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Abstract
In genetic association analysis of complex traits, detection of interaction (either GxG or
GxE) can help to elucidate the genetic architecture and biological mechanisms
underlying the trait. Detection of interaction in a genome-wide interaction study
(GWIS) can be methodologically challenging for various reasons, including a high
burden of multiple comparisons when testing for epistasis between all possible pairs of a
set of genomewide variants, as well as heteroscedasticity effects occurring in the
presence of GxG or GxE interaction. In this paper, we address the problem of an even
more striking phenomenon that we call the “feast or famine” effect that occurs when
testing interaction in a genomewide context. We show that in any given GxE GWIS,
the type 1 error of standard interaction tests performed genomewide can vary widely
from the nominal level, where the actual type 1 error in any given GWIS varies as a
predictable function of the observed trait and environmental values. Using standard
methods, some GWISs will have systematically underinflated p-values (“feast”), and
others will have systematically overinflated p-values (“famine”), which can lead to false
detection of interaction, reduced power, inconsistent results across studies, and failure
to replicate true signal. This startling phenomenon is specific to detection of interaction
in a GWIS, and it may partly explain why such detection has often proved challenging
and difficult to replicate. We show that the feast or famine effect occurs across a wide
range of GxE analysis methods, including but not limited to (1) testing interaction in a
linear or linear mixed model (LMM) using standard approaches such as t-tests/Wald
tests, likelihood ratio tests, or score tests; (2) doing a combined interaction-association
test in a linear model or LMM using standard approaches such as F-tests or likelihood
ratio tests; (3) testing interaction with multiple environments or multiple SNPs, where
these are modeled as random effects in a LMM using standard approaches; (4)
performing tests of interaction in a GWIS where significance is assessed using
permutation of the trait residuals. We show theoretically that the key cause of this
phenomenon is which variables are conditioned on in the analysis, and this suggests an
approach to correct the problem by changing the way the conditioning is done. Using
this insight, we have developed the TINGA method to adjust the interaction test
statistics to make their p-values closer to uniform under the null hypothesis. In
simulations we show that TINGA both controls type 1 error and improves power.
TINGA allows for covariates and population structure through use of a linear mixed
model and accounts for heteroscedasticity. We apply TINGA to detection of epistasis in
a study of flowering time in Arabidopsis thaliana.
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Author summary
Testing for interactions in GWAS can lead to insight into biological mechanisms, but
poses greater challenges than ordinary genetic association GWAS. When testing for
interaction in a GWAS setting with one fixed SNP or environmental variable, the
standard test statistics may not have the expected statistical properties under the null
hypothesis, which can lead to false detection of interaction, inconsistent results across
studies, reduced power, and failure to replicate true signal. We propose the TINGA
method to adjust the test statistics so that the null distribution of their p-values is
closer to uniform. Through simulations and real data analysis, we illustrate the
problems with the standard analysis and the improvement of our proposed method.

Introduction 1

It is well-known that the effects of a genetic variant on a trait can be different for 2

individuals with different environments, such as age [1], sex [2–5], lifestyle [6] and other 3

exposures [7]. The genetic effects can also depend on other variants, either from the 4

same genome [8,9] or the genome of another species (such as pathogen and host [10], 5

mother and offspring [11]). Detection of such interaction effects can enhance the ability 6

to identify genetic effects that would otherwise be reduced or masked [12]; they are 7

considered as one of the reasons why results of marginal association studies are 8

sometimes hard to replicate [13]; they are believed to account for a large part of missing 9

heritability [14–16] ; and they help people better understand genetic architecture of 10

complex traits and diseases [12, 17, 18] and benefit many areas such as public health [19] 11

and agriculture [20,21]. Much previous work has been done to develop appropriate 12

methods for detecting interactions in GWAS, aiming to improve computational 13

efficiency, reduce false positives and increase power [4, 22–29]. 14

One challenge specific to epistasis detection is that, because of the large number of 15

tests, exhaustive search for epistatic effects in a GWAS context has a larger 16

computational burden and lower statistical power than ordinary trait-variant 17

association studies. To deal with this issue, various methods have been developed that 18

correct for multiple testing while still remaining powerful [30,31]. Another option is to 19

reduce the number of tests by a two-stage approach: first select a subset of SNPs that 20

are more likely to be involved in interaction and then test for interaction among 21

them [22,26,32,33]. 22

Previous work [34–36] has found that it can be hard to replicate interactions in 23

GWAS. This can occur for a variety of reasons. For example, in some cases, an apparent 24

epistatic effect that is detected could be due to an unsequenced causal 25

variant [34,37,38]. Another important issue that has been identified is 26

heteroscedasticity [39–41] that can result under the null model when, for example, 27

interaction is present between one of the two tested variables and some other variable 28

not included in the model or when the null model is misspecified in some other way. If 29

not accounted for, this heteroscedasticity can lead to excess type 1 error [39–41]. 30

Many scenarios of testing for GxG or GxE in a GWAS context involve fixing one 31

genetic variant or environmental factor and performing an interaction GWAS by testing 32

the fixed variable for interaction with each genetic variant across the genome. 33

Systematically inflated or deflated p-values in such an interaction GWAS have been 34

previously reported, based on both data and simulations [38–40]. Even under simplified 35

assumptions, in the absence of problems such as heteroscedasticity, it has been noted 36

that type 1 error rates and genomic control inflation factors are highly variable across 37

such interaction GWASs [39,40]. In this paper, we develop a deeper and more detailed 38

understanding of this phenomenon, which we call the “feast or famine” effect in 39
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interaction GWAS. We frame this problem as resulting from the choice of variables to 40

condition on and show how changing this choice has the potential to resolve the 41

problem. Our framework also explains clearly why the “feast or famine” effect only 42

occurs in interaction GWAS, not in ordinary association GWAS. We implement our 43

ideas in a method we call TINGA (Testing INteraction in GWAS with test statistic 44

Adjustment), in which we adjust the t-statistic for interaction by re-centering and 45

re-scaling it using the null conditional mean and conditional variance of its numerator, 46

with a more appropriate choice of conditioning variables. In simulations, we 47

demonstrate the ability of TINGA to greatly reduce the “feast or famine” effect while 48

controlling type 1 error and increasing power. We apply TINGA to detect epistasis in a 49

GWAS for flowering time in Arabidopsis thaliana. 50

Materials and methods 51

We consider the problem of testing for interaction, either G× E or G×G, in a GWAS 52

context. In a sample of n individuals, let Y be an n× 1 trait vector, and let G be an 53

n×m matrix of genotypes for a set of genome-wide variants. Let Z be an n× 1 vector 54

that, in the case of G×E testing, represents the environmental variable that we wish to 55

test interaction with and in the case of G×G testing, represents the genotype at a 56

particular variant that we wish to test interaction with (where we assume that Z is 57

removed from the matrix G in that case). In addition, we can allow for an n× k matrix 58

U of covariates (including intercept), where these are implicitly taken as fixed and are 59

conditioned on throughout the analysis. By “testing interaction in a GWAS context,” we 60

mean that for each j in {1, . . . ,m}, we test for interaction between Gj and Z in a linear 61

or linear mixed model (LMM) for Y , where Gj is the jth column of G. 62

In this section, we first describe what we call the “feast or famine” effect for testing 63

interaction in a GWAS context. We explain how the “feast or famine” effect can result 64

in some GWASs having systematically overinflated interaction p-values, reducing power, 65

while others have systematically underinflated p-values, resulting in excess type 1 error. 66

In what follows, we focus our exposition on the t-statistic for testing interaction, but the 67

“feast or famine” effect is very general. We show that the feast or famine effect occurs 68

across a wide range of GxE analysis methods, including but not limited to (1) testing 69

interaction in a linear or linear mixed model (LMM) using standard approaches such as 70

t-tests/Wald tests, likelihood ratio tests, or score tests; (2) doing a combined 71

interaction-association test in a linear model or LMM using standard approaches such 72

as F-tests or likelihood ratio tests; (3) testing interaction with multiple environments or 73

multiple SNPs, where these are modeled as random effects in a LMM using standard 74

approaches [22,28]; (4) performing tests of interaction in a GWIS where significance is 75

assessed using permutation of the trait residuals. We show that the “feast or famine” 76

effect does not occur in ordinary GWAS for testing association between a trait and each 77

genetic variant, but only when testing interaction in a GWAS context. Next we describe 78

our TINGA method to correct the interaction test statistics to greatly reduce this effect. 79

In the simplest setting in which there are no covariates and no population 80

sub-structure, we let Tj denote the t-statistic for testing interaction between Gj and Z, 81

i.e., for testing H0 : δ = 0, in the following linear model: 82

Y = 1nα+Gjβ + Zγ + (Gj ◦ Z)δ + ϵ, (1)

where 1n is a vector of length n with every entry equal to 1, α, β, γ and δ are unknown 83

scalar parameters, ϵ ∼ N(0, σ2
eIn), where σ2

e is unknown and In is the n× n identity 84

matrix, and where, for any two vectors a and b, both of length n, we define a ◦ b to be 85

the vector of length n with ith element (ai − ā)(bi − b̄), where, e.g., ā = n−1
∑n

i=1 ai. 86

(Note that the test statistics Tj would remain exactly the same if we replaced Gj ◦ Z in 87
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(1) by the element-wise product of the vectors Gj and Z, but choosing to center the 88

variables before multiplying them has various advantages such as reducing potential 89

collinearity and making the coefficients more interpretable.) 90

The “feast or famine” effect: what we thought we knew about 91

testing interaction in a GWAS context was wrong 92

For simplicity, we first focus the exposition on G× E interaction testing. An essential 93

feature of testing G×E interaction in a GWAS context is that we obtain a set of m test 94

statistics Tj , j ∈ {1, . . . ,m}, where Tj ≡ Tj(Gj , Z, Y ), with the same Y and Z used in 95

all the test statistics and only Gj varying. As a thought experiment, imagine the 96

simplest possible null scenario in which Y , Z and the columns of G are mutually 97

independent, with the elements of Y drawn as i.i.d. N(µ, σ2), the elements of Z drawn 98

as i.i.d. from some distribution FZ , and the elements of Gj drawn as i.i.d. from some 99

distribution FGj , for j = 1, . . . ,m. What would be the distribution of (T1, . . . , Tm) in 100

this case? It is well-known that for any given j, the distribution of Tj in this case is the 101

(central) Student’s t distribution on n− 4 df, which we denote by Tn−4. Thus, it is 102

tempting to assume that T1, . . . , Tm must be approximately i.i.d. draws from Tn−4, but 103

that is (perhaps surprisingly) incorrect. 104

In this simple scenario, we show that it is most appropriate to think of T1, . . . , Tm as 105

i.i.d. draws from some distribution whose mean is 0 and whose variance is a function of 106

(Y, Z). For some choices of (Y, Z), the variance of the resulting Tj ’s is larger than 1 107

(where 1 is the approximate variance of Tn−4 for large n), while for other choices of 108

(Y, Z), the variance of the resulting Tj ’s is smaller than 1. Thus, if we used Tn−4 to 109

calculate p-values p1, . . . , pm for T1, . . . , Tm, respectively, which would be the standard 110

approach, then in one GWAS these p-values might be systematically too big on average, 111

in a second GWAS these p-values might be systematically too small on average, and in 112

a third GWAS, they might be about right (where by “about right” we mean 113

approximately i.i.d. uniform under the null). 114

This can easily be observed in simulations (see also [39,40]). Fig 1 shows four 115

histograms, each of which depicts the p-values p1, . . . , pm for a G× E GWAS obtained 116

as described above, where n is 1,000, m is 5,000, FZ is taken to be Bernoulli(.2), and 117

FGj is taken to be Bernoulli(fj) for j = 1, . . . ,m, where f1, . . . , fm are drawn as i.i.d. 118

Unif(.1, .9), to mimic unlinked genotypes from a haploid organism or an inbred line. In 119

Panel A of Fig 1, the p-values are seen to be systematically overinflated, while in Panel 120

B of Fig 1, the p-values are seen to be systematically underinflated. The information in 121

Table 1 supports this conclusion, where we can see that for Panel A, the s.d. of the 122

interaction t-statistics is < 1 and the genomic control inflation factor is < 1, while for 123

Panel B the opposite holds. We repeated this experiment 400 times, and in each 124

replicate, we tested whether the 5,000 p-values were i.i.d. Uniform(0,1) distributed 125

under the null hypothesis (which is equivalent to testing whether the 5,000 interaction 126

t-statistics are i.i.d. Tn−4 distributed) using the two-sided equal local levels (ELL) test 127

as implemented in qqconf [42]. (See S1 Text for an R script to perform this test.) In 190 128

out of 400, i.e., 47.5%, of the replicates, the two-sided ELL test for uniformity was 129

rejected at level .05, clearly showing that the t-statistics for interaction in a GWAS are 130

not i.i.d. Tn−4 distributed under the null hypothesis. 131

This effect seems to be very general and also occurs when, e.g., FZ and FGj are 132

taken to be Gaussian or Binomial, as we show later. Furthermore, if instead of a t-test 133

for interaction, we apply a likelihood ratio chi-squared test or F-test for interaction to 134

the same simulated data sets, we get essentially indistinguishable histograms to those in 135

Fig 1 (which is perhaps not surprising since they are asymptotically equivalent tests), 136

and the same 190 replicates out of 400 are rejected by the ELL test for uniformity of the 137
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p-values, showing that the likelihood ratio chi-squared test and F-test for interaction are 138

also subject to the “feast or famine” effect. 139

Fig 1. Histograms of p-values for t-tests for interaction in a GWAS when
the null hypothesis is true Each histogram is based on a replicate of (Y,Z) and
5,000 genotypes, G1, . . . , G5000. In each histogram, interaction is tested between Z and
Gj in the linear model in (1) for j = 1, . . . 5,000, as described in the text, and the 5,000
p-values are computed using the the Tn−4 distribution and are displayed in the
histogram. Panels A and B represent two different replicates of a null simulation as
described in the text. In Panel C, the same (Y,Z) replicate is used as in Panel A, and a
new set of 5,000 genotypes is simulated and used in the interaction tests. Similarly, in
Panel D, the same (Y,Z) replicate is used as in Panel B, and a new set of 5,000
genotypes is simulated and used in the interaction tests.

Many standard methods are affected by the “feast or famine” effect. In Figs. S4-S8, 140

we show that the feast or famine effect occurs across a wide range of GxE analysis 141

methods, including but not limited to (1) testing interaction in a linear or linear mixed 142

model (LMM) using standard approaches such as t-tests/Wald tests, likelihood ratio 143

tests, or score tests; (2) doing a combined interaction-association test in a linear model 144

or LMM using standard approaches such as F-tests or likelihood ratio tests; (3) testing 145

interaction with multiple environments or multiple SNPs, where these are modeled as 146
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Table 1. Summary statistics for the examples in Fig 1
Panel Tj mean Tj s.d. genomic control λ ELL p-value

A .015 .93 .88 2.2e-10
B -.002 1.09 1.19 3.6e-12
C .013 .94 .92 9.5e-9
D -.010 1.09 1.16 3.5e-12

For each panel of Fig 1, “Tj mean” is the mean and “Tj s.d.” is the s.d. of the
interaction t-statistics whose p-values are displayed in the panel. The genomic control λ
is based on the squares of the interaction t-statistics in each panel. The ELL p-value is
the p-value for testing the null hypothesis that the interaction p-values are uniformly
distributed under the null hypothesis, as described in [42].

random effects in a LMM using standard approaches; (4) performing tests of interaction 147

in a GWIS where significance is assessed using permutation of the trait residuals. 148

A deeper understanding 149

We want to emphasize that we are not simply saying that the interaction p-values 150

p1, . . . , pm from a given GWAS are positively correlated. A further key point is that for 151

a particular G× E GWAS, i.e., for a particular choice of (Y,Z), it is, in principle, 152

predictable based on (Y,Z) whether the p-values p1, . . . , pm will be systematically too 153

large, systematically too small or about right. For example, in Fig 1, when we keep 154

(Y, Z) the same as in Panel A and simulate a completely new and independent set of 155

genotypes G for testing interaction, as in Panel C, we again see overinflation of the 156

p-values. Similarly, when we keep (Y,Z) the same as in Panel B and simulate a 157

completely new and independent set of genotypes G for testing interaction, as in Panel 158

D, we again see underinflation of the p-values. This is further supported by the 159

information in Table 1. Thus, use of standard methods would be expected to result in 160

loss of power (“famine”) in some GWASs (e.g., the (Y,Z) used in Panels A and C) and 161

excessive type 1 (“feast”) error in other GWASs (e.g., the (Y, Z) used in Panels B and 162

D). 163

To understand why this happens, it is helpful to think about which variables we are 164

conditioning on. The ordinary t-statistic for interaction was developed in a non-GWAS 165

context in which it made sense to condition on Gj and Z and treat Y as random, and in 166

that case, the null conditional distribution of Tj can be proven to be Tn−4 in the simple 167

setting described above. As a direct consequence of this, it is also true that the 168

unconditional distribution of Tj is Tn−4. In other words, if we randomly choose a G×E 169

GWAS (i.e., randomly choose (Y,Z)), and then randomly choose a null SNP j from that 170

GWAS, then Tj has distribution Tn−4. However, in any particular G×E GWAS, Z and 171

Y are fixed, and only Gj is varying, so it is more appropriate to consider the null 172

conditional distribution of the t-statistic for interaction where we condition on Z and Y 173

and treat Gj as random [39]. We show that even in the simple case described above, 174

conditional on (Y,Z), the distribution of Tj depends on (Y, Z) and is not Tn−4. In fact, 175

in the slightly more general null hypothesis scenario when Gj has some marginal effect 176

on Y but no interaction with Z, we show that not only the null conditional variance of 177

Tj but even its null conditional mean depends on (Z, Y ). 178

These same ideas apply to testing G×G interaction in a GWAS context if we think 179

of setting Z to be the genotype of one particular variant, we exclude Z from the 180

columns of G, and we consider a GWAS in which we test for interaction between Z and 181

Gj for j = 1, . . . ,m in model (1) using a t-test for interaction. The upshot is that for 182
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some G× E or G×G GWASs, i.e., for some realizations of (Y,Z), use of a Tn−4 183

distribution to assess significance of interaction will systematically overstate the 184

evidence for interaction (“feast”), while for other G× E or G×G GWASs, it will 185

systematically understate the evidence for interaction (“famine”). Whether there is feast 186

or famine will depend on the luck of what value of (Y, Z) is observed. This statistical 187

phenomenon could be an important explanation of the difficulty in detecting and 188

replicating epistasis and gene-environment interaction that has long been observed. 189

With this conditioning explanation in mind, one way of thinking of the “feast or 190

famine” effect is that if we average across many interaction GWASs, then the t-statistic 191

for interaction has correct type 1 error, but its false positives are excessively 192

concentrated in some GWASs, and its false negatives are excessively concentrated in 193

some other GWASs. The good news is that our conditioning explanation implies that by 194

doing conditional calculations, such as we describe below, we should in principle be able 195

to alleviate or entirely eliminate this effect. 196

Why doesn’t ordinary (non-interaction) GWAS have the “feast or 197

famine” phenomenon? 198

We have argued that when testing interaction in a GWAS context, we are actually 199

conditioning on Y and Z and letting Gj be random, and that the t-statistic for 200

interaction does not have a t-distribution under the null hypothesis when we condition 201

on (Y,Z). By a similar argument, we could point out that in an ordinary 202

(non-interaction) GWAS, we are conditioning on Y and letting Gj be random, rather 203

than the reverse. Does this also cause a problem for the t-statistic for association? The 204

answer is no. The problem we describe does not occur for ordinary (non-interaction) 205

GWAS, but is specific to interaction GWAS, as we now explain. 206

First, consider the t-statistic for association in an ordinary GWAS. We consider a 207

slightly more general scenario than before in which there may be additional covariates 208

U in the model (where U includes an intercept). Suppose the model we use for testing 209

association is 210

Y = Uα+Gjβ + ϵ (2)

where Y is n× 1, U is n× k, and Gj is n× 1, all as defined before, α is an (unknown) 211

k × 1 vector, β is the unknown scalar parameter of interest, and ϵ ∼ N(0, σ2
eIn), where 212

σ2
e is unknown. 213

Define PU = I − U(UTU)−1UT , an n× n symmetric matrix. We note that the 214

t-statistic for testing H0 : β = 0 in the model in (2) can be written as 215

Sj =
(GT

j PUY )
√
n− k − 1√

(Y TPUY )(GT
j PUGj)− (GT

j PUY )2
(3)

From this formula, it is clear that the t-statistic is symmetric in Gj and Y . The 216

symmetry between Gj and Y in the ordinary (non-interaction) t-statistic for association 217

means that in large samples, the distribution of the t-statistic under the null hypothesis 218

of no association would be approximately the same regardless of whether we conditioned 219

on Gj and let Y be random or conditioned on Y and let Gj be random. The only 220

difference would be that Gj would typically be a Binomial or Bernoulli random variable 221

(genotype) and Y might commonly be a conditionally normal random variable 222

(phenotype). In very small sample sizes, the difference between the underlying 223

distributions of Gj and Y would change the conditional distribution of the t-statistic for 224

association depending on which one you conditioned on, but in typical GWAS sample 225

sizes, the central limit theorem will take effect, and the conditional distribution of the 226

t-statistic for association will be approximately the same in both cases. 227
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This difference between ordinary (non-interaction) GWAS and interaction GWAS 228

can be seen in simulations. We performed r = 5,000 replicates of a null simulation 229

similar to that in the previous subsection, except that instead of FZ being Bernoulli(.2), 230

we made FZ Bernoulli(fZk) in replicate k, where fZ1, . . . , fZk are i.i.d. Unif(.1, .9). In 231

replicate k, we tested interaction between Z and Gj (H0 : δ = 0 in Model (1)) for 232

j = 1, . . .m, obtaining interaction t-statistics T
(k)
1 , . . . , T

(k)
m . We also tested association 233

between Gj and Y in a model with no other covariates except intercept, obtaining 234

ordinary association t-statistics S
(k)
1 , . . . , S

(k)
m as in (3). We obtain the interaction 235

p-values for T
(k)
j using the Tn−4 distribution and the ordinary association p-values for 236

S
(k)
j using the Tn−2 distribution. In this simulation, when we apply the two-sided ELL 237

test for uniformity at level .05 to the interaction p-values from each replicate, we reject 238

29.3% of the 5,000 replicates as being significantly non-uniform. In contrast, when we 239

apply the same ELL test to the ordinary association p-values from each replicate, we 240

reject just 4.8% of the 5,000 replicates, which is not significantly different from the 241

nominal 5% rate. This verifies that the ordinary GWAS p-values are showing the 242

expected behavior, while the “feast or famine” effect is only showing up in the 243

interaction p-values. This can be seen also in Fig 2 Panel A which depicts a histogram 244

of the genomic control inflation factors for each replicate for the interaction GWASs in 245

red and for the ordinary (non-interaction) GWASs in blue. The narrower blue 246

histogram reflects the expected sampling variability of the GCIF based on 5,000 i.i.d. 247

test statistics. In contrast, the wider red histogram reflects the additional spread due to 248

the “feast or famine effect”, i.e., the fact that conditional on (Y,Z) the p-values may be 249

systematically over- or under-inflated compared to uniform. Fig 2 Panel B is similar but 250

for a simulation in which FZ is Binomial(2, fZk) in replicate k instead of Bernoulli(fZk) 251

and FGj is Binomial(2, fGj) instead of Bernoulli(fGj). In S1 Text, a similar pair of 252

histograms can be seen for the case when both Z and G are normally distributed. 253

Consider the case when Y follows a LMM, i.e., the model is as in (1)except that 254

ϵ ∼ N(0,Σ), Σ = σ2
gK + σ2

eIn

where K is a GRM. In this framework, it is also true that the Wald test statistic for 255

association (i.e., the Wald test for H0 : β = 0) is symmetric between Gj and Y when Σ 256

is known. Thus, in this case also, ordinary GWAS association testing is essentially not 257

affected by whether we condition on Gj and let Y be random or condition on Y and let 258

Gj be random. 259

TINGA method for correcting t-statistics for interaction in a 260

GWAS 261

To address the “feast or famine” effect in interaction GWAS, we propose to correct the 262

interaction t-statistics for a given GWAS by subtracting off the null conditional means 263

of their numerators and dividing by the conditional s.d.s given the (Y,Z) observed for 264

that GWAS. We call this approach TINGA for “Testing INteraction in GWAS with test 265

statistic Adjustment.” 266

In the most general case, we consider testing for interaction in the model 267

Y = Uα+Gjβ + Zγ + (Gj ◦ Z)δ + ϵ, (4)

where Y , U , Gj , β, Z, γ, (Gj ◦ Z) and δ are as defined before, α is a k × 1 vector of 268

unknown coefficients, and ϵ ∼ N(0,Σσ2
T ), where either Σ = In in the case of a linear 269

model, or else Σ = h2K + (1− h2)In where K is as defined before and h2 is an 270

unknown heritability parameter, in the case of a LMM, and where σ2
T is an unknown 271
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Fig 2. Histograms of GCIFs for interaction GWAS and for ordinary,
non-interaction GWAS Each panel is based on r = 5,000 simulated null GWASs in
which Y , Z and G are simulated independently, with the elements of Y i.i.d. normal.
For each GWAS, two different GCIFs are calculated, each based on m = 5,000 test
statistics. The GCIF for ordinary (non-interaction) GWAS uses the m genetic
association tests between Y and the Gjs, and the GCIF for interaction GWAS uses the
m interaction tests based on Model (1). In each panel, the blue histogram represents
the r resulting GCIFs for ordinary (non-interaction) association testing, and the red
histogram represents the r resulting GCIFs for interaction testing. In Panel A, both Z
and the Gjs are Bernoulli distributed, and in Panel B, both Z and the Gjs are
Binomial(2) distributed.
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parameter. Then the t-statistic for interaction can be written as 272

Tj =

√
n− k − 3 (Gj ◦ Z)

T
PMY√

(Gj ◦ Z)
T
PM (Gj ◦ Z) · Y TPMY − ((Gj ◦ Z)

T
PMY )2

, (5)

where the “M” in PM stands for “marginal”, and PM is a symmetric matrix that removes 273

the marginal effects of Gj , Z, and U , where in the simplest case U represents just the 274

intercept, but it may contain additional covariates as needed. We let M be the 275

n× (k + 2) matrix M whose columns are Gj , Z, and the columns of U . Then in the 276

case of a linear model, we have PM = In −M(MTM)−1MT , and in the case of a LMM, 277

we have PM = Σ̂−1 − Σ̂−1M
(
MT Σ̂−1M

)−1

MT Σ̂−1, where Σ̂ is Σ with the estimated 278

value of h2 plugged in. 279

In the LMM context, the test based on Tj is commonly called the “Wald test.” In 280

fact, the ordinary t-test for interaction is also a Wald test, so this term is not a useful 281

way of distinguishing the LMM-based test from the ordinary one. We refer to the test 282

based on Tj as the “t-test” in both cases, and, when needed, we specify whether it is 283

performed in an LMM or a linear model. 284

For both the linear and LMM cases, we define the numerator of the t-statistic to be 285

Nj ≡ Nj(Gj , Z, Y ) = (Gj ◦ Z)
T
PMY. (6)

Then the interaction t-statistic in (5) can be rewritten as 286

Tj =
Nj − E0(Nj |Gj , Z)√

V̂ar(Nj |Gj , Z)
=

Nj√
V̂ar(Nj |Gj , Z)

, as E0(Nj |Gj , Z) = 0, (7)

where both E0(Nj |Gj , Z) and Var(Nj |Gj , Z) are calculated based on Model (4), 287

E0(Nj |Gj , Z) has the additional assumption δ = 0, and V̂ar denotes estimated variance. 288

For testing interaction in a GWAS context, we propose to replace Tj by a “corrected” 289

statistic 290

T̃j =
Nj − Ê0(Nj |Z, Y )√

V̂ar(Nj |Z, Y )
, (8)

where the difference from Eq (7) is that we condition on (Z, Y ) instead of on (Gj , Z). 291

The remaining challenge of the methods development is to obtain appropriate 292

estimators Ê0(Nj |Z, Y ) and V̂ar(Nj |Z, Y ). We perform the following steps: 293

1. We approximate Nj by Ñj ≡ Ñj(Gj , Z, Y ), where Ñj is quadratic in Gj . 294

2. We calculate E0(Ñj |Z, Y ) and approximate Var(Ñj |Z, Y ) as functions of 295

E0(Gj |Z, Y ) and Var(Gj |Z, Y ). 296

3. We calculate E0(Gj |Z, Y ) and Var(Gj |Z, Y ) theoretically based on a suitable 297

model. 298

4. We obtain estimates Ê0(Gj |Z, Y ) and V̂ar(Gj |Z, Y ) for the quantities in step 3. 299

5. We plug the estimates from step 4 into the expressions for E0(Ñj |Z, Y ) and 300

Var(Ñj |Z, Y ) from step 2 to obtain Ê0(Nj |Z, Y ) and V̂ar(Nj |Z, Y ), respectively, 301

and calculate T̃ in (8). 302

The quadratic approximation in step 1 is is based on an asymptotic approximation 303

and is detailed in S1 Text. The calculation of E0(Ñj |Z, Y ) in step 2 is completely 304
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straightforward. To approximate Var(Ñj |Z, Y ), we perform a variance calculation that 305

is exact for the case when Gj |Z, Y has a normal distribution and is otherwise 306

approximate (see S1 Text). Step 5 is completely straightforward given the other steps. 307

Here, we give more details on steps 3 and 4. 308

For the conditional moment calculations in step 3, to model Gj |Z, we consider two 309

different modeling approaches: a normal approximation and a discrete model. For the 310

normal approximation, we assume a normal regression model for Gj |Z, i.e., we take 311

Gj = a1n + bZ + η, where η ∼ Nn(0, σ
2
j In), or, more generally, where Ũ consists of the 312

intercept and any confounding covariates that are in U , we take Gj = aŨ + bZ + η, 313

with a, b, and σ2
j unknown. For the discrete model approach, we instead assume a 314

discrete model for Gj |Z, where we assume that conditional on Z, the n entries of the 315

vector Gj , call them G1j , . . . , Gnj , are independent with P (Gij = k|Zi = z) = pk|z for 316

all choices of (i, k, z), where these may also depend on Ũ as needed. Since Gj is a 317

genotype, we will have k ∈ {0, 1, 2} when the genotypes are from a diploid organism or 318

k ∈ {0, 1} when the genotypes are from a haploid organism or inbred line. For the latter 319

case, we can use a logistic regression model for Gj |Z, and for the former case a binomial 320

regression model. In the A. thaliana dataset we analyze, both Gj and Z are binary and 321

there are no additional confounding covariates, in which case the discrete model can 322

simply be specified in terms of the two parameters p1|0 and p1|1, without the need for a 323

logistic model. 324

For the conditional moment calculations in step 3, we also consider two different 325

modeling approaches for Y |(Gj , Z). The first approach is to assume that Model (4) 326

holds, which we call the homoscedastic model. The second approach assumes a more 327

general and robust version of Model (4) in which we allow a specific type of 328

heteroscedasticity, namely, we allow σ2
T to depend quadratically on Z, and we call this 329

the heteroscedastic model. In an interaction GWAS, it can potentially be important to 330

consider this specific type of heteroscedasticity, because it arises naturally in a model in 331

which Z interacts with some other variable in a linear model or LMM for Y , even if it 332

doesn’t interact with Gj [39–41,43]. That is, suppose the true model for Y could be 333

written 334

Y = Uα+Gjβ + Zγ +Xζ + (X ◦ Z)θ + ϵ, (9)

where Y , U , α, Gj , β, Z, γ, and ϵ are as before, ζ and θ are unknown scalar coefficients, 335

and X is some additional variable that might or might not be observed, is independent 336

of (Gj , Z), and that interacts with Z. In other words, from the point of view of testing 337

for interaction between Z and Gj , this is a null model, but it allows for the possibility 338

that Z does interact with some other variable, X, such as a SNP on another 339

chromosome, or a non-genetic variable. Then in this model, if we calculate 340

Var(Y |Gj , Z), we find that it depends on Z quadratically. In other words, we have the 341

specific type of heteroscedasticity described above. This motivates the heteroscedastic 342

model for Y |(Gj , Z). 343

Given the modeling assumptions described above, we now consider the calculation of 344

E0(Gj |Z, Y ) and Var(Gj |Z, Y ) in step 3. When the normal approximation is used for 345

Gj |Z, then with either the homo- or heteroscedastic model for Y |(Gj , Z), we obtain a 346

multivariate normal distribution for (Gj , Y )|Z, from which E0(Gj |Z, Y ) and 347

Var(Gj |Z, Y ) can be easily computed using standard properties of multivariate normal. 348

When a discrete model is used for Gj |Z, then with either the homo- or heteroscedastic 349

model for Y |(Gj , Z), we can apply a Bayes rule calculation to obtain the discrete 350

distribution Pr(Gj |Z, Y ). For example, if we assume unrelated individuals, then 351

conditional on (Z, Y ), G1j , . . . Gnj are independent with 352

P (Gij = k|Z, Y ) = P (Gij = k|Zi, Yi) =
P (Yi|Gij = k, Zi) ∗ pk|Zi∑
l P (Yi|Gij = l, Zi) ∗ pl|Zi

, (10)
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where P (Yi|Gij = k, Zi) is a univariate normal density function. 353

Approximate null conditional mean and variance of interaction t-statistic 354

numerator 355

To better understand the surprising behavior of the t-statistic for interaction in a GWAS 356

setting under the null hypothesis, it can be helpful to examine approximate analytical 357

formulas for the null conditional mean and variance of the t-statistic numerator given 358

(Z, Y ), where Z and Y are the variables that remain fixed for the GWAS. If we instead 359

took the more common approach of conditioning on (Gj , Z), we would obtain zero for 360

the null conditional mean and (Gj ◦ Z)TPM (Gj ◦ Z)σ2
T for the null conditional variance. 361

When we use the normal approximation for Gj |Z, use a linear model for Y instead 362

of an LMM, and assume no covariates, then it becomes possible to obtain approximate 363

analytical formulas for E0(Ñ |Z, Y ) and Var0(Ñ |Z, Y ). We obtain 364

E0(Ñ |Z = z, Y = y) =
nσ2

T (βσ
2
jd3A + p1d3B)

σ2
T p2

1
nszz +

n
n−1β

2σ2
jd2

, (11)

where p1 = bσ2
T − γβσ2

j , p2 = β2σ2
j + σ2

T , d2 ≡ d2(z, y) =
1
nsyy

1
nszz − ( 1nszy)

2, 365

d3A ≡ d3A(z, y) =
1
nszz

1
nszyy −

1
nszy

1
nszzy, d3B ≡ d3B(z, y) =

1
nszz

1
nszzy −

1
nszy

1
nszzz, 366

and where for any 3 vectors u, v and w of length n, we define 367

suv =
∑n

i=1(ui − ū)(vi − v̄) and suvw =
∑n

i=1(ui − ū)(vi − v̄)(wi − w̄). 368

The motivation for this notation is that “p” denotes “parameters”, and p1 and p2 are 369

functions only of parameters; “d” denotes data, and the subscript “2” in d2 denotes that 370

d2 is a function of only the observed sample second moments of (Z = z, Y = y) and not 371

of any parameters. The subscript “3” in d3A and d3B denotes that they are functions of 372

only the observed sample third and second moments of (Z = z, Y = y) and not of any 373

parameters. In the special case when β = 0, we get 374

E0(Ñ |Z = z, Y = y) =
n b d3B
1
nszz

. (12)

These approximate formulas can serve as useful heuristics about when the null 375

conditional expectation of the interaction t-statistic might or might not be 376

approximately zero. From this approximation, we get that if both β and b are 0, which 377

would happen if Gj is independent of (Z, Y ), then the null conditional expectation 378

should be 0. We can also see that if (1) (Y, Z) is multivariate normal with arbitrary 379

correlation or (2) Y and Z are independent (with any distribution), then in sufficiently 380

large samples, d3A and d3B will both be close to 0, so we expect the null conditional 381

mean to be close to 0 in sufficiently large samples. However, if Y is heteroscedastic with 382

respect to Z, or if Z has a skewed distribution and Z and Y are correlated, then the 383

null conditional mean could be non-zero when Gj is correlated with Z or Y , even in 384

large samples. 385

Using the normal approximation, the approximate null conditional variance is 386

Var0(Ñ |Z = z, Y = y) ≈ np3{d4C − 2m2B

m2C
d4B +

(
m2B

m2C

)2

d4A+(
m2A

m2C

)2

[2p3
1
nszz +

4
p2
2
((βσ2

j )
2d4C + 2p1βσ

2
jd4B + p21d4A)]

−4m2A

m2C

1
p2
(p1d4B + βσ2

jd4C) +
4m2Am2B

(m2C)2
1
p2
(p1d4A + βσ2

jd4B)},

(13)

where p3 = σ2
jσ

2
T /p2 (with p2 as defined in Eq (11)) is a function of only parameters, 387

d4A, d4B , and d4C are functions of only the observed sample 4th and second moments of 388

(Z = z, Y = y), with d4A = 1
nszzzz − ( 1nszz)

2, d4B = 1
nszzzy −

1
nszz

1
nszy, and 389
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d4C = 1
nszzyy − ( 1nszy)

2; m2A, m2B , and m2C are “mixed” terms that are functions of 390

both parameters and data, but that depend on the data only through the observed 391

sample 2nd moments of (Z = z, Y = y), with m2A = βd2/σ
2
T , m2B = 1

nszy − p1m2A/p2 392

and m2C = 1
nszz + βσ2

jm2A/p2. When β = 0, we further get 393

Var0(Ñ |Z = z, Y = y) ≈ σ2
j [szzyy −

2szy
szz

szzzy +

(
szy
szz

)2

szzzz], (14)

which is almost exclusively a function of the observed second and fourth sample 394

moments of (Z = z, Y = y), except for the parameter σ2
j . 395

The above formulas can be useful as heuristics, but when Gj has a discrete 396

distribution, we instead use a discrete model for Gj |Z, and the null conditional mean 397

and conditional variance based on that do not lend themselves to a simple closed-form 398

expression. Furthermore, with covariates or in a LMM, the results are also more 399

involved. Finally, the variance expression we give above is the one we obtain in the 400

special case when we assume δ = 0, and, more generally, we usually prefer to do a Wald 401

test, in which case we need an estimate of the conditional variance under the alternative 402

model, which is also a more involved calculation. 403

Estimation step 404

In step 4, we need to obtain estimates Ê0(Gj |Z, Y ) and V̂ar(Gj |Z, Y ) of the quantities 405

we derived theoretically in step 3. In the case that the model for Y |Gj , Z is the linear, 406

homoscedastic model with Σ = In, then when we use the normal approximation for 407

Gj |Z, we can fit ordinary least squares (OLS) regression of Gj on (U,Z, Y ) and use the 408

fitted values as Ê0(Gj |Z, Y ) and RSS/(n− k − 2) as V̂ar0(Gj |Z, Y ). Similarly, when 409

Y |Gj , Z is the linear, homoscedastic model with Σ = In, Gj |Z is the discrete model, 410

and Gj is binary (or binomial), we can use logistic (or binomial) regression of Gj on 411

(U,Z, Y ) to obtain Ê0(Gj |Z, Y ) and V̂ar0(Gj |Z, Y ). However, to obtain V̂ar(Gj |Z, Y ) 412

under the alternative (which can allow us to do a more powerful Wald-type test instead 413

of a score-type test), and for all other modeling cases, we instead use some version of 414

the Bayes rule calculation, where we fit the model for Gj |Z to obtain its parameters, fit 415

the model for Y |Gj , Z to obtain its parameters, and then plug the estimated parameters 416

into the Bayes rule calculation. 417

To allow for heteroscedasticity in step 4, we fit Y |Z and perform a very liberal test 418

of heteroscedasticity of Y as a function of Z, where we use an alpha level of .15 to 419

decide to allow for heteroscedasticity in the model. For binary Z, we can perform an 420

F-test, while for more general Z, we can use the regress() package to fit variance 421

components proportional to Z and Z2, and do a likelihood ratio test for 422

heteroscedasticity. If the model for Y |Z is determined to be homoscedastic, then Y |Z,G 423

can be fitted by standard linear model or LMM methods. If the model for Y |Z is 424

determined to be heteroscedastic, then Y |Z,G can be fitted by appropriately weighted 425

versions of these methods (see S1 Text for details). 426

Additional methodological considerations 427

In the special case when at least one of Z and X is discrete, it is natural to place 428

certain constraints on when one would or would not perform any sort of interaction test. 429

For example, if both Z and X are binary and are perfectly correlated, then there would 430

typically be zero information in the data on interaction between them as a predictor of 431

Y , and if they are almost perfectly correlated, then the amount of information available 432

on interaction would be quite low. In the case when Z and X are both binary, we can 433

think of constructing a 2× 2 table of counts of the four possible observed values of 434

October 25, 2024 13/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.02.13.580168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580168
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Z,X) in the data, and we require the minimum cell count (MCC), i.e., the smallest of 435

the counts of the four possible observed values, to be at least 5 in order to perform the 436

interaction t-test. 437

Step 4 of the TINGA method requires some additional parameter estimation 438

compared to the interaction t-test. If all variables were continuous, then with typical 439

GWAS sample sizes, the estimation of a handful of additional parameters would pose 440

little problem for the inference. When X and Z are both binary, however, then we 441

require MCC ≥ 20 in order to perform the additional estimation in step 4. Therefore, 442

our TINGA method uses a mixed strategy in that case, in which, when 5 ≤ MCC < 20 443

we use the interaction t-test, and when MCC ≥ 20, we use the adjustment strategy. All 444

the TINGA results for the case when both X and Z are binary use this “mixed” strategy. 445

Specifically for the problem of epistasis detection, it has been noted that in the 446

presence of an untyped causal variant, two typed variants in strong linkage 447

disequilibrium that form a haplotype that tags the untyped variant could exhibit false 448

epistasis [34]. Therefore, in detection of epistasis, we only test for epistasis between 449

variants X and Z if their sample correlation is close to 0. (In our data analysis we use a 450

cut-off of .1 for absolute value of correlation.) 451

For the problem of epistasis detection, for a given pair (G1, G2) of SNPs, there are 452

two possible adjustments, one based on conditioning the test on (G1, Y ) and the other 453

based on conditioning the test on (G2, Y ). We propose the strategy of conditioning on 454

the less polymorphic of G1 and G2, because that should result in more information 455

available for the statistical test leading to a more powerful test. We test this strategy in 456

simulations. 457

Results 458

In the simulations, we simulate Y ∈ Rn as the phenotype; Z ∈ Rn as the fixed 459

SNP/environmental factor; G1, ..., Gm ∈ Rn as the SNPs in the genome. In this section, 460

we first show the simulation results for the Type I error rates and power across multiple 461

GWASs and show that our methods have desired type I error and better power 462

performance than the regular methods. We then show the improvement of our methods 463

on the distribution of genomic control inflation factor. For the simulations, we 464

particularly focus on the case where both Z, Gj are Bernoulli distributed, because that 465

is the situation in the A. thaliana dataset, and we apply the Bernoulli version of our 466

methods. We finally show the application of our methods on the real data set. 467

Simulations 468

Type I error rates and power across GWASs 469

In this part, we run a simulation multiple times independently to mimic multiple 470

independent GWASs. Then we look at the Type I error rates and power across GWASs. 471

We compare the performance of the t-test and our methods in 3 simulation settings. 472

Non-GRM case In each replicate, we simulate a Bernoulli Z and m = 4 Bernoulli 473

G′
js for n = 1000 independent individuals, and simulate Y under the alternative model 474

15 475

Y = α+ γZ +
m∑
j=1

βjGj +
m∑
i=j

δj(Z −mZ)(Gj −mj) + ϵ, ϵ ∼ N(0, In) (15)

where Z,G2, G3, G4 have marginal effects on Y and only G4 has interactive effect with 476

Z on Y (setting 3 in S1 Text). 477
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GRM case 1: unrelated individuals; accounting for additive polygenic effects 478

In this case, Z, Gj ’s are simulated in the same way as GRM case 1. Y is simulated with 479

the same model 15, except a GRM as an extra variance component 16 480

ϵ ∼ N(0, σ2
T

(
h2K + (1− h2)I

)
(16)

(setting 4 in S1 Text) . 481

GRM case 2: population structure with 3 sub-populations We also tried the 482

setting with population structure in which there are 3 sub-populations. See setting 11 in 483

S1 Text. Both Z and Gj ’s are still Bernoulli distributed, and simulated with the 3 484

sub-populations. Z,G2, G3, G4 and (Z ◦G4) have effects on Y . Y also has indicators of 485

the sub-populations as covariates. 486

We run the each of the simulation settings 5000 times independently to mimic 5000 487

independent GWASs. For G1, G2, G3, we test at level 0.05. For 5000 replicates, the 95% 488

confidence interval is (0.0440, 0.0560). The results are in Table 2. Since the type I error 489

rates are obtained across multiple GWASs, both uncorrected and corrected have 490

reasonable type I error. 491

Table 3 compares the power of uncorrected and corrected methods for detecting 492

interaction between G4 and Z. Fig 3 are plots of the power curves for the first two 493

simulations. We can see that TINGA consistently has higher power than the unadjusted 494

approach. For the results when Z and Gj have other distributions see S1 Text. 495

Table 2. Type I error at level 0.05
G1 Unadjusted TINGA

Non-GRM 0.0574∗ 0.0544
GRM case1 0.0560 0.0516
GRM case2 0.0418∗ 0.0488

G2

Non-GRM 0.0526 0.0516
GRM case1 0.0548 0.0548
GRM case2 0.0426∗ 0.0502

G3

Non-GRM 0.0536 0.0518
GRM case1 0.0560 0.0544
GRM case2 0.0494 0.0590∗

Type I error of testing for the interaction between Z and G1, G2, G3, over 5000
replicates. Both Z, Gj ’s are Bernoulli, Z,X2, X3, X4 and (Z ◦G4) have effects on Y .
Methods are the Bernoulli version. ∗ indicates a type 1 error that is significantly
different from the nominal at level .05.

Simulation under null: check p-values within a GWAS 496

In this part, we consider the distribution of the GCIF within a GWAS. For each 497

replicate GWAS, the sample size is 1000, and we simulate Z and m = 5000 Gj ’s 498

independently. We consider the following cases: (1) Both Z and Gj ’s are Bernoulli, and 499

Y is simulated under a linear model (setting 1 in S1 Text). (2) Both Z and Gj ’s are 500

Binomial(2), and Y is simulated under a linear model (setting 1 in S1 Text). (3) Both 501

Z and the Gj ’s are normal, and Y is simulated under a linear model. (4) Both Z and 502
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Table 3. Power at different p-value cutoffs
p-value cutoff 10−5 Unadjusted TINGA

Non-GRM 0.7046 0.7346
GRM case1 0.7064 0.7322
GRM case2 0.7222 0.8168

p-value cutoff 10−6

Non-GRM 0.5216 0.5748
GRM case1 0.5308 0.5810
GRM case2 0.5566 0.6526

Power of testing for the interaction between Z and G4, over 5000 replicates. Both
Z, Gj ’s are Bernoulli, Z,G2, G3, G4 and (Z ◦G4) have effects on Y . Methods are the
Bernoulli version.

(a) Non-GRM
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Fig 3. Power curves x-axis is the type I error rates for testing Z ◦G2, y-axis is the power
for testing Z ◦G4. Both Z and Gj are independent Bernoulli. Z,G2, G3, G4 and (Z ◦G4)
have effects on Y . (a) non-GRM case (b) GRM case 1

Gj ’s are Bernoulli, and Y is simulated under a LMM (setting 2 in S1 Text). Then for 503

every GWAS, we calculate a GCIF based on the p-values for interaction. Fig 4 gives the 504

histograms of the resulting GCIFs. From this we can see that our methods make the 505

GCIF much more concentrated around 1. 506

Switch role of Z and Gj 507

As described above, for the case of detecting epistasis between a pair of genetic variants, 508

there could be two possible ways to apply TINGA. We have proposed the strategy of 509

conditioning on the less polymorphic of the two variants (i.e., the one with the smaller 510

minor allele frequency), because we expect that it should result in more information 511

available for the statistical test, leading to a more powerful test. We design a simulation 512

to test this idea. In each of 1,000 replicates, we simulate one variant with MAF .07 and 513

another with MAF .25, independently, and we simulate Y according to simulation 514

setting 5 in S1 Text. We then test interaction between the two variants using TINGA 515

with (1) Z being the variant with smaller MAF and Gj being the variant with larger 516
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Fig 4. Uncorrected vs. corrected GCIF under the null Genomic control inflation
factors of interaction tests between Z and each of m = 5000 Gj ’s where Y is the outcome; Z
and the Gj ’s are independent; (a) Both Z and Gj ’s are Bernoulli distributed; linear model
for Y ; 500 replicates (b) Both Z and Gj are binomial; linear model for Y ; 500 replicates; (c)
Both Z and Gj are normal; linear model for Y ; 500 replicates (d) Both Z and Gj ’s are
Bernoulli; LMM for Y ; 200 replicates
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Fig 5. scatter plot of −log10 scaled p-values for the two possible TINGA
analyses of interaction between a pair of genetic variants, where the x-axis is
p-value for the case when Z is taken to be the variant with the larger MAF, and the
y-axis is for the same pair where Z is taken to be the variant with the smaller MAF.
Both Z, Gj are Bernoulli distributed. The two MAFs used to generate the data are 0.07
and 0.25.

MAF and (2) the reverse (Z being the variant with larger MAF and Gj being the 517

variant with smaller MAF). Fig 5 is a scatterplot of the resulting p-values on the -log10 518

scale. This verifies our intuition that it is a more powerful strategy to condition on the 519

variant with the smaller MAF, so we employ this strategy in the data analysis. 520

Analysis of flowering time in A. thaliana 521

Data Description 522

We apply our methods to a data set on flowering time in Arabidopsis thaliana that has 523

been previously analyzed [44]. We use the number of days between germination and 524

flowering at 10◦C as the phenotype, and we include samples from 931 selected accessions 525

from different regions. The SNPs were filtered based on minor allele frequency (MAF) 526

≥ 0.03 [45]. LD pruning was done to remove variants with pairwise LD of r2 > 0.99 [45]. 527

After filtering, there are 865,350 SNPs remaining. We use a LMM for the phenotype, 528

where the GRM is computed based on all available SNPs with allele frequency ≥ 0.05. 529
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Strategy for detecting epistasis 530

Step1: Select 865 variants with smallest marginal p-values 531

Due to the large number of SNPs (865,350 after filtering) and the fact that we use 532

a LMM for Y , it is computationally impractical to do a pairwise search over all possible 533

pairs of SNPs for epistasis. Therefore, we start by identifying the .1% of SNPs with the 534

smallest p-values from the ordinary GWAS based on the LMM for Y , which results in 535

865 SNPs selected. For each of these 865 SNPs, we test for interaction with with each of 536

the 865,350 other SNPs in the genome (subject to constraints on informativeness and 537

the constraint that the SNPs have r2 < .01, as described in the Methods section). 538

Step2: Perform fast, approximate, Wald tests in an LMM for testing 539

interaction between each of the 865 selected SNPs and each of the 865,350 540

other SNPs in the genome 541

Even with the number of tests reduced by a factor of more than 500, we still need 542

a fast computation strategy because we are performing interaction tests based on an 543

LMM. We take a two-stage approach, where we first apply a fast, approximate Wald 544

test. Then we only perform more time-consuming and accurate calculations for p-values 545

that are small based on the fast, approximate Wald test, and we content ourselves with 546

the coarser approximation for the p-values that are large. The key idea of the fast 547

approximate Wald test is to regress out all variables aside from the interaction term 548

step by step using matrix operations, so that we can avoid looping over the SNPs. We 549

have adapted this method to LMM. (See S1 Text for details.) 550

Step3: Perform more accurate p-value calculation only for those pairs with 551

fast approximate Wald p-value < 10−4 Both the p-value for interaction in a LMM 552

and the TINGA method will be applied only to those pairs with fast, approximate Wald 553

p-value < 10−4. Furthermore, for some pairs, interaction was not tested at all because 554

informativeness constraints were not met (we required MCC ≥ 5) or our constraint on 555

correlation was not met (we required r2 < .01). After these filtering steps (based on 556

MCC, r2 and fast approximate Wald p-value), there are 71,863 pairs of SNPs remaining, 557

with 762 of the originally chosen SNPs having at least one pair, and these 71,863 are the 558

pairs for which we calculate the interaction t-statistic and TINGA statistic. 559

Step4: Significance under Bonferroni correction 560

When applying the Bonferroni correction, we arguably only need to correct for the 561

number of pairs that have at least one of the two SNPs in the selected set of 865 562

associated variants and that satisfy MCC ≥ 5 and r2 < .01. However, if we are being 563

very conservative, we could consider that we are potentially searching over all distinct 564

pairs with MCC ≥ 5 and r2 < .01, of which there are 2.7× 1011. Taking in to account 565

that two tests were performed, the Bonferroni correction level could be very 566

conservatively taken to be 0.05
2×2.7×1011 = 9.3× 10−14. 567

Findings 568

Table 4 contains information on the pairs that are significant after Bonferroni correction. 569

Table 5 lists the corresponding genes. Among the identified SNPs, Chr5:18607017 is also 570

detected in the study of its association with plant dry weight [13], average growth 571

rate [13] and flowering time [44], [46]; Chr5:20430580 is also detected in the study of its 572

association with leaf margin serrated [47]. Other SNPs are not directly found in other 573

studies, but the genes in which they are located such as AT5G10140 [44] [48] [47] are 574

found to be related to flowering time in many other studies. 575
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Table 4. Significant pairs
SNP Gj MAF Mar p SNP Z MAF Mar p MCC Wald TINGA

Chr5:3176549 0.41 2.0e-4 Chr1:21470240 0.061 0.070 26 3.6e-6 1.3e-14
Chr5:3198884 0.44 2.3e-4 Chr5:1921009 0.064 0.072 29 1.6e-7 5.6e-15
Chr5:18607017 0.27 1.8e-5 Chr4:4835999 0.052 0.47 20 8.7e-7 3.2e-16
Chr5:20430580 0.31 2.4e-4 Chr5:25047282 0.084 0.14 33 1.0e-7 4.6e-15
Chr5:12406770 0.22 0.0076 Chr5:25333255 0.083 1.5e-4 22 9.1e-8 8.7e-15

"Mar p": Marginal p-value of corresponding SNP in the gene-phenotype association test.

Table 5. Significant pairs The genes that the SNPs are in (black) or near (red).
SNP Gj Gene SNP Z Gene

Chr5:3176549 AT5G10140 Chr1:21470240 AT1G58030
Chr5:3198884 AT5G10190 Chr5:1921009 AT5G06290
Chr5:18607017 AT5G45870 Chr4:4835999 AT4G08025
Chr5:20430580 AT5G50180 Chr5:25047282 AT5G62370
Chr5:12406770 AT5G05055 Chr5:25333255 AT5G63160

Example QQ-Plot for a given choice of Z 576

Of course in the data, we do not know the truth. However, it can be interesting to 577

consider how the QQ-plot is affected by the TINGA correction for a given SNP that 578

does not appear to show evidence of interaction. We consider SNP Chr5_18593622 579

(MAF 0.28) which has a relatively small p-value for SNP-trait association, but shows 580

little evidence of interaction. For this particular SNP, in addition to performing the 581

2-stage process described above, we calculate both its Wald t-test and TINGA 582

interaction p-values in a LMM for each of the 696,396 SNPs in the genome with which 583

it has r2 < 0.01 and MCC ≥ 20 (skipping the step of filtering by the fast, approximate 584

Wald test). Fig 6 displays the (differenced) QQ-plots of the p-values from these 585

methods, with simultaneous 95% acceptance regions for i.i.d. uniform p-values outlined 586

in red, where these use the method of [42]. (In a differenced QQ-plot, the y-axis depicts 587

the difference between observed and expected p-values, which is particularly helpful for 588

creating a useful visualization when the plot contains a large number of points.) We can 589

see that for this particular SNP, the distribution of p-values is much closer to uniform 590

after TINGA adjustment. 591

Discussion 592

Identifying interaction, either G×G or G×E, can give insight into both genetic effects 593

on a complex trait and underlying biological mechanisms, and it can also help to clarify 594

the role of environment in the case of G× E testing. For testing interaction in a 595

genomewide context, we have identified and described the “feast or famine” effect, in 596

which different GWISs have fundamentally different null distributions. For example, if 597

we consider GWISs in which there is no interaction under the null hypothesis (so 598

heteroscedasticity is not present), then on average over different GWISs standard 599

methods have correct type 1 error overall, but false positives are overly concentrated in 600

certain GWISs (“feast” GWISs) and false negatives are overly concentrated in certain 601

other GWISs (“famine” GWISs). If the environmental variable does interact with some 602

predictors (either genetic variants or non-observed covariates), then the type 1 error 603

disparity for non-interacting variants is even more extreme. Furthermore, we show that 604

whether a given GWIS will be a “feast” or “famine” GWIS is a reproducible property 605

October 25, 2024 20/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.02.13.580168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580168
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.2 0.4 0.6 0.8 1.0

−
0.

02
0.

00
0.

01
0.

02

Expected quantiles of p−values

O
bs

er
ve

d 
−

 E
xp

ec
te

d 
qu

an
til

es

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

02
0.

00
0.

01
0.

02

Expected quantiles of p−values

O
bs

er
ve

d 
−

 E
xp

ec
te

d 
qu

an
til

es

Fig 6. Differenced QQ-plots of p-values for interaction of SNP
Chr5_18593622 with 696,396 genomewide SNPs using (A) the t-test for
interaction in an LMM and (B) TINGA. The expected quantile is plotted on the x-axis,
and the difference between the observed and expected quantiles is plotted on the y-axis.
The red lines give the boundaries of the 95% simultaneous acceptance region for i.i.d.
uniform p-values.

that can be predicted as a function of the observed trait and environmental values. We 606

show that the “feast or famine” effect applies for different types of variables, including 607

normal, binomial or binary. We show that the feast or famine effect occurs across a wide 608

range of GxE analysis methods, including but not limited to (1) testing interaction in a 609

linear or linear mixed model (LMM) using standard approaches such as t-tests/Wald 610

tests, likelihood ratio tests, or score tests; (2) doing a combined interaction-association 611

test in a linear model or LMM using standard approaches such as F-tests or likelihood 612

ratio tests; (3) testing interaction with multiple environments or multiple SNPs, where 613

these are modeled as random effects in a LMM using standard approaches; (4) 614

performing tests of interaction in a GWIS where significance is assessed using 615

permutation of the trait residuals. We show that the “feast or famine effect” affects only 616

interaction GWAS, not ordinary association GWAS. The “feast or famine effect” can 617

lead to excess type 1 error, reduced power, inconsistent results across studies, and failure 618
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to replicate true signal. Furthermore, we show that whether a given GWAS will be a 619

“feast” or “famine” GWAS is a reproducible property, and that it can be corrected for. 620

We develop the TINGA method which corrects the test statistic for interaction by 621

choosing different conditioning variables that are more appropriate for a GWAS than 622

the standard choice. TINGA also allows for covariates and population structure through 623

a LMM, and it accounts for heteroscedasticity. In simulations we show that TINGA can 624

greatly reduce the “feast or famine” effect while preserving the overall type 1 error, 625

which we show can result in higher power. 626

We apply TINGA to a GWAS for flowering time in A. thaliana. Using TINGA we 627

detect 5 significant interactions after Bonferroni correction, where all the detected 628

interactions involve loci identified in previous studies as associated with flowering time. 629

This demonstrates the potential of the TINGA method for detecting interaction in a 630

GWAS. 631

For epistasis detection in a GWAS, there is a computational challenge in testing 632

epistasis for all possible pairs of variants. When the model for Y is a LMM, as in our 633

data analysis, this computational challenge is made much greater, even for the usual 634

LMM-based t-test for interaction without any correction. We have developed a fast 635

approximate version of the LMM-based t-test for interaction, and we use it as part of an 636

adaptive approach to genomewide testing, where more accurate but time-consuming 637

methods are applied only if the approximate p-value is sufficiently small. In other 638

words, our strategy is to spend more computational time on small p-values and to be 639

content with coarse approximations to large p-values. In future work, there could be 640

further scope for making faster algorithms for all aspects of interaction testing with a 641

LMM in a GWAS context. 642
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