell growth and metastasis. HCC cells stimulate the proliferation of CAFs,
which can secrete high amounts of IL6. As outlined before, the fundamental role of IL6
in HCC progression is well established. This study demonstrated that, when secreted by
CAFs, it facilitates characteristics of staminality in HCC cells, and this occurs by activating
the NOTCH signalling pathway by the phosphorylation of STAT3 [33].
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vates protumoural molecular pathways, e.g., STAT3, NF-kB, NOTCH signalling. The increased level 
of intrahepatic BA activates FXR and further promotes HCC development. Other parenchymal cells, 
such as CAFs and protumoural macrophages, are also stimulated by cytokine release, helping with 
HCC development. PBC, primary biliary cholangitis; AMA, anti-mitochondrial autoantibody; ROS, 
reactive oxygen species; IL6, interleukin 6; FXR, Farnesoid X receptor; STAT3, signal transducer and 
activator of transcription 3; CAF, cancer-associated fibroblast; PDC-E2, pyruvate dehydrogenase 
complex. Created with BioRender.com. 

Another interesting feature of PBC, which can also be linked to HCC development, 
is the composition of the pool of bile acids (BAs) in patients affected by this disease. To 
understand BA relevance in this context, it is worth mentioning the two drugs approved 
for PBC therapy, i.e., ursodeoxycholic acid (UDCA) and obeticholic acid (OCA), which are 
the first- and second-line treatments for PBC, respectively [34]. These are the two drugs 
approved for PBC treatment, although some authors have suggested that a single drug or 
a single mechanism is probably not completely effective in stopping disease progression 
and avoiding cirrhosis and other complications and advise of the need for combinatorial 
approaches targeting multiple mechanisms [17]. 

UDCA is a hydrophilic, non-cytotoxic BA, usually accounting for less than 5% of the 
BA pool. UDCA has multiple mechanisms of action, including the replacement of endog-
enous cytotoxic BAs, such as chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) 
[35]. Notably, men, who are more prone to developing PBC complications, have a higher 
total concentration of BAs than women. Another finding is that PBC patients display a 
different BA conjugation pattern than healthy subjects, having higher rates of taurine BA 
conjugation. Notably, the conjugative agent taurine can reduce the hepatotoxicity of hy-
drophobic BAs more than glycine. This is probably an adaptive mechanism exploited by 
PBC patients [36]. Taken together, these observations led to the interesting hypothesis that 
PBC patients not responding to UDCA treatment might have higher plasma 

Figure 1. Main mechanisms involved in HCC development in PBC patients. AMA autoreactive
antibodies (anti-PDC-E2) trigger cholangiocytes, inducing apoptosis and dysregulation of both innate
and adaptive immunity by recruiting immune cells. This leads to an increased release of cytokines,
e.g., IL6, and increased ROS production. In hepatocytes, the inflammatory microenvironment
activates protumoural molecular pathways, e.g., STAT3, NF-kB, NOTCH signalling. The increased
level of intrahepatic BA activates FXR and further promotes HCC development. Other parenchymal
cells, such as CAFs and protumoural macrophages, are also stimulated by cytokine release, helping
with HCC development. PBC, primary biliary cholangitis; AMA, anti-mitochondrial autoantibody;
ROS, reactive oxygen species; IL6, interleukin 6; FXR, Farnesoid X receptor; STAT3, signal transducer
and activator of transcription 3; CAF, cancer-associated fibroblast; PDC-E2, pyruvate dehydrogenase
complex. Created with BioRender.com.

Another interesting feature of PBC, which can also be linked to HCC development,
is the composition of the pool of bile acids (BAs) in patients affected by this disease. To
understand BA relevance in this context, it is worth mentioning the two drugs approved
for PBC therapy, i.e., ursodeoxycholic acid (UDCA) and obeticholic acid (OCA), which are
the first- and second-line treatments for PBC, respectively [34]. These are the two drugs
approved for PBC treatment, although some authors have suggested that a single drug or
a single mechanism is probably not completely effective in stopping disease progression
and avoiding cirrhosis and other complications and advise of the need for combinatorial
approaches targeting multiple mechanisms [17].

UDCA is a hydrophilic, non-cytotoxic BA, usually accounting for less than 5% of
the BA pool. UDCA has multiple mechanisms of action, including the replacement of
endogenous cytotoxic BAs, such as chenodeoxycholic acid (CDCA) and deoxycholic acid
(DCA) [35]. Notably, men, who are more prone to developing PBC complications, have a
higher total concentration of BAs than women. Another finding is that PBC patients display
a different BA conjugation pattern than healthy subjects, having higher rates of taurine
BA conjugation. Notably, the conjugative agent taurine can reduce the hepatotoxicity of
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hydrophobic BAs more than glycine. This is probably an adaptive mechanism exploited by
PBC patients [36]. Taken together, these observations led to the interesting hypothesis that
PBC patients not responding to UDCA treatment might have higher plasma concentrations
of BAs, particularly of the cytotoxic CDCA, that cannot be efficiently replaced by UDCA or
a reduced capacity of taurine conjugation [37]. Thus, the increased amount of BAs in the
livers of these patients probably favours cancer development. The mechanism by which
hydrophobic BAs prompt liver carcinogenesis has been deeply investigated by numerous
in vitro and in vivo preclinical studies. A collaborative action of different BAs, all charac-
terised by high hydrophobicity, has been observed in downregulating tumour suppressor
genes like CEBPα, thereby helping the development of liver cancer [38]. Altered BA levels,
besides leading to metabolic dysfunction [39], can induce senescence, resistance to apopto-
sis, and hyper-proliferation [40], all hallmarks of the neoplastic transition. BAs can exert a
significant cytotoxic effect when they accumulate inside the liver at high concentrations
because of their direct cytolytic action [41]. Furthermore, it is well known that Farnesoid X
receptor (FXR), a nuclear receptor activated by CDCA, is involved in the modulation of
cancer development [24,42,43]. Notably, FXR and STAT3 signalling act together in liver
carcinogenesis. In fact, the persistent activation of STAT3 is present in the livers of FXR
knockout mice [44]. The mechanism relies on the upregulation of IL6 due to the high BA
amount typical of these mice. In fact, BAs are strong STAT3 inducers [45], and one of the
target genes of FXR, the suppressor of cytokine signalling 3 (SOCS3) [46], is a feedback
inhibitor of STAT3. Taken together, all these molecular dysregulations collectively lead to
STAT3 constitutive activation [44]. Other pharmacological data support the pivotal role of
FXR in HCC development. OCA, which is an FXR agonist, reduces the proliferation and
metastatic properties of HCC cells, and this is due to the inhibition of the IL6/STAT3 sig-
nalling [47]. The role of BAs in HCC development is further supported by the observation
that the relative amount of primary and conjugated BAs is altered in preclinical models
and patients with HCC. The increased conversion of primary to secondary conjugated BAs
has been linked to the alteration of gut microbiota [41,48,49]. Notably, these microbiota-
associated dysregulations of BAs have been correlated to immune-related alterations in the
liver, for example, downregulation of the Chemokine (C-X-C motif) ligand 16 (CXCL16), a
chemotactic cytokine with a peculiar role in cancer [50]. Interestingly, the CXCL16 down-
regulation reduces hepatic CXCR6+ natural killer T (NKT) cells, immune cells involved in
immune surveillance [40,51]. Recently, many studies have observed that the gut microbiota
is significantly altered in PBC patients, and dysbiosis could act as a promoter of HCC
development [49]. Moreover, the increased bacterial abundance observed in the hepatic
tissue of cirrhotic patients due to the so-called leaky gut induces transcriptional changes,
leading to the activation of fibro-inflammatory pathways and the modulation of the hepatic
inflammatory microenvironment towards cancer cell immune escape and promoting HCC
development (Figure 2). This is due to alteration in toll-like receptor 4 (TLR4) signalling
pathways, which lead to a switch of tumour-associated macrophages toward the protu-
moural M2-like phenotype, as well as to a reduction of T cell-mediated immunity [52]. An
increased abundance of some specific bacterial strains has been observed in PBC, e.g., those
of Enterobacter and Klebsiella, as well as a decreased abundance of Bacteroidetes spp. and
Ruminococcaceae. Some of these dysfunctional alterations have also been observed in other
chronic liver diseases and in HCC patients, suggesting that correlation between specific gut
microbiota profiles and systemic inflammation could promote hepatocarcinogenesis [53].
In this context, it is reasonable to hypothesise that the alteration of gut microbiota may be
involved in HCC development in PBC patients.

Genome-wide association studies (GWAS) in different cohorts of PBC patients identi-
fied strong SNP associations located in the human leukocyte antigen (HLA) class II region
predisposing to PBC risks [54–59]. A meta-analysis of eight different studies has suggested
an association between the HLA-DRB1 allele polymorphisms HLA-DRB1*07 and HLA-
DRB1*12 and the risk of HCC, while HLA-DRB1*07, HLA- DRB1*12, and HLA-DRB1*15
alleles were associated with significantly increased risks of HCC in Asian populations [60].
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Another publication analysing 12 case-control studies (2030 HCC patients and 2817 rele-
vant controls) confirmed that HLA-DRB1*12 and HLA-DRB1*14 are risk factors for HCC
development, while it was observed that HLA-DRB1*1 and HLA-DRB1*11 are protective
factors [61]. A recent study by Khor et al. on Japanese PBC patients identified HLA-
DPB1*05:01:01 as associated with HCC [54].
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Other emerging candidate biomarkers for PBC are circulating microRNAs (miRNAs),
which are extremely stable, highly conserved, non-coding small RNAs post-transcriptionally
regulating gene expression [62]. A study by Tan and colleagues observed that serum levels
of miR-122-5p are elevated in PBC patients and suggested that a panel of three miRNAs
(miR-122-5p, miR-141-3p, and miR-26b-5p) could be a more sensitive and specific marker
than ALP and ANA to diagnose PBC. miRNA-122 regulates many cell functions, among
others, lipid metabolism, cell differentiation, acetaminophen toxicity, liver fibrosis in innate
immunity, and may play a role in the proliferation and apoptosis of intrahepatic bile duct
cells [63]. The expression of this miRNA has also recently been investigated in HCC pa-
tients, and surprisingly, its decreased expression was found to be associated with metastasis
in HCV-negative HCC [64]. Thus, miRNA-122 may deserve further research in this field to
ascertain whether and how it could be useful for the identification of PBC patients prone to
HCC development, also in light of the fact that differences in miRNA expression may be
affected by geographic differences [65].

3. Hepatocellular Carcinoma in PBC Patients

HCC represents at least 75% of primary liver malignancies, being one of the main
cancer-related causes of death worldwide, with poor prognosis in the case of advanced
stage [20,66]. Viral hepatitis, e.g., HBV and HCV, alcoholic liver disease, and metabolic
dysfunction-associated steatotic liver disease (MASLD), are considered the major risk
factors for HCC. A limited number of studies have been focused on assessing the risk of
HCC development in PBC patients. The main studies investigating the incidence of HCC
cases in PBC patients are reported in Table 1.
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Table 1. Main studies reporting the number of HCC cases in cohorts of PBC patients.

Study Country Study Period n. PBC Patients n. HCC Cases

Goldacre MJ [67] UK 1963–1999 424 8
Floreani A [68] Italy 1973–1996 175 4
Cavazza A [69] Spain NA 389 13
Cavazza A [69] Italy 1973–2007 327 11
Jones D [70] UK 1975–1995 667 16
Nijhawan P [71] USA 1976–1985 1692 12
Shibuya A [72] Japan 1980–1998 396 14
Howel D [73] UK 1987–1994 769 7
Jackson H [74] UK 1987–2002 930 7
Su C-W [75] Taiwan 1985–2006 96 5
Deutsch M [76] Greece 1987–2005 212 8
Kuiper EM [77] The Netherland 1990–2007 375 9
Harada H [78] Japan 1980–2009 2946 71
Trivedi PJ [79] Global PBC 1959–2012 4565 123
Rong G [80] China 1994–2014 1865 70
Braga MH [15] Brasil 1992–2020 752 20
Zhang X-X [81] China 2002–2013 1255 52
Cheng J-S [82] Taiwan 2002–2015 2737 146
Boonstra K [83] The Netherland 2008–2011 992 7

A meta-analysis evaluating the incidence of HCC in PBC has been performed, in-
cluding 29 studies for a total of 22,615 patients [84]. The pooled incidence ratio was
4.17 per 1000 patient-years. On subgroup analysis in patients with cirrhosis, the inci-
dence was 15.70 per 1000 person-years. The incidence rate was higher in men (9.82 per
1000 person-years) than in women (3.82 per 1000 person-years). These findings confirm the
high risk of developing HCC for patients with PBC. However, the risk of HCC was low in
patients without cirrhosis; moreover, the treatment with UDCA did not reduce the overall
risk of HCC, nor in patients with PBC associated with cirrhotic stage.

3.1. Risk Factors for HCC in PBC Patients

The risk factors that have been correlated to an increased incidence of HCC in PBC
patients have been and are currently investigated. Eleven studies reported a relationship
between HCC and PBC severity; all of them clearly indicate that HCC arises in advanced
histological stages [15,68–70,72,76,78–81]. This behaviour is most commonly observed in all
types of liver disease, with the exception of MASLD, in which it seems that the pre-cirrhotic
stage might confer an increased risk of HCC, independent of cirrhosis [85]. These data also
confirm our previous observation, i.e., that the relative risk for HCC in female patients with
PBC in the cirrhotic stage is similar to that of female patients with cirrhosis of different
aetiologies [86].

The most impressive data regarding the analysis of risk factors for HCC shows the
association with male gender and the lack of response to UDCA. In particular, the selection
of studies listed in Table 2 ranked on the basis of the percentage of HCC cases in each PBC
patient cohort, besides confirming the pivotal role of histological stage severity, underlines
that male gender is definitely a fundamental risk factor for the neoplastic transition of PBC
patients. Male sex has, in fact, been recognised as a risk factor in most of the studies (54%,
7 studies out of 13) and is the one that has been most commonly identified. The second risk
factor in terms of frequency is the unresponsiveness to UDCA treatment (23% of the studies,
3 out of 13), together with the advanced age of patients, which has been identified as a risk
factor per se in two of the considered studies, while in one of them, the authors indicate
the “age at diagnosis” [72]. One study from Japan [72] and one from China [80] found an
association between HCC and a history of blood transfusion and a history of HBV infection,
respectively. Similarly, in our previous study, coinfection with HCV infection emerged in



Int. J. Mol. Sci. 2024, 25, 2194 8 of 17

the multivariate analysis as an independent risk factor for HCC [68]. These studies are in
favour of an important co-factor for malignancy represented by hepatitis viruses.

Table 2. Selected studies reporting the percentage of cases, histological stage, and/or identified risk
factors for HCC in cohorts of PBC patients.

Study
% HCC

Cases/PBC
Patients

Histological Stage Risk Factors

Cheng J-S [82] 5.33 NA Male sex
Zhang X-X [81] 4.14 100% cirrhosis BMI ≥, alcohol intake
Deutsch M [76] 3.77 IV Advanced histological stage

Rong G [80] 3.75 80% with III/IV stage Advanced age, male sex, co-existence of diabetes, history
of HBV infection

Shibuya A [72] 3.54 III-IV Male gender, age at diagnosis, history of blood transfusion
Cavazza A [69] 3.36 III-IV Male gender

Trivedi PJ [79] 2.69 42% with advanced disease Advanced age, male sex, thrombocytopenia at 12 months,
non-response to UDCA

Braga MH [15] 2.66 95% with cirrhosis Cirrhosis, obesity, prior azathioprine use
Harada H [78] 2.41 10 I/17 II/14 III/8 IV Male sex, advanced histological stage (in females)
Kuiper EM [77] 2.40 Lack of response to UDCA
Jones D [70] 2.40 IV Male gender
Floreani A [68] 2.29 IV HCV, smoking
Jackson H [74] 0.75 NA UDCA seems protective

Recently, the analysis of the Italian Liver Cancer Registry identified 80 cases of PBC
with HCC after the year 2000 [87]. The median age was 71 years, and 50% were males;
cirrhosis was present in 86.3% of cases. In general, risk factors indicate that patients with
PBC, similarly to those with other autoimmune liver disease, have a moderate risk for
HCC [88].

A detailed description of the main risk factors that have been associated with HCC
development in PBC patients is reported below.

3.1.1. Male Gender

It is known that HCC incidence and mortality rates are 2–5 times higher in men than
in women in different areas [89]. In general, oestrogens can protect hepatocytes from
malignant transformation to HCC through the downregulation of IL6 release from Kupffer
cells. Thus, HCC is more common in male patients with PBC than in females, and this
sex-related difference may be partially due to the lack of oestrogen protective effect [23,90].
Moreover, some X-chromosome-located or Y-chromosome-located genes and sex hormone-
related pathways have been suggested to be involved in hepatocarcinogenesis [91,92]. A
recent study has demonstrated that CYP39A1, a liver-specific autosomal gene that has a
female-preferential expression, strongly suppressed HCC development and resulted in
a dramatic downregulation in over 90% of HCC patients [93]. Its inhibitory activity on
hepatocarcinogenesis is due to the C-terminal region that blocks the transcriptional activa-
tion activity of c-Myc, and females seem to be protected due to a higher expression of this
CYP isoform. Some molecular pathways involved in HCC severity are also affected by sex,
namely PI3K/AKT/mTOR, Wnt/β-catenin, and TGF-β [94]. PI3K/AKT/mTOR is widely
studied due to its involvement in the regulation of cell growth and proliferation, and its
hyperactivation is related to worse HCC prognosis and progression. Male HCC patients
displayed increased activation of this pathway with respect to females, contributing to
the more aggressive features of HCC observed in this sex [95]. Interestingly, oestrogens
seem to inhibit this pathway, conferring potential protection for women. Aberrant activa-
tion of Wnt/β-catenin signalling also significantly affects HCC development, progression,
and clinical-driving stemness and metabolic reprogramming [96]. The oestrogen recep-
tor 1-mediated inhibition of this pathway contributes to the protection against HCC in
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women [97]. At variance, testosterone can promote Wnt/β-catenin signalling, potentially
contributing to increased HCC risk in men. TGF-β, a cytokine displaying a dual role in
HCC, can suppress tumourigenesis at early stages, while it switches to a protumourigenic
activity in late stages [98]. Its expression is strongly affected by sex and sex hormones that
are known to exert a dual opposite hepatoprotective and hepatotoxic role [99].

Another point that should be stressed is that males, more than females, can have other
co-factors of malignancy, including alcohol consumption, smoking, and hepatitis viruses.
Moreover, a history of blood transfusions may indicate a risk for HBV or HCV transmission.
In a case-control study performed in China in 52 patients with HCC in PBC (36 females
and 16 males), males were more likely than females to have a history of blood transfusions,
alcohol consumption, smoking, and a family history of malignancy [81].

3.1.2. Hepatitis Viruses

Chronic hepatitis B virus (HBV) infection is still a main risk factor for HCC in the
world since various direct and indirect mechanisms increase the risk of developing HCC
with or without an underlying liver cirrhosis and promote hepatocarcinogenesis [100].
Watanabe et al. reported that past HBV infection is an important factor associated with
HCC also in PBC that is likely to be attributable to the higher rates of blood transfusion in
these populations of patients [10]. The risk is not eliminated by viral suppression due to
HBV-DNA being integrated into the human genome. The combination of viral and host
factors has synergic effects on HCC development, particularly the patient’s gender, type
2 diabetes, metabolic syndrome, and HBV core mutations [101].

Chronic hepatitis C virus (HCV) is another main risk factor for HCC. Viral eradication
has reduced the incidence of HCC development, even though the risk of HCC development
could not be completely eliminated beyond 10 years of sustained virological response. Thus,
HCC incidence is very low but still remains [102]. Both PBC and HCV infection display
chronic inflammation during progression to cirrhosis. HCV infection was a risk factor
for the development of hepatocellular carcinoma (HCC) in a group overlapping PBC and
HCV [103]. Indeed, HCV infection is likely to aggravate cirrhosis in PBC patients, probably
due to the synergic effect of the two pathologies: PBC leads to bile duct destruction on
one side, and HCV leads to hepatocyte and parenchyma injury on the other side [104].
PBC patients with concomitant HCV infection are characterised by a peculiar biochemical
profile characterised by poor values of liver markers, e.g., albumin, and this comorbidity is
a risk factor for the development of more severe liver damage [104].

3.1.3. Lack of UDCA Response

The unresponsiveness to UDCA treatment emerged in the studies by Kuiper [105]
and by Trivedi [79]. The latter study included a uniquely powered, internationally rep-
resentative cohort that observed that a 12-month biochemical non-response according to
Paris-I criteria is significantly associated with risk of HCC development in the future in
patients with early-stage or advanced disease and also when restricting the analysis to
only male patients. This study proposed a risk stratification based on a 12-month bio-
chemical non-response that may be relevant to patient care and the development of new
therapies [79].

Binu et al. analysed PBC progression in a cohort of subjects with compensated PBC
cirrhosis at higher risk for clinical events, obtaining contrasting results with respect to those
reported by the study of Trivedi et al. that showed a protective role of UDCA response
towards HCC development, particularly greater in non-cirrhotic patients than cirrhotic
ones [106]. This discrepancy has been explained by the authors by a reduction of the benefit
of UDCA response due to a male-predominant cohort having an elevated risk of HCC at
baseline. Likewise, in another study of cirrhotic PBC patients, the pooled incidence of HCC
in patients receiving UDCA treatment was similar to those without therapy [84].

Therefore, it remains to be completely understood to what extent UDCA treatment
lowers the risk of HCC development in PBC patients; thus, further investigations are
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advised. These observations also deserve another consideration, that is, the feasibility
of the cost-effective benefit of performing an HCC screening in patients with PBC at the
cirrhotic stage, mainly in male non-responders to UDCA.

3.1.4. Alcohol Intake

It is well known that alcohol is a potent factor for carcinogenesis [107]. A specific
association exists between alcohol and tumours of the digestive tract, including the liver.
Ethanol per se is not mutagenic, but acetaldehyde, which is a product of its metabolism,
is carcinogenic and mutagenic by binding to DNA and proteins [108]. A genetic predis-
position in terms of ALDH-2 variants may amplify the susceptibility to carcinogenesis;
indeed, East Asian populations, which have the highest prevalence of the ALDH-2 variant,
show an association with upper aero-digestive tumours [109]. However, activation of the
immune system has a pivotal role in keeping cancer under control and can facilitate cancer
progression. Alcohol can modulate the immune response in terms of immune suppression
and activation of mechanisms of growth of cancer and progression [110].

A study by Zhang and collaborators analysed HCC incidence and characteristics in a
cohort of PBC-associated HCC patients (PBC patients with HCC and 77 matched controls
without HCC recruited at Beijing 302 Hospital during the period January 2002–December
2013) [81]. Among other risk factors, they also assessed the history of alcohol intake
(considered to be alcohol consumption at least once per week for at least 1 year without
alcoholic hepatitis diagnosis), observing that it is independently associated with HCC
development in Chinese patients with PBC. At variance, in the study of Cavazza et al. on
two European cohorts of PBC patients, no significant association between alcohol (defined
as alcohol consumption >40 g/day) and HCC was found in PBC patients [69].

3.1.5. Metabolic and Age-Related Risk Factors

Notably, the study by Zhang et al. in China found that BMI ≥ 25 Kg/m2 was signifi-
cantly associated with HCC in PBC [81]. This finding confirmed the study of Hindi et al. on
49 well-characterised AMA-positive PBC patients that observed that MASH and BMI ≥ 25
were associated with severe biliary duct damage and fibrosis [111].

Another study analysing patients with type 2 diabetes mellitus (T2DM) and HCC
from different aetiologies who registered for liver transplantation observed that T2DM is a
risk factor for HCC development. Intriguingly, T2DM does not represent an additional risk
factor for PBC patients [112].

A study assessing throughout 20 years the incidence, risk factors, and clinical features
of HCC in a cohort of 1865 well-defined Chinese PBC patients observed that age >54 years
and co-existence of T2DM were independently associated with HCC development [80].

4. HCC Screening and Treatment in PBC Patients

According to current international guidelines, HCC screening should be performed, ir-
respective of the aetiology, in all cirrhotic patients with Child–Pugh A and B and in patients
with Child–Pugh C awaiting liver transplantation [113–115], and no guidelines suggest spe-
cific or additional screening for PBC patients. Abdominal ultrasound in cirrhotic patients is
the recommended method for liver cancer screening and may often successfully be used to
detect one of the common complications of liver cirrhosis—portal hypertension—through
the evaluation of some indirect signs, e.g., splenomegaly and portal vein diameter [116].
Ultrasound with alpha-fetoprotein (AFP) determination every six months is suggested
anyway, as screening in PBC has demonstrated a significantly increased sensitivity in the
early detection of HCC in patients with cirrhosis [117]. Hypoalbuminemia, thrombocy-
topenia, and portal hypertension, three signs of advanced PBC, are all risk factors for the
development of HCC, thus supporting the HCC screening according to guidelines. A case
report described the case of a 71-year-old female with overlapping AIH and PBC, with a
slightly increased AFP level, and without chronic viral hepatitis and oesophageal varices or
alcohol intake who presented an atypical aspect of a subcapsular hypoechoic nodule in the
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absence of other risk factors, except for liver cirrhosis [118]. The nodule could have been
a regenerative nodule at the first diagnosis if it were not for the fact that its dimensions
increased in time; thus, it was finally diagnosed as HCC BCLC Stage A. Thus, this report
further supports the need for proper surveillance every 6 months, including abdominal
ultrasound and AFP levels, for cirrhotic patients in order to diagnose HCC early.

Compared to HCC deriving from other chronic liver diseases, PBC-associated HCC
has a poor prognosis with a median survival of 36 months without treatment. Recently,
thanks to early diagnosis and improved treatment, the survival time has increased by
years. Regarding the best clinical option, liver transplantation has granted the highest
survival rate in cirrhotic patients with severe liver damage or who progressed to liver
failure [4], even though the indication for transplantation in PBC patients is the same as in
any other form of chronic liver disease, with HCC and HCC as a quite rare indication for
transplantation [119,120]. Moreover, pretransplant assessment and inclusion criteria for
the waiting list may vary between transplant teams, and the optimal approach is generally
continuously under re-evaluation and changing in each transplant centre [121].

5. Future Perspectives and Conclusions

The incidence of PBC is still rising worldwide. Although it seems that this incidence
has reached a plateau in North America and Europe, it is still increasing in the Asia-Pacific
region, probably due to the increased reporting rate of new diagnoses [122]. On this basis,
we also expect that the incidence of HCC in PBC patients will increase in the near future.
On the other hand, the association between metabolic syndrome, diabetes, and obesity and
HCC in patients with MASLD has been demonstrated [123–126]. As one-third of patients
with PBC actually have metabolic syndrome [127], it is reasonable to hypothesise that an
increased incidence of HCC associated with PBC will develop in the future.

The key research areas in unravelling the molecular and clinical relationships between
PBC and HCC are the identification of (i) novel biomarkers for the early diagnosis of PBC
patients, particularly those at risk of HCC development, and (ii) novel therapeutic targets
able to prevent PBC–HCC progression. Indeed, it is of fundamental importance to find
some pathological, biological, and genetic features in HCC patients arising from PBC that
may be used as biomarkers or exploited therapeutically to target the healthy–malignant
transition. This aim can be pursued with a better understanding of the mechanisms leading
to HCC development in PBC patients since the molecular drivers of this transition are
only partially understood and described. To this purpose, artificial intelligence (AI) may
be of help in the construction of algorithms predictive for HCC development in PBC
patients. Some recent computational search algorithms and machine learning (ML) and
deep learning (DL) models have been set up to help in HCC risk prediction, diagnosis, and
prognostication [128]. Despite this promising and fascinating scenario, the standardisation
of AI data is still required to obtain satisfactory results in terms of generalisability and
interpretability. However, in the future, AI is likely to produce great advances in the
prediction of PBC-related HCC occurrence.

In conclusion, even though many risk factors are predictive of HCC development
in PBC patients, the molecular mechanisms helping HCC onset in these patients remain
to be fully understood. Therefore, further studies are encouraged to improve the early
identification of populations with high risk to be checked by periodic screening for HCC.
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