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Abstract
Genomics for rare disease diagnosis has advanced at a rapid pace due to our ability to perform
“N-of-1” analyses on individual patients with ultra-rare diseases. The increasing sizes of
ultra-rare disease cohorts internationally newly enables cohort-wide analyses for new
discoveries, but well-calibrated statistical genetics approaches for jointly analyzing these
patients are still under development.1,2 The Undiagnosed Diseases Network (UDN) brings
multiple clinical, research and experimental centers under the same umbrella across the United
States to facilitate and scale N-of-1 analyses. Here, we present the first joint analysis of whole
genome sequencing data of UDN patients across the network. We introduce new,
well-calibrated statistical methods for prioritizing disease genes with de novo recurrence and
compound heterozygosity. We also detect pathways enriched with candidate and known
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diagnostic genes. Our computational analysis, coupled with a systematic clinical review,
recapitulated known diagnoses and revealed new disease associations. We further release a
software package, RaMeDiES, enabling automated cross-analysis of deidentified sequenced
cohorts for new diagnostic and research discoveries. Gene-level findings and variant-level
information across the cohort are available in a public-facing browser
(https://dbmi-bgm.github.io/udn-browser/). These results show that N-of-1 efforts should be
supplemented by a joint genomic analysis across cohorts.

Introduction
For decades preceding the widespread application of DNA sequencing, identifying the
genetic etiology of rare monogenic phenotypes including human diseases relied on
segregation in pedigrees.3 DNA sequencing enabled the analysis of sporadic cases with no
segregation data.4 Early studies analyzed small cohorts of phenotypically similar cases,5,6 a
highly successful approach that is, however, limited to diseases with multiple known
patients with fairly homogeneous presentations. In the absence of such phenotypically
matched case cohorts, N-of-1 studies of undiagnosed patients are gaining popularity.7–10 By
design, these studies cannot attain statistical power from the shared genotypes of
unrelated patients and require extensive clinical and biological inquiry to prove the causal
involvement of the genotype in disease.11–13 The most recent phase of human Mendelian
genetics employs a data science approach to gene discovery propelled by the joint genomic
analysis of phenotypically broad cohorts. Recent studies by the Deciphering Developmental
Disorders and 100,000 Genomes consortia have demonstrated the power of this approach
to identify new diagnoses and disease genes.1,14 This opens the prospect of international
cross-cohort analyses, leveraging parallel efforts in many countries, and appreciating that
rare diseases know no borders.

Undiagnosed Diseases Network dataset
Here, we apply existing and newly developed statistical genetics methods to the
Undiagnosed Diseases Network (UDN) cohort that includes extremely difficult-to-solve,
likely genetic cases (Figure 1a-e). The unique, diagnostically elusive presentation is the only
criterion for inclusion, and patients have varied presentations including neurological,
musculoskeletal, immune, endocrine, cardiac, and other disorders. Symptom onset ranges
from neonatal through late adulthood. In contrast to most existing rare disease cohorts,
individuals accepted to the UDN have already undergone lengthy but ultimately unfruitful
diagnostic odysseys prior to enrollment. These patients subsequently undergo extensive
phenotypic characterization at UDN clinical sites.15 Both broad Human Phenotype Ontology
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(HPO) terms and highly detailed clinical notes are collected and made available for all UDN
researchers. Phenotypic information includes laboratory evaluations, dysmorphology
examinations, specialist assessments, surgical records, and imaging (Figure 1f).

There is a similar emphasis on collecting sequencing data, with whole genomes sequenced
for probands and their immediate or otherwise relevant family members. Although smaller
than some other rare disease cohorts,2 the UDN—with a design bridging clinical, research
and functional validation teams and a focus on extreme patient presentations—was thought
to be optimized for “N-of-1” analyses, where probands are evaluated on a per-case basis.
Patients’ detailed phenotypic information, ongoing confirmation of new diagnoses, and the
potential enrichment for novel genetic disorders make for an ideal data space to validate
and develop statistical approaches. We harmonized and jointly called single nucleotide
(SNV) and insertion/deletion (indel) variants across 4,236 individuals with whole genome
sequencing in the UDN dataset and additionally called de novomutations from aligned
reads across complete trios (Methods, Supplementary Figure S1).16

Clinical Evaluation of Computational Findings
Here, we generate candidate gene–patient matches via a series of statistical genomic
analyses implemented in our software suite, RareMendelian Disease Enrichment Statistics
(RaMeDiES, Figure 1g,h). We focus on the model of monogenic, autosomal inheritance in de
novo and compound heterozygous cases to prioritize candidates via a genotype-first
approach, with no clinical input or phenotypic information used. Each candidate is then
evaluated with respect to the patient’s clinical presentation and the gene and variant’s
putative role in disease—based on known disease associations, functionality in model
organisms, tissue expression, molecular function, evolutionary constraint, and in silico
predicted pathogenicity—to assess phenotypic match (Figure 1i). For genes or gene
pathways harboring deleterious variants across multiple individuals, phenotypic similarity
between patients is also assessed. To scale clinical evaluation to the cohort level, we
developed a semi-quantitative protocol guided by the ClinGen framework17 that uses
hierarchical decision models to increase efficiency and enables consistent and comparable
evaluations of a gene–patient diagnostic fit by independent experts (Supplementary Note
S2, Supplementary Figure S3). We calibrated the protocol during development by testing
whether the resulting clinical scores assigned by different experts on the clinical team
were in agreement. We validated the protocol in a blind test using non-causative candidate
genes as controls. Specifically, non-causative genes were selected with identical criteria to
true candidate genes except biallelic variants were in cis rather than in trans or had low
predicted pathogenicity scores. The clinical team applying the protocol consistently scored
true candidate genes higher than control genes (Wilcoxon one-sided rank-sum p-value =
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0.0171, Methods, Supplementary Table S1), suggesting that the scores generated by the
clinicians’ protocol may be used to prioritize candidates.

Results

De novo analysis
Several highly penetrant, extreme phenotypic presentations underlying Mendelian and
other congenital, complex human diseases have been linked to de novomutations.1,18,19We
began by evaluating all independent, sporadic trios with complete sequencing data for de
novomutation etiologies. We detected 78.3 de novo point mutations and 9.5 de novo indels
on average per proband genome concordant with the expectation.20Mutation count

Figure 1. Undiagnosed Diseases Network cohort analysis. (a) Map of clinical and research sites within the
Undiagnosed Diseases Network (UDN) for evaluating patients and candidate variant functionality. (b) Genetic
ancestry across the sequenced patient cohort. (c) Clinician-recorded primary symptom categories of patients.
“Multiple” indicates 2+ categories could be considered primary and “other” indicates an unlisted category.
Categories marked with an asterisk (*) are neurological subtypes (Supplementary Note S1). (d) Patient-reported
age of first symptom onset. (e) Patient sex. (f) Categories and quantity of phenotype information collected for
patients and made available to all UDN researchers (icons are from Microsoft PowerPoint). (g) Intronic variants
detectable from genome sequencing (orange star) with a predicted splice-altering impact are considered alongside
exonic variants in our statistical framework; these variants may result in retained introns or excised exons in
processed transcripts. (h) We consider genes and gene pathways harboring de novo and compound heterozygous
variants in sequenced trios (72% of cases). Complete case count by family structure (e.g., proband-only, duo) is in
Supplementary Figure S2. Other inheritance modes (e.g., homozygous, uniparental disomy) are not considered in
our cohort-based framework. (i) Depiction of clinical framework to uniformly evaluate how well a patient’s
phenotypes are concordant with a candidate gene or variant.
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showed expected dependency on parental ages with Poisson-distributed adjusted counts,
attesting to the quality of de novo calling (Figure 2a, Supplementary Figure S4).

We then sought to identify genes enriched for deleterious de novomutations across our
patient cohort. The power of this enrichment calculation increases with better models of
underlying mutation rates and estimates of variant deleteriousness. Recently, the rate of de
novo emergence has been estimated at basepair resolution with a high degree of accuracy.21

Newly developed deep learning models for predicting the pathogenicity of de novo and
other variants also now exhibit unprecedented accuracy in distinguishing disease-relevant
variants.22,23We leverage these recent advances to build an accurate, unbiased statistical
procedure called RaMeDiES-DN to detect genes enriched for deleterious de novos.

Unlike the earliest generation of de novo recurrence approaches which leveraged Poisson
approximations for runtime efficiency but could not take advantage of improved
deleteriousness scores and mutation rate models,18 RaMeDiES methods seamlessly
incorporate per-variant deleteriousness scores and mutation rates without sacrificing
runtime. Briefly, for a given observed variant in a gene, we define its “mutational target” as
the sum of per-variant de novomutation rates for all possible variants with as high or
higher a deleteriousness score. By construction, this per-variant mutational target is
expected to be a uniformly distributed statistic (Supplementary Note S3). Our framework
naturally combines different variant types including SNVs and indels with a distinct
mutation rate model, and can interchangeably utilize various deleteriousness scores (Figure
2b, Methods). Although current state-of-the-art de novo recurrence approaches also
incorporate relevant variant-level information, they rely on a complex, permutation
procedure.1 RaMeDiES’ analytical approach eliminates the need for permutation-based
significance calculations and can process large datasets in mere seconds while maintaining
well-calibrated p-values (Supplementary Figure S5). Furthermore, RaMeDiES’ operation at
the level of mutational targets enables sharing of intermediate statistics across cohorts
without revealing patients’ individual variants.

We first focus on the subset of missense variants, which comprise a sizable proportion of
known Mendelian disease-causing variants and for which new, specialized pathogenicity
predictions exist (e.g., PrimateAI-3D and AlphaMissense).22–24We find one significant gene,
KIF21A, corresponding to the correct, complete diagnosis in one patient and a strong
partial diagnosis in one other (Bonferroni-adjusted Cauchy-combined p-value < 0.05,
Figure 2c). Notably, disease genes with a de novomode of inheritance are expected to be
under strong selection against heterozygous loss-of-function variants. We further refine
our method to incorporate this intuition by prioritizing genes by their GeneBayes values,
which indicate selection against heterozygous protein-truncating variants, using a
weighted false discovery rate (FDR) procedure.25–27With this correction, we obtain three
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Figure 2. De novo recurrence. (a) De novo mutation counts per proband adjusted for parental ages. Blue vertical
lines show the mean values of the distributions, and curves represent the Poisson fits. (b) Schematic of analytical
test for the recurrence of de novos that considers distal splice-altering and exonic SNV and indel variants, their
variant functionality scores, a genome-wide mutation rate model Roulette, and per-gene GeneBayes constraint
values. “Like” variants refer to those of the same variant class (i.e., coding SNVs [CS], coding indels [CI], intronic
SNVs [IS], intronic indels [II]) and within the same functionality score and minor allele frequency thresholds. (c)
Genes with highest significance values for de novo recurrence across the cohort when focusing on missense
variants with AlphaMissense and PrimateAI-3D scores; patients are represented as colored circles. Complete gene
list can be found in Supplementary Table S2. (d) AlphaFold-predicted human LRRC7 protein structure
(AF-Q96NW7-F1) covering the leucine-rich repeat region with high predicted structural confidence (amino acid
positions 86-463). The fifth and eighth LRR domains where missense de novos were found are highlighted in blue.
Reference alleles for missense de novo variants observed across two UDN patients (red) are shown in circles. A
depiction of LRRC7’s linear protein sequence (Ensembl ID ENSP00000498937) with InterPro predicted domains
shown in colored boxes is below. (e) Overlap of phenotype terms annotated to each patient.
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gene findings at an equivalent significance threshold (Q-value < 3e-6) and eight gene
findings at FDR 5% (Supplementary Table S2). Our second and third gene hits, BAP1 and
RHOA, correspond to a known correct diagnosis in one patient and strong clinical matches
in two other patients. Among the five remaining genes at FDR 5%, three genes (CACNA1C,
COL4A1 and NOTCH1) correspond to known diagnoses in five patients and the top clinical
candidate in one patient. Two impacted patients with de novomissense variants in the
leucine-rich repeat region of LRRC7, a gene not yet known to be disease-associated, had
phenotypic overlap of hypotonia and developmental delay; one patient additionally
experienced nystagmus, staring spells, and balance problems and the second had ataxic
gait (Figure 2d-e). These findings and LRRC7’s expression in the brain further support its
link to an emerging neurodevelopmental disorder.14 Another gene, NRBP1, remains a strong
candidate in two patients due to their neurological phenotype overlap and NRBP1’s
expression in the brain. An initial functional study in fly through the UDN Model Organism
Screening Core was inconclusive. This gene has been submitted to Matchmaker Exchange.

We next consider all exonic variants, including nonsense variants and indels, and further
incorporate additional well-established deleteriousness predictors, CADD and REVEL.28,29

Different mutagenesis processes lead to indel mutations, so SNV mutation rate models can
be inappropriate for modeling this mutation type for some genes.30We therefore
constructed a separate per-gene mutation rate approximation for indels (see Methods for
details). When we reran RaMeDiES-DN on all exonic variants using four deleteriousness
predictors, we additionally identified KMT2B (Bonferroni-adjusted Cauchy-combined
p-value < 0.05), corresponding to a correct diagnosis in four patients due to de novo indel
variants (Supplementary Table S3, Supplementary Figure S6a). The next seven gene findings
at FDR 5% were all identified when assessing recurrence of missense variants. At FDR 10%,
we identify five new putative diagnoses. For instance, two patients had high impact
missense de novo variants impacting H4C5, a histone gene that was not detected with
significance in our missense-only enrichment test due to its lack of precomputed
AlphaMissense scores. Both patients had infantile-onset gross motor developmental delays,
dysmorphic facial features, and speech difficulties (Supplementary Figure S6b,c). These and
other phenotypes exhibited by each patient were recently found to be linked to missense
variants in histone H4 genes.31 For one of the patients, the de novo variant was
contemporaneously interpreted by UDN clinical experts to be causal.32 The second patient’s
de novo variant has now been reclassified as “pathogenic” and resulted in a new diagnosis
for this participant. Two other patients with sporadic neurodevelopmental delay each
harbor truncating de novo variants in ZNF865. Both patients have phenotypic overlap with a
series of 10+ other patients with ZNF865mutations, which makes a compelling case for
pathogenicity.33 Subsequent to the publication of the case series, we anticipate this
gene–disease relationship will be established as causal and both variants to be reclassified
as likely pathogenic.
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Inclusion of deep intronic splice variants

Next, we demonstrate how RaMeDiES-DN can be extended to additionally consider
non-exonic variants uncovered uniquely from whole genome sequencing using the same
methodological infrastructure. On the one hand, it remains challenging to identify
non-coding regulatory variants involved in rare Mendelian diseases,34 and the overall role of
such variants in congenital disorders is still a subject of debate.35 On the other hand, distal
gain-of-splice site mutations creating new acceptor or donor splicing sites deep in the
intronic sequences of genes are now a well-recognized cause of monogenic disease.36

Identification of splice-altering variants directly from genome sequencing data is recently
possible using newly-developed in silico predictive scores without relying on RNA
sequencing. RNA sequencing has limitations for diagnosis because it depends on the
availability of relevant tissue material that is especially challenging to obtain for
neurodevelopmental patients, and it may miss lowly-expressed isoforms and those targeted
by nonsense mediated decay.37Moreover, identifying disease-causal intronic splice variants
is especially appealing due to their potential targetability using antisense oligonucleotide
therapies.38

Unlike functional predictions for exonic variants, which have been extensively validated for
consistency and accuracy via decades of experimental in vitro and in vivo studies,
functional predictions of splice-altering intronic variants are relatively new and still require
experimental confirmation. We used a combined computational–experimental approach to
prioritize distal splice variants using in silico predicted scores and an in vitromassively
parallel splicing reporter assay (Methods, Supplementary Figure S7).39,40We found the
per-variant in silico predictions to be mostly concordant with the in vitro assay readouts.
Variants assigned higher in silico scores are more frequently supported by the
experimental, in vitro assay, and those with relatively lower in silico scores (SpliceAI < 0.5)
have a non-negligible validation rate as well (Supplementary Figure S8). This prompted us
to incorporate the full range of continuous SpliceAI scores, disregarding only the lowest
scoring variants, in our statistics. We found this approach to consider distal splice-site
variants attractive because it lends itself to a statistical analysis alongside exonic variants.
Once genome-wide functionality score tracks are released for the next generation of splice
predictors as well (e.g., Pangolin),41 they can be integrated into RaMeDiES using the same
methodology leveraged for exonic variant predictors.

No new candidate genes with a significant recurrence of intronic de novos were found in
the UDN dataset. However, by seamlessly incorporating non-exonic variants within the
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same statistical test, our approach enables a more complete, automated analysis of the
growing volume of whole genome sequencing data across rare disease consortia.

We also ran the state-of-the-art de novo enrichment approach, DeNovoWEST.1 Unlike our
approach, DeNovoWEST incorporates a gain-of-function model alongside a
loss-of-function model, which has the potential to yield additional findings. We equipped
the DeNovoWEST algorithm with the Roulette mutation rate model, up-to-date CADD
variant deleteriousness and shet gene constraint scores,26 and further incorporated deep
intronic variants with predicted splice-altering impact (Supplementary Figure S9). This
approach yielded two Bonferroni-significant genes, one of which was also uncovered by
RaMeDiES-DN at Bonferroni significance and the second at a FDR of 6% (KMT2B and H4C5,
Supplementary Figure S10). We did not apply an FDR-based approach to DeNovoWEST’s
results to consider additional gene findings, because DeNovoWEST p-values are a
construct over three sometimes dependent tests, rendering an FDR adjustment
inappropriate. We also find CSMD1, a highly indel-prone gene, within DeNovoWEST’s
top-ranked five genes, likely because indels and SNVs are not distinguished in the mutation
rate model.42

Compound heterozygous variant analysis
We next evaluate compound heterozygous (comphet) variants, which are the most likely
cause of rare recessive disorders in populations with low degrees of consanguinity, as is
largely the case in the United States.43 Comphet variants are defined as a pair of distinct
alleles landing within the same gene and inherited in trans from unaffected parents who
are also heterozygous at these loci. These inherited disease-causing variants tend to be
rare in the population, due to the effect of selection against biallelic variant occurrences or
against slightly deleterious phenotypes of heterozygous variants.44 Despite the expected
low frequency of individual alleles comprising a comphet pair, directly selecting for highly
deleterious comphet variants still results in numerous false positive findings at the cohort
level, motivating a statistical approach for cohort-level comphet prioritization. Developing
a statistical framework analogous to de novo recurrence requires modeling the distribution
of rare inherited alleles per individual. De novomutations arise through the universal
process of mutagenesis and are therefore straightforward to model. Similarly, the
distribution of the total number of all derived alleles per haploid genome (i.e., all
non-ancestral variants inherited from one parent without any imposed frequency
constraints) are also not dependent on the demographic history of the population and
therefore are straightforward to model.45,46 In contrast, however, the distribution of the
total number of rare alleles per individual is highly dependent on population structure,
which is notoriously difficult to account for. Some previous approaches for determining
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cohort-level significance of comphet variants ignore population structure when modeling
the number of rare variants. Although this may be an accurate statistical test in controlled
model organism cross experiments, it is inappropriate for natural human populations,
where population structure is present even at a very fine scale.47 In the Genome of the
Netherlands (GoNL) dataset for instance, the number of synonymous singletons across
unrelated individuals still reflects geographic structure along a south-north cline.48

In our framework, we sidestep directly modeling the distribution of rare variant counts per
individual and instead condition on the observed number of rare variants inherited from
each parent using trio-level data. Given the number of rare variants inherited from each
parent per individual, we then compute the probabilities of comphet variants landing in
high-scoring positions in the same gene across the cohort. Although the positions where
inherited variants land is influenced in part by direct and background selection and biased
gene conversion, for very rare variants, the effect of these factors is negligible compared to
the effect of the variation in mutation rate along the genome and the overall gene target
size.21,49We therefore model the positional distribution of rare inherited variants using the
same Roulette basepair-resolution de novomutation rate model leveraged in our de novo
recurrence model. Our comphet recurrence model, called RaMeDiES-CH, relies on the
comphet mutational target, computed for each comphet variant pair and defined similarly
as the de novomutational target previously introduced. Specifically, the comphet
mutational target is computed as the total squaredmutation rate of all possible variants
with higher functionality scores (Figure 3a). RaMeDiES-CH applies the Cauchy p-value
combination approach as before to leverage multiple variant-level functionality scores
while considering exonic and intronic variants, but does not incorporate gene constraint
scores, which do not exist for recessive selection (Methods, Supplementary Figure S11).50

RaMeDiES-CH computes well-calibrated per-gene p-values for comphet variants in a
cohort (Supplementary Figure S5).

Across the set of non-consanguineous UDN families, we did not find significant recurrent
comphet occurrences across genes. This result is unsurprising, as previous estimates
suggest that in panmictic disease populations, only one deleterious comphet variant is
expected for every five dominant de novos.47 Nevertheless, RaMeDiES-CH represents an
accurate and unbiased statistical test for the recurrence of comphet variants in human
populations, which can be applied to reveal new diagnoses as sequenced rare disease
datasets expand.

We suspected that singleton disease-causing comphet variants were still present in the
cohort. We adapted our statistical framework to compute an individual-based statistic,
RaMeDiES-IND, that normalizes each observed comphet variant mutational target across
all genes in the genome rather than across all individuals in a cohort (Supplementary Figure
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S12). This approach yielded a ranked list of patient–gene pairs across the UDN cohort,
where each patient–gene pair could be annotated as corresponding to a correct diagnosis
or otherwise (Supplementary Table S4). We computed a single enrichment statistic for this
overall patient–gene ranking, which simultaneously suggested a threshold for clinical
consideration of findings, as the best Fisher’s exact test P achieved across all positions in

Figure 3. Compound heterozygous variants. (a) Illustration of the unnormalized squared mutational target
computed for each observed comphet variant in a gene across the cohort (RaMeDiES-CH, Supplementary Figure
S11) or in an individual across the genome (RaMeDiES-IND, Supplementary Figure S12). “Like” variants refer to
those of the same variant class (i.e., coding SNVs [CS], coding indels [CI], intronic SNVs [IS], intronic indels [II])
and within the same functionality score and minor allele frequency thresholds. (b) Top ranked genes resulting in
the best enrichment statistic computed for RaMeDiES-IND. Putative candidates refer to genes that remain
candidates for pathogenicity due to their phenotypically-relevant tissue expression, but where there is not enough
functional evidence or published gene–disease relationships to establish causality at this time. (c) Overlap
between phenotypes associated with MED11 and those exhibited by the affected patient. (d) RNA-Seq reads from
whole blood samples aligned to first two exons and first intron of MED11 for proband (black), dad (blue), mom
(purple) and two tissue-matched control samples (gray). Thin green line represents the intron, solid boxes
represent protein-coding exonic regions, and the dotted box represents the 5’ untranslated region of MED11. (e)
Proband exhibits significant retention of the first intron relative to parents and fifty-three tissue-matched control
samples. Intron retention ratio is calculated as the (median read depth of first intron) / (number of reads spanning
first and second exons + median read depth of first intron).
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the list. This enrichment statistic was significant when compared to the distribution of the
same statistic computed across 10,000 random shuffles of the patient–gene list
(permutation p-value = 0.001, Methods, Supplementary Figure S13). Among the top thirteen
hits yielding this best enrichment statistic, we recapitulated five known diagnoses (i.e.,
NEUROG3, PAH, COX20, NDUFAF8, PRDX3)51,52 and newly identified the genomic cause of a
known biochemical diagnosis (i.e., ACADM in a patient with MCAD deficiency). We also
identified comphet variants inMED11 which are now leading diagnostic candidates in an
undiagnosed patient experiencing neurodegeneration, developmental delay, brain
abnormalities, chorea, and hypotonia (Figure 3c).MED11 is associated with epilepsy and
intellectual disability, and this patient’s presentation could represent a phenotypic
expansion of this known disorder.53 Both inherited variants occur deep in the first intron of
MED11, a region that would be missed by exome-only sequencing or analysis, and are
predicted to cause cryptic splice donor gains. Transcriptome (RNA) sequencing of blood
samples from the affected patient and both parents highlighted a significantly higher rate
of first intron retention in the affected patient relative to both parents and to fifty
unrelated blood control samples (Figure 3d-e, Supplementary Figure S14).54

Our comphet models do not generalize to rare homozygous variants (Supplementary Note
S4). However, due to low levels of consanguinity in the UDN cohort, we do not expect
homozygous recessive variants to underlie a substantial portion of diagnoses in this
dataset.47

Pathway analysis
Genes involved in the same pathway are frequently involved in similar phenotypic
presentations.55–58 This provides an enticing possibility of drawing statistical power from
multiple independent occurrences of deleterious variants in the same functional units,
rather than just in the same genes. Moreover, therapeutics for disorders of the same
functional unit that are individually too rare to meet minimal participant requirements for
clinical trials may be evaluated together within the same umbrella or basket trial for more
efficient approval.59 However, such an approach should be pursued with caution, as the
phenotypes stemming from perturbations of different genes in the same functional unit
may vary to a great extent. Such differences in patient presentations may render the
clinical evaluations and therapeutic potential of statistically significant findings virtually
impossible. To mitigate this issue, we first initially consider groups of patients with similar
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phenotypes, and then within each of these groups, assess the overrepresentation of
deleterious mutations across established biological pathways (Figure 4a).

We start by clustering 2,662 affected patients—with or without sequencing data—into 120
groups (median = 17, min = 2, max = 97 patients per cluster) based on the semantic similarity
of their phenotype terms. Within each cluster, we then combine our de novo candidates,
compound heterozygous candidates and known UDN diagnoses and perform gene set

Figure 4. Biological pathways enriched within phenotypically-similar patient subgroups. (a) Schematic
illustrating the two-step process of first clustering patients according to the semantic similarity of their phenotype
terms and second finding enriched biological pathways among the genes within each patient cluster. (b) The
most significant pathways per cluster (adjusted p-value < 0.01) with 1+ genes from 1+ undiagnosed patients;
complete list in Supplementary Table S6. (c) Two patients with primarily immune-related symptoms each
harbored a compelling de novo variant in genes involved in immunoproteasome assembly (POMP) and
structure (PSMB8). Their symptoms strongly overlap, and a subset of these symptoms were also known to be
associated with either gene in OMIM. (d) Three neurological patients had variants in transmembrane genes
involved in the same pathway. These patients had substantial phenotypic overlap with each other, as expected,
and with the phenotypes associated with each of their genes (depicted as star shapes in the upset plot).
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enrichment analysis (Methods, Supplementary Table S5). We focus our attention on
undiagnosed cases with de novo or compound heterozygous candidates within enriched
pathways in each cluster (Figure 4b). We also report all enriched pathways including those
with only diagnosed patients for potential therapeutic grouping (Supplementary Table S6).

Two of three total candidate genes in one cluster with 19 immunological disorder patients
are both involved in the immunoproteasome complex (KEGG:03050, n = 46, adjusted
p-value = 4.42e-3). One patient’s genome contained a known diagnostic, de novo frameshift
variant in POMP, an immunoproteasome chaperone protein.60 An undiagnosed patient with
evidence of chronic inflammation, recurrent infections, and skin lesions had a missense de
novo in PSMB8, a component of the immunoproteasome ꞵ-ring with overlapping
phenotypic associations (OMIM:256040). Both patients had similar combined
immunodeficiency beyond what was captured in their standardized phenotype terms,
including decreased global antibodies, decreased B cells and natural killer cells, and
retained T cell functionality (Figure 4c). Disruptions to immunoproteasome assembly and
structure have been shown to lead to an accumulation of precursor intermediates,
impaired proteolytic activity and subsequent uncontrolled inflammation.61

In another cluster of 15 similarly presenting neurological patients, three candidate
transmembrane genes were represented in the same functional pathway named for some
genes’ known involvement in taste transduction (KEGG:04742, n = 85, adjusted p-value =
7.45e-3). Two of these genes, CACNA1C and GABRA3, harbored high impact de novo and
hemizygous missense variants respectively, corresponding to known patient diagnoses.62,63

The genome of another, undiagnosed, now deceased patient from this cluster with no prior
candidate variants contained a synonymous de novo variant predicted to alter splicing in
another gene in the same functional pathway, HCN4 (Figure 4d). All three patients exhibited
seizures at a young age, speech delays, severe hypotonia, spasticity and visual impairment.
Mouse knockouts of HCN4 demonstrate neurological phenotypes.64,65 In humans, HCN4 is
expressed in the visual and nervous systems and has recently been associated with infantile
epilepsy, suggesting that this patient’s undiagnosed disorder plausibly represents a
phenotypic expansion of this gene.64,65

Discussion
In total, we analyze 886 sporadic or suspected recessive cases with complete trio or quad
genome sequencing alongside an additional 463 phenotyped, diagnosed individuals using
computational methods to identify de novo recurrence, compound heterozygosity, and
pathway enrichment. We establish five new diagnoses and three new putative diagnoses in
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known disease-causing genes or genes previously unlinked to these patients’ exact
presentations. Our prioritization framework for pathway analysis further recapitulates 70
known de novo and 10 known comphet diagnoses and suggests 82 de novo and eight
comphet candidates for follow-up (Methods, Supplementary Table S5).

In the field of common disease genetics, statistical inference of disease-associated genomic
loci is confidently regarded as primary evidence for their causality. Rare disease genetics, in
contrast, is in a transition state. Due to a lack of large disease-matched cohorts, N-of-1
analyses relying heavily on detailed patient phenotyping and clinical intuition have typically
been used to generate candidate variant hypotheses. Evidence required to shift these
variants from uncertain significance to known pathogenic status comes from experimental,
functional studies and by identifying additional, unrelated, genotype-matched individuals
with similar phenotypes through variant matchmaking services such as MatchMaker
Exchange.66,67 Recently, analyses of large, broadly-phenotyped cohorts of N-of-1 patients
have demonstrated the potential for statistical approaches to reveal diagnoses and
generate new gene discoveries in the rare disease space as well.1,2,68

Although the genome is a big place, it is also a finite space with respect to gene regions
impacted by simple variants such as SNVs and short (<10 basepairs) indels. This suggests
that, in theory, recurrence-based statistical methods applied to sufficiently large
sequenced cohorts of rare disease patients, even those with diverse phenotypic
presentations like the UDN, will enable the eventual discovery of all causes of prenatally
viable monogenic disease stemming from these variant types. In order to take statistical
discoveries as primary evidence, as is the case for common diseases, we need accurate,
well-calibrated statistical methods.69 Even slight model misspecification may propagate and
exacerbate the rate of false discoveries. The rapid growth of genomic datasets on which
these models may be applied, coupled with an ongoing difficulty in phenotyping patients at
scale to confirm findings,70 further increases the urgency for more rigorous models.

Here we show that well-calibrated statistical models can be built for both de novo and
compound heterozygous modes of inheritance. Although novel disease–gene discovery
from large, phenotypically- and genetically-homogenous cohorts has been demonstrated,
we show here that rigorous analysis of a diverse, moderately-sized disease cohort at the
gene and the pathway level shows promise.

We also acknowledge the limitations of our models and of statistical approaches in general
for comprehensive rare disease diagnosis using short-read sequencing data. First, although
our models integrate non-coding variants with predicted splice-altering impacts, they do
not consider potentially functional variants within whole genome data that fall into
untranslated gene regions, RNA-coding genes or between genes, as genome-wide tracks of
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verifiable deleteriousness scores do not exist for these variant types. Improvements to and
precomputed scores for these variants will be beneficial for interpretation efforts in
general and can be leveraged in future iterations of RaMeDiES. Our statistical analysis also
does not consider structural, large indel, copy number, or tandem repeat variants, as their
identification from short-read sequencing data is computationally expensive and often
inaccurate. Investing in the detection of these variants from available data is difficult to
justify given the advent of affordable long-read sequencing technologies and ongoing
efforts to generate this data within the UDN and elsewhere, which should enable improved
identification and analysis of pathogenic complex variants.71,72 Developing a statistical model
for these variants will still require accurate mutation rate estimates for these variant types,
which is lacking. GnomAD-SV represents a promising iteration toward this goal, but is still
highly dependent on their specific variant calling pipeline and data rather than biological
mutagenic processes.73

The presented method considers only autosomal de novo and compound heterozygous
inheritance patterns due to complications in modeling other disease-relevant inheritance
patterns. First, it is difficult to propose a statistical model for biallelic variant counts in
consanguineous and founder populations, including homozygous variants, because these
counts strongly depend on the ancestral population history and inbreeding patterns. A
more appropriate statistical approach for assessing recurrence of these variants would be
the extension of parametric linkage applied to very large cohorts.74 Second, inclusion of
hemizygous or other X-chromosome variants requires accurate sex-chromosome variant
calling, which is notoriously error prone, as well as an accurate mutational model of the X
chromosome, which is complicated due to sex-dependent selection and random
X-inactivation. Finally, although we do not model parental mosaicism or uniparental disomy
in our recurrence statistics, these inheritance patterns and events are regularly assessed
via complementary, traditional “N-of-1” case-based approaches.12

Even though genomic sequencing has been liberalized, currently many analyses are still
restricted to individual programs, and regulatory and technical barriers prevent sharing
individual-level variant data broadly. In contrast, there are avenues for sharing some
variant-level data in a way that is easily accessible to clinical geneticists. MatchMaker
Exchange, for instance, enables the sharing of specific variants prioritized through N-of-1
analyses with the goal of finding new genotype- and phenotype-matched patients.
Broadening the success of MatchMaker Exchange to include variants that may not have
risen to the level of strong candidates in N-of-1 analyses is desirable. We developed a
browser containing our gene-level findings and variant-level information about rare
genetic variation in UDN patients (https://dbmi-bgm.github.io/udn-browser/). In addition,
we provide an open-source software package, RaMeDiES, implementing the efficient and
well-calibrated statistics for de novo recurrence and deleterious compound heterozygous
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inference proposed here. RaMeDiES’ operation on shareable summary statistics rather than
on variant-level data enables automated, deidentified cross-analysis of substantial existing yet
siloed sequenced cohorts for new diagnostic discoveries. As the Mendelian genomics field
continues the transition to this new data science phase, the methods we present here should
facilitate the exciting prospect of international cross-cohort analyses, resulting in new
findings and a vastly improved rare disease diagnostic rate globally.

Data Availability
Deidentified genome data, transcriptome data, and corresponding phenotype data in the
form of HPO terms are regularly deposited in dbGaP (accession phs001232.v5.p2).
Genome-wide, rare SNV and indel variants and HPO codes for UDN participants included
in this study are queryable in our public-facing browser. Standardized phenotype data and
candidate genes and variants are submitted to MatchmakerExchange. Variant-level data,
clinical significance and supporting evidence, demographic information, and phenotype
information for all diagnostic variants are regularly submitted to ClinVar. Identifiable
patient data is under controlled access to protect patient privacy. Other relevant,
deidentified patient-specific clinical information may be shared on a case-by-case basis at
the discretion of the corresponding clinical team if it is directly related to diagnosing or
potentially treating the patient.

Code Availability
Our software package RaMeDiES is available at https://github.com/hms-dbmi/RaMeDiES.
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Undiagnosed Diseases Network (UDN) structure

The Undiagnosed Diseases Network (UDN) was established in 2014 with the goal of
uncovering clinical diagnoses and novel disease-causing genetic variants and their
molecular functionalities. In its current phase, the UDN is composed of 12 clinical research
centers across the United States and a CLIA-certified sequencing core at Baylor Genetics.
Typical UDN patients have already endured a multiyear “diagnostic odyssey” of extensive
prior testing by multiple medical specialists and often inconclusive targeted, whole exome
and even whole genome sequencing at the time of their application to the UDN.

As part of the application process, a team of clinicians and genetic counselors at one of the
UDN clinical sites reviews the patient’s medical records, referral letters and lab data and
creates an abstracted case review document. If the team concludes that a UDN evaluation
may aid in the identification of a diagnosis, the patient is accepted to the program and
undergoes a thorough in-person evaluation at their assigned clinical site. Most patients and
available affected and unaffected family members receive whole genome sequencing (GS)
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as well. All genomic sequencing data, clinical sequencing reports prepared in accordance
with the American College of Medical Genetics and Genomics (ACMG) variant classification
guidelines, structured phenotyping in the form of Human Phenotype Ontology (HPO)
terms, lab results, imaging data, medication data, referral letters and clinical notes, the
abstracted case review document, and candidate variants and genes are uploaded to the
UDN Data Management and Coordinating Center. All patients enrolled in the UDN have
consented to the broad sharing of all their genomic, phenotypic and clinical data with
researchers network-wide for use in research projects and when evaluating
gene–phenotype fit for a specific patient and candidate gene. Moreover, UDN patients have
consented to follow-up if additional tests or information are deemed useful.

Harmonization of whole genome sequencing data

Short-read whole genome sequencing was performed between 2014 and 2022 in
accordance with the UDN Manual of Operations, which specifies that the average coverage
across the genome must be >40X, and >97.5% of all coding and noncoding genes (UTRs,
coding regions, and intronic regions) must be covered at >20X. Paired-end FASTQs were
retrieved in June 2022 for 4268 samples collected from 4236 unique individuals. Six
individuals subsequently dropped out of the UDN program and are excluded from the
analyses presented here. All FASTQ pairs were within expected parameters
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and were aligned to
human reference hg38 (with decoys and all alt contigs) using the Sentieon1 bwa-mem
implementation via the Clinical Genome Analysis Pipeline (CGAP,
https://cgap.hms.harvard.edu/). Read groups were added via a custom CGAP script,
multiple FASTQ pairs corresponding to the same sample were merged, and resulting BAMs
were sorted, deduped, and recalibrated using a Sentieon implementation. GVCFs were
produced using CGAP's implementation of GATK's HaplotypeCaller. All processing steps
from FASTQ to GVCF were deployed on spot instances in Amazon Web Services (AWS).
GVCFs were then egressed to the Harvard Medical School institutional cluster. SNVs/indels
were jointly called across genomic shards then merged using Sentieon tools. Per-sample
sex and cross-sample relatedness were confirmed using Somalier (Supplementary Figure
S1).2We required that all trios under consideration in our analysis had two parents reported
as “unaffected”, a child reported as “affected”, parent–child relatedness 0.5±0.075,
parent–parent relatedness <0.15, mothers had heterozygous variants present and a scaled
mean depth of ~2 on chromosome X, and fathers had a scaled mean depth of ~1 on
chromosome Y. All variants were annotated using Ensembl VEP (version 108) and slivar for
TOPMed and per-population gnomAD (versions v2.1.1 and v3.1.2) variant frequencies and
homozygote counts.3,4
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For our compound heterozygote analysis, we inferred within-family regions of identity by
descent (IBD) using KING.5We required at least one IBD region between the child and each
parent to further confirm relatedness (in addition to kinship coefficient filtering) and no
IBD regions of length >3Mb between parents to confirm non-consanguinity between
parents. In families with multiple affected siblings, we select one sibling as the proband and
disregard the other siblings during initial analyses. Variants in other affected siblings were
then used to check segregation during validation of our findings. This process resulted in
846 non-consanguineous trios with an affected child and two unaffected parents for our
analyses. We chose to stringently exclude individuals with evidence of familial
consanguinity (i.e., by imposing a parental relatedness and IBD region length constraints)
rather than excluding patients based on their relative recessive burden because an
assumption of our statistical models is violated in consanguineous cases (Supplementary
Note S4).

Clinical evaluation framework

Protocol overview
We developed a clinical analysis protocol to reduce subjectivity in the assessment of
diagnostic candidates. We used the case evaluation process implemented at Brigham
Genomic Medicine as a foundation.6We then transformed this process into a systematic
and structured protocol with inspiration from the gene–disease association criteria
developed by the Clinical Genome Resource (ClinGen) group.7,8 Evidence in support of or
against a candidate variant–participant match was evaluated by a team of clinical
geneticists according to three categories for experimental evidence not taken into account
by our statistical analyses: (i) model organism or cell line studies, (ii) tissue expression, and
(iii) protein molecular function. Clinicians also took into account case-level data and
published literature with case-control data including (iv) known disease associations, (v)
gene evolutionary constraint, and (vi) variant pathogenicity. Discrepancies in opinion were
mediated by joint discussion until a consensus decision was reached. A detailed description
of the protocol and scoring scheme is available in Supplementary Note S2 and hierarchical
decision trees to streamline the scoring process are provided in Supplementary Figure S2.

Clinical score calibration
We ensured that the protocol was specific and detailed to the extent that different
clinicians with access to the same patient data would independently assign equal clinical
scores to the same candidates. Over the course of two months, at least two clinicians each
evaluated 2–3 compound heterozygous candidates per week and independently recorded
their notes, final clinical scores, and score rationale in a REDCap database.9 At weekly joint
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discussions, they iteratively updated the protocol to improve specificity and reduce
discrepancies in scoring. The final two joint discussions confirmed that categorical and
final clinical scores assigned by different clinicians were consistently in agreement.

Validation
The clinical team was provided with ten “candidates” and ten “decoys” from real UDN
patients in random order to evaluate. The team was blinded to gene labels, variant
inheritance and SpliceAI score information during evaluation. “Candidate” genes had two
rare variants (gnomAD popmax AF < 0.001) inherited in trans where one variant was exonic
with CADD > 23 and the second variant was intronic with a max SpliceAI > 0.3. “Decoy”
genes were selected with identical criteria except that variants were actually inherited in
cis or the intronic variant had a maximum SpliceAI score of 0. After assigning final clinical
scores to each of the 20 genes, the candidate/decoy labels were revealed to the clinical
team (Supplementary Table S1).

Identification of de novo variants

For each of the 1463 sequenced trios in our harmonized UDN dataset, including trios with
unaffected offspring, we select the subset of variants with read depth >10 and genotype
quality (GQ) >20 across proband, mother and father. We further subset to variants with a
“high” Roulette quality score, gnomAD population maximum allele frequency < 0.01,
TOPMed10 allele frequency < 0.01, proband alternate allele read depth >4 and frequency
>0.2, and alternate read depth <2 in both parents.

We then utilize observed aligned reads across each trio and across thirty unrelated
individuals to assign posterior probabilities to each putative de novo variant on autosomes
using the CGAP reimplementation of novoCaller (https://cgap.hms.harvard.edu/).11We
consider all de novos with a novoCaller posterior probability >0.7 to be high confidence,
noting that thresholding the novoCaller posterior probability from 0.5 to 0.95 has negligible
impact on the number of passing variants overall and per-proband (Supplementary Figure
S6a). We further exclude probands with over 150 high confidence de novo calls, as these
patients frequently had “suspected parental mosaicism” mentioned in their clinical records.
Finally, because clonal sperm mosaicism may lead to siblings inheriting identical de novo
variants, we exclude duplicate de novo variants within each family from downstream
recurrence analyses.12 This process resulted in 1072 trios with an affected proband and
unaffected parents for further analysis.
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Analytical test for de novo cohort-level recurrence

Basic statistic definition
We define a cohort as a set of genomes (i.e., collections of genes) each with sets of de
novo variants arising independently but based on the same background de novomutation
rate. Let denote the de novomutation rate of a specific variant . The mutational target
of a gene is

.

The mutational target of a variant in gene is

(Equation 1)

where is the deleteriousness score of variant . Intuitively, the more surprising
and/or deleterious a variant, the smaller its mutational target. By definition, variant
mutational targets are uniformly distributed from 0 to , so

.

Suppose there are de novo variants falling within gene across the cohort, where
. We define a statistic as

.
(Equation 2)

Note that is a sum of uniformly distributed variables on [0,1] under the null. The
distribution of given parameter can thus be modeled by the Irwin-Hall (IH) “sum of
uniforms” distribution, which has a closed form for its cumulative density function (CDF)
and thus also for its survival function (SF), where .13 This enables us to
replace permutation-based significance evaluations and instead analytically compute the
probability of achieving a as high or higher than observed with variants using the IH
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survival function as . We note that there are many other
constructions over a set of uniformly-distributed random variables (such as p-values).14,15

We further note that as the cohort size dramatically increases, the Irwin-Hall distribution
can be replaced with the normal distribution.

Finally, we also model , the probability of independent de novo variants to land in
gene given this cohort of size , to assign an overall significance value to our statistic
as

.
(Equation 3)

Because neither nor are defined for , we do not expect to be
uniformly distributed. Instead, only is expected to be
uniformly distributed (Supplementary Figure S9).

In a single genome with total observed de novo variants, the number of de novo variants
to land in a particular gene , given that , is Poisson distributed, parameterized by
the expected number of de novos . In a cohort of genomes, the number of de
novo variants to land in gene is therefore a sum of Poisson-distributed random
variables, which itself is also Poisson distributed. We thus compute ,
where is given by

.

Different deleteriousness scores for coding and intronic variants
We use continuous, per-variant deleteriousness scores that are precomputed and
publicly-available for all possible variants genome-wide in our computations. Precomputed
scores are required for the calculation of comprehensive, basepair-resolution mutational
targets as described above. For missense variants, we interchangeably use AlphaMissense
(version hg38 released with their 2023 publication), PrimateAI-3D (academic license,
accessed May 2024), CADD (version 1.6), and REVEL (accessed May 2024).16–19 CADD is also
used for scoring all other exonic variants, including nonsense and indel variants. For
intronic variants, we use SpliceAI (academic license, accessed May 2021).20We use different
variant functionality scores for exonic and intronic variants because we found that these
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values are poorly correlated with each other in intronic space (Supplementary Figure S15).
Clinical sequencing centers also regularly report these scores, suggesting their relevance in
rare disorders.8,21

Different mutation rate models for SNV and indel variants
We use Roulette de novomutation rates for SNVs genome-wide. Different mutational
processes lead to indel mutations, so Roulette values cannot necessarily be adapted to
model this mutation type.22We approximated per-gene joint distributions of indel mutation
rates and deleteriousness scores as follows. First, we considered all possible exonic indels
of length ≤10nt for which precomputed CADD scores were available for download and all
possible intronic insertions of length 1nt and deletions of length ≤4nt for which
precomputed SpliceAI scores were available for download. Although SpliceAI provides
predictions exhaustively for all possible indels, CADD provides scores for the subset of
indels observed in gnomAD-v2. We excluded all indels that overlapped with any SNVs
assigned a Roulette “low quality” filter, which are based on gnomAD quality metrics,
abnormal density of segregating sites, and suspicious patterns of recurrence. We further
excluded indels with a gnomAD popmax MAF > 0.1% and/or a number of alleles in gnomAD
(AN) in the bottom decile. For exonic and intronic variants separately, we binned all indels
by their precomputed CADD or SpliceAI score rounded to the nearest hundredth. The total
number of indels within a deleteriousness score bin and all bins corresponding to higher
deleteriousness scores was used as an approximation to the mutational target associated
with that score.

Incorporation of different variant types
Because there are different deleteriousness scores for coding and intronic variants and
different mutational targets for SNV and indel variants, we expand our basic test statistic to
accommodate different variant types {coding SNV, coding indel, intronic SNV, intronic
indel}. We redefine a gene and variant mutational target with respect to each variant type
as

and
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where refers to the subset of all possible variants in gene of type . We define as

where is the number of observed de novomutations of variant type landing in gene .
The expected number of de novos to land in gene when considering different variant
types is

where denotes the total number of observed de novo variants of type in an individual

. For each variant type , we scale such that . We compute
.

Cauchy-combination of p-values computed with different deleteriousness predictors
We can run our method using different deleteriousness score predictions for coding SNVs
(i.e., AlphaMissense, PrimateAI-3D, CADD, or REVEL), resulting in slightly different lists of
genes with corresponding p-values when incorporating this variant type. We combine
these lists using the Cauchy combination test, an analytic calculation that is applicable
under arbitrary dependence structures.15

Incorporation of GeneBayesvalues
We incorporate GeneBayes values, which estimate the selection against heterozygous
protein-truncating variants per gene, as weights in a weighted false discovery rate (FDR)
procedure.23,24We sort all genes in ascending order by their GeneBayes values. We then
separate these sorted genes into 10 equally sized decile bins. For each gene in each bin

, we compute a weight as

where is the set of exclusively dominant disease-causing genes as annotated in OMIM
(accessed December 2023). Genes without GeneBayes values are assigned a weight .
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Note that and that GeneBayes values, which are constant for all variants within a
given gene, are independent from and values, which vary for variants within a gene
based on variant mutational targets and deleteriousness scores. This enables us to perform
Benjamini-Hochberg false discovery rate correction on weighted Q-values computed for

each as .23

Massively Parallel Splicing Reporter Assay (MPSA)

Assay design
We designed oligonucleotides to evaluate the impact of a variant predicted to cause a
cryptic splice site gain or a canonical splice site loss. For each variant with a predicted
splice-altering impact, we extracted the surrounding genomic sequence from the UDN
patient harboring the variant (alternate) as well as a paired version with the variant of
interest replaced with the reference allele (reference). We centered the candidate sequence
on the variant of interest, noting that the impacted splice site junction could be up to 50
nucleotides away from the variant. For a subset of variants, we also generated candidate
sequences that were centered on the predicted site of the altered splice junction rather
than on the variant itself. We embedded each candidate sequence in an oligonucleotide
template containing a 4-nt barcode and flanking primers as follows:

Splice donor library structure
GCACGGACAAAGTACTAGCC [155-nt candidate sequence][4-nt SD-associated barcode]
GGAAGATCGACGCAGgtaagt

Splice acceptor library structure
TGCTCTTATGCGAACGTGTTAAC [4-nt SA-associated barcode] [151-nt candidate sequence]
GGAAGATCGACGCAGgtaagtt

The final oligonucleotide library contained 6,000 200-nt oligonucleotides, encompassing
1,920 alternate/reference pairs, which we ordered from Twist Bioscience.

Library cloning and experimental protocol
The oligonucleotide library was cloned separately using PCR amplification and NEBuilder
assembly into lentiviral splice acceptor (pLenti-MPSA-acceptor) and splice donor
(pLenti-MPSA-donor) vectors. These vectors consisted of an EF1A promoter and an
mCherry open reading frame (ORF) followed by splicing reporter modules based off of prior
published massively parallel splicing reporter constructs25,26 (Supplementary Figure S7) as
well as a separate Puromycin selection cassette. Plasmids have been deposited to Addgene.
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Lentiviral particles for each library were produced and titrated. Each library was
transduced at a multiplicity of infection (MOI) of 0.3 in three biological replicates into
6.25*106 cells/replicate of HepG2 (liver) and SK-N-SH (neural-like) cells, both acquired from
American Type Culture Collection (ATCC). Cells were selected with Puromycin to
completion, and genomic DNA and RNA were harvested one week after transduction.

PCR-based nextgen sequencing (NGS) library preparation was performed on all 12 genomic
DNA and RNA samples. Libraries were sequenced with 75-nt paired-end reads using an
Illumina NextSeq 500 sequencer, ensuring an average of >1,000 reads per library member
from all libraries.

Barcode mapping
Over ~75% of all RNA reads could be mapped back to a 15-nt barcode found in our starting
dictionary. This resulted in ~6–15 million mapped RNA reads per MPSA replicate, yielding a
median of 1,170 mapped reads per alternate/reference library pair per replicate. Results
from Tapestation, an automated electrophoresis system for sizing and quantifying nucleic
acid samples, showed that 49.6% of mapped reads from splice donor MPSA experiments
utilized some library splice donor site and 50.4% utilized the experimentally fixed site.
Across splice acceptor MPSA experiments, 58.3% of mapped reads utilized some library
splice acceptor site and 41.7% utilized the fixed site.

MPSA validation rate
We considered all alternate/reference library pairs with at least 10 barcode-disambiguated
mapped reads each in one or more MPSA experiments; 99.4% of pairs met this
requirement. Each read was then categorized as (1) using the experimentally fixed splice
site, (2) using a splice site corresponding to a known intron/exon junction as annotated in
Ensembl, (3) using the SpliceAI-predicted cryptic splice gain site, (4) using a cryptic splice
site at a different location, (5) malformed where the read did not begin with the correct
fixed sequence due to a next-generation sequencing error, or (6) recombined where the
read did not align to the expected oligo sequence at all. The percent of malformed and
recombined reads per alternate/reference pair was 7.5% (SD=1.9%) and 6.2% (SD=10.6%)
respectively on average. The position of SpliceAI-predicted cryptic splice sites often did
not correspond to the expected splice junction based on manual inspection or to the splice
sites observed in MPSA experiments (55.4% of splice acceptor and 5.4% of splice donor
predicted positions matched). We instead considered the most common cryptic splice site
position observed in each alternate library sequence to be the predicted site. MPSA
validation rate is computed per alternate/reference library pair as the difference in
percentages of total reads supporting the predicted cryptic splice site between oligos
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containing the alternate variant and the corresponding reference oligonucleotides
(Supplementary Figure S8a).

We compared the MPSA validation rates across the three biological replicates and two cell
types using Pearson’s correlation (Supplementary Figure S8b).

DeNovoWEST gene-specific enrichment of de novo variants

We modified the DeNovoWEST weighted permutation test by first augmenting the set of
variants under consideration beyond exonic variants to include all possible intronic variants
in protein-coding genes with a SpliceAI score >0.4, resulting in ~400k additional possible
variants under consideration.20 To this end, we modified the codebase to consider these
intronic putatively splice-altering variants to have the same functional consequence as
canonical splice site variants if they had a VEP annotation of “splice_acceptor” or
“splice_donor” or the same functional consequence as missense variants otherwise. We
then updated the required precomputed values, including per-variant mutation rates,
minor allele frequencies, deleteriousness scores and per-region constraint values as
detailed below, for all exonic and intronic variants under consideration (Supplementary
Figure S9a). The underlying triplet-context mutational model was replaced with
genome-wide, per-SNV Roulette mutation rate estimates.27 Each variant's minor allele
frequency was set to the maximum gnomAD-v3 population or TOPMed allele frequency.
Per-variant Phred-scaled and unscaled CADD values were obtained from
https://cadd.gs.washington.edu/ (version 1.6 for GRCh38/hg38). Updated per-gene shet
values were obtained from http://genetics.bwh.harvard.edu/genescores/selection.html
and binned into a “low” category if mean shet was below 0.15 and a “high” category
otherwise.28 Notably, some stable Ensembl gene IDs in GRCh37/hg19 are not present in
GRCh38/hg38 and vice versa; all variants from the 894 GRCh38/hg38 genes without shet
values are binned into the “low” category. Regional missense constraint values, defined for
adjacent windows covering the full genomic region of each protein-coding gene were
obtained from
https://gnomad.broadinstitute.org/downloads#exac-regional-missense-constraint. We
translated these genomic region coordinates from GRCh37/hg19 to GRCh38/hg38 using
UCSC's LiftOver tool and then assigned a constraint value to exonic and intronic variants
corresponding to the genomic region they fell into. We recomputed the weights assigned
to each variant type using the union of all de novo variants in our cohort and the de novo
variants released with DeNovoWEST (encompassing ~31,000 exome-only trios), because the
distribution of de novo variant classes in UDN data was very similar to the distribution of de
novo variant classes in the dataset used by DeNovoWEST (Supplementary Figure S9b-c) and
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because the authors warn that weights generated from smaller datasets alone may be
unreliable. Gene severity scores were then computed for every gene harboring one or more
de novo variants across our cohort. We adjust DeNovoWEST assigned p-values using
Bonferroni correction for twice the total number of genes evaluated as suggested by the
authors. We find that DeNovoWEST and RaMeDiES-DN (using only CADD in exonic regions
as a closer comparison to DeNovoWEST) recovered known autosomal dominant disease
genes at a comparable rate across de novo variants provided in the original DeNovoWEST
paper (Supplementary Figure S16).

Analytical test for compound heterozygous cohort-level recurrence

A compound heterozygous configuration is an independent occurrence of two variants: one
maternally ( ) and the other paternally ( ) inherited. The mutational target of a
compound heterozygous configuration should therefore lie in a space of squared
mutational targets. We define the mutational target of a compound heterozygous
configuration as

(Equation 4)

where and are maternally and paternally inherited variants comprising a compound
heterozygous configuration, and and are computed as in Equation 1. To
prioritize compound heterozygous configurations with both deleterious variants, we use
the maximum over per-variant mutational targets. A single deleterious variant in a
compound heterozygous configuration may indicate carrier status rather than a compelling
candidate for a rare disorder. By this definition, is uniformly distributed at null
(Supplementary Note S4). This enables us to define a similarly constructed statistic
modelable by the Irwin-Hall distribution as in the case of recurrent de novos (Equation 2):

where is the number of compound heterozygous configurations independently landing
in gene across the cohort, and and are the maternally and paternally inherited
variants in gene in individual . As before, is approximately Poisson distributed, and
parameter , the expected number of compound heterozygous configurations to land in
gene , is given by
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where and are the numbers of maternally and paternally inherited rare variants
in an individual , respectively. We compute as before.

Finally, we extend this basic test statistic to accommodate 16 compound heterozygous
configuration types as {coding SNV, coding indel, intronic SNV, intronic indel}2

and define and Poisson parameter accordingly as

and

where is the number of compound heterozygous configurations in gene across
the cohort where the maternally inherited variant is of type and the paternally inherited
variant is of type . Instances where are excluded from the above sums. For

each variant type , we scale such that . We compute the probability of
as in Equation 3. Note that homozygous recessive variants violate the assumptions of our
approach and are excluded (Supplementary Note S4).

Modeling false positive diagnoses

For any gene where the observed number of variants across the cohort, we
suspect that there are some true diagnoses in specific patients as well as some “false
positives” where a randomly occurring variant in a patient is unrelated to the patient’s
condition. We use the binomial distribution parameterized by independent trials and
probability of success per trial to estimate the proportion of false positive
diagnoses for each gene.
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Analytical test for individual-level compound heterozygous configuration

Given a set of independent compound heterozygous configurations across genes in a single
individual’s genome, we construct a test for the hypothesis of a monogenic, recessive
disorder caused by one of these compound heterozygous configurations against the null.
We assume up to one compound heterozygous configuration per gene, i.e., for each gene ,

, where and and are the numbers of maternally and
paternally inherited rare variants in this individual’s genome.

We now rescale the mutational target of a compound heterozygous configuration (Equation
4) with respect to all genes in the genome as

.

Intuitively, this corresponds to the probability of observing a compound heterozygous
configuration with an equal or smaller (i.e., more surprising) mutational target occurring in
any gene in the genome. Thus, . We precompute each gene’s compound

heterozygous mutational target for all genes in the genome in order to quickly compute
values for each observed compound heterozygous configuration in an individual.

Next, we define our statistic per individual as the minimal observed rescaled compound
heterozygous mutational target:

. (Equation 5)

We compute the probability of observing a value this low or lower given total genes
with observed compound heterozygous configurations in an individual’s genome as

.

where is a dummy variable. Because is uniformly distributed on [0,1],
, so we simplify this calculation as
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.

We also model the distribution of observed compound heterozygous configurations
across an individual’s genome in order to compute the overall probability of our statistic
using the same formulation as before (Equation 3). The distribution of , given our prior
assumption of at most one compound heterozygous configuration per gene, has an exact
solution as the number of double events in a bivariate binomial distribution with
correlation parameter ρ capturing the effect of different gene lengths on . However, due
to the complexity in calculations of the exact solution, here we use the Poisson

approximation instead because, for each gene , and . The
parameter for the Poisson approximation in this case is

.
(Equation 6)

Finally, we accommodate the 16 compound heterozygous configuration types as
{coding SNV, coding indel, intronic SNV, intronic indel}2 and redefine , and Poisson
parameter accordingly as

and

and

.
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Enrichment for correct diagnoses

Given a ranked list of genes across a cohort of patients, where each gene may be diagnostic
for the given patient, we can compute enrichment for correct diagnoses at each gene rank.
We use Fisher’s exact test to compare the proportion of complete, certain diagnoses in all
genes up to and including rank k compared to the proportion of correct diagnoses at genes
ranked k+1 through the end of the list. We consider the minimum Fisher’s exact test P
across all k to be our overall enrichment. We assign a permutation-based P-value to this
enrichment value by randomly permuting the initial gene list 10,000 times and recomputing
the minimum Fisher’s exact test P for each permuted list.

Transcriptome sequencing analysis forMED11
RNA extraction, sequencing and quality control
RNA was extracted from UDN patients’ whole blood samples received at UCLA between
2018 and 2019 using PAXgene Blood RNA extraction kits from Qiagen. Concentration of RNA
in each sample was quantified using the Qubit 3.0 Fluorometer. RNA integrity numbers
(RINs), a quality control measure, were assessed per sample using the Agilent bioanalyzer.
RNA libraries were prepared for each sample using either the NuGEN Universal Plus
mRNA-Seq kit or the Illumina TruSeq mRNA + Globin Minus kit. Sequencing was then
performed on the Illumina NovaSeq 6000 to generate ~50-100 million 100-150bp
paired-end reads per sample. Library preparation and sequencing were performed at the
UCLA Neuroscience Genomics Core and the UCLA Technology Center for Genomics and
Bioinformatics Core. Sequenced reads in FASTQ format were aligned to human reference
genome GRCh37 using STAR v2.5.2b with default parameters and Gencode v19
annotations.29,30 To increase sensitivity to novel splice junctions, reads were mapped using
the STAR 2-pass mode, where novel splice junctions detected during the first pass
alignment are indexed and used alongside known splice junctions in the second pass
remapping. We confirmed effective ribosomal RNA (rRNA) depletion per sample by aligning
all paired-end reads to the complete sequences for nuclear and mitochondrial rRNAs using
BWA-mem v0.7.1731 and ensured that the proportion of aligned reads did not suggest
excessive rRNA contamination. Duplicate reads were marked using PicardTools v4.2.4.0 and
post-alignment sequencing quality was assessed using RNA-SeQC v1.1.8 to ensure adequate
library complexity.32,33 RNA sample identity was confirmed by comparing single nucleotide
variant (SNV) calls from RNA sequencing to SNV calls from corresponding exome or
genome sequencing data per sample.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.02.13.580158doi: bioRxiv preprint 

https://paperpile.com/c/xB0WoA/DltI+ED0n
https://paperpile.com/c/xB0WoA/oJXy
https://paperpile.com/c/xB0WoA/YCT3+ykdf
https://doi.org/10.1101/2024.02.13.580158
http://creativecommons.org/licenses/by-nc-nd/4.0/


Intron retention outlier analysis
Fifty-three tissue-matched control samples from UDN participants unrelated to the
proband, mother and father were selected for outlier analysis. IRFinder v1.2.434 was run in
BAM mode using the same human reference GRCh37 and Gencode v19 annotations on
aligned BAM files to measure the level of intron retention (i.e., “IRratio”) inMED11 across the
proband, mother, father, and control samples. The IRratio is computed per sample as
(median read depth of first intron) / (number of reads spanning first and second exons +
median read depth of first intron). Aligned reads covering theMED11 gene region (i.e.
chr17:4,634,723-4,636,903) from the proband, mother, father and two control samples were
viewed using a local installation of the Integrative Genomics Viewer (IGV) v2.16.0.35

Pathway enrichment analysis
Phenotypically-similar patient groupings
Phrank was used to compute all-against-all pairwise phenotype similarity scores between
all affected patients' sets of standardized HPO terms. We normalized these scores by
dividing by the maximum self-similarity score in each pair.36 UDN patients experience a
spectrum of symptoms across overlapping biological categories and therefore cannot be
easily separated into distinct, well-defined clusters (Supplementary Figure S17). We
iteratively grouped similar patient pairs using complete-linkage hierarchical clustering with
the agnes function from R's cluster package, which allows for patient groups of different
sizes while minimizing the maximum distance between any two patients in the same
cluster. We assigned patients to clusters by cutting the resulting dendrogram at height=3.5,
resulting in 120 clusters of 2–97 patients per cluster (mean=22, median=17).

Selecting genes per patient cluster
We identify genes per patient cluster as follows. First, we consider known diagnoses for all
UDN patients in that cluster. For patients with a diagnosis that was “complete” (i.e.,
explained all symptoms including asserted phenotypes), no further genes are considered.
For patients with no diagnosis or at most one “partial” diagnosis, we then consider genes
with an exonic (or intronic with a SpliceAI score >0.4) de novo variant and assign each gene
its variant’s severity weight (s) from our modified DeNovoWEST procedure. Recall that
weights are assigned per variant class based on functional impact (e.g., frameshift,
nonsense, missense), variant deleteriousness, and gene constraint. Autosomal de novos are
considered as before in addition to de novos on chromosome X with gnomAD population
maximum allele frequency < 0.0001, TOPMed allele frequency < 0.0001, proband alternate
allele read depth >20 and frequency >0.2 (for females) and alternate read depth >20 in both
parents. We consider the most significant gene per patient with Pr(s) < 0.0005, where Pr(s)
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= Pr(S ≥ s | K=1)Pr(K=1). Pr(S ≥ s | K=1) is computed exactly using precomputed per-variant
Roulette mutation rates and variant weights per gene. Pr(K=1) is computed assuming
mutations follow a Poisson distribution with λ=μgene for genes falling on chromosome X in
males and λ=2μgene otherwise. Finally, in patients who still have fewer than two genes at this
point and no complete diagnoses, we include up to one additional gene harboring a
compound heterozygous variant pair that ranked in the top 100 in our RaMeDiES-IND
cohort-wide per-individual analysis, as there was significant enrichment for correct
diagnoses in this set (Fisher’s exact test p-value = 5.23e-4). Across all patient clusters, we
considered 70 genes (6.15%) with de novo variants corresponding to known diagnoses, 10
genes (0.88%) with compound heterozygous variants corresponding to known diagnoses,
562 (49.38%) other known diagnostic genes, 434 genes (38.14%) with new de novo
candidates, and 62 genes (5.45%) with new compound heterozygous candidates.

Gene Set Enrichment Analysis (GSEA)
The genes found across all patients in each patient cluster were used as a query set for
gene set enrichment analysis (GSEA) using g:Profiler.37We considered Reactome and KEGG
biological pathway gene sets of size <150 genes and set our background gene set to all
human genes annotated in Ensembl. Enrichment p-values are adjusted using g:Profiler’s
g:SCS approach.38 Briefly, for every query gene set size, 2000 random gene sets of the same
size are used as queries for GSEA with the same parameters, and the lowest pathway
enrichment p-value is recorded for each random query set. A threshold t is selected for
each query gene set size as the 5% quantile of these random minimum p-values.
Enrichment p-values resulting from the true gene query are then adjusted by multiplying
by 0.05/t.
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