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Abstract: The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is
a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promis-
ing antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase
(NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activ-
ity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also
active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies
show that NAD+ biosynthesis through the so-called “Preiss-Handler (PH) pathway”, which utilizes
nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to
NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by
nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases
(NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging
targets in cancer drug discovery, summarizing their reported inhibitors and describing their current
or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing
enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus
become viable targets for drug discovery.

Keywords: NAD+; cancer metabolism; Preiss-Handler pathway; NAPRT; NMNAT; NADSYN;
NAMPT; inhibitors

1. Introduction
1.1. NAD+ and Cancer Metabolism

Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous metabolite that performs
indispensable roles to maintain cellular homeostasis. Being involved in more than 500 cellu-
lar reactions, NAD+ acts either as a redox cofactor or as an enzymatic substrate, coordinating
a vast array of vital processes inside the cell [1–5]. The most renowned cellular function of
NAD+ is that it serves as a redox cofactor for numerous dehydrogenases that participate in
crucial metabolic and bio-energetic cellular events such as glycolysis, the tricarboxylic acid
(TCA) cycle, oxidative phosphorylation (OXPHOS), and fatty acid oxidation [1–5]. NAD+

is also utilized as a substrate by a heterogeneous group of NAD+-consuming enzymes
represented by the poly-(ADP Ribose) polymerases (PARPs), the NAD+-dependent deacety-
lases sirtuins (SIRT1-7), and the NAD+-dependent glycohydrolases and ADP-ribosyl cy-
clases CD38 and CD157, and sterile alpha and toll/interleukin-1 receptor motif containing
1 (SARM1) [1–5]. These enzymes regulate fundamental cellular processes including DNA
damage repair, gene expression, cell signaling, calcium mobilization, apoptosis, circadian
rhythm, and inflammatory responses [1–4]. As a cofactor, NAD+ acts as an electron carrier
that oscillates back and forth between its oxidized form and its reduced form (i.e., NADH),
but its molecular backbone remains intact. In contrast, as a substrate, NAD+ is degraded
by the aforementioned NAD+-consuming enzymes, always yielding nicotinamide (NAM)
as a byproduct.
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Neoplasms are almost invariably characterized by heightened NAD+ demands pri-
marily to sustain their altered metabolic requirements [6–9]. In this context, reprogrammed
metabolism has been recognized as one of the hallmarks of oncogenic transformation [10].
The changes in cell metabolism that characterize many tumors are fundamental in order
for them to support their continuous growth and proliferative demands [11,12]. Glucose
metabolism is almost inevitably skewed in tumors [13]. Normal cells typically utilize
glucose to fuel energy production: once glucose is imported into the cell, it is primarily
metabolized in the cytosol via a process called glycolysis, in which a cascade of 10 en-
zymatic reactions mediate the breakdown of one glucose molecule into two pyruvate
molecules with a net generation of two NADH molecules and two adenosine triphosphate
(ATP) molecules. In the presence of oxygen, pyruvate enters the mitochondria and is
transformed into acetyl-CoA. Here, the so-called cellular respiration takes place with the
occurrence of the TCA cycle and OXPHOS ultimately resulting in the generation of a large
amount of energy from the metabolism of glucose-derived acetyl-CoA (around 34 ATP
molecules). On the other hand, under anaerobic conditions, fermentation takes place rather
than mitochondrial respiration where pyruvate is reduced into lactate in the cytosol by
lactate dehydrogenase.

In comparison to normal cells, glucose uptake in tumor cells is enhanced as a con-
sequence of the activity of oncogenes (e.g., those from the PI3K/AKT pathway) that
upregulate the cell surface expression of glucose transporter GLUT1 [14], or of the loss of
tumor suppressors, such as SIRT6, which leads to increased GLUT1 and GLUT4 expres-
sions and to a reduced carbon flux into mitochondrial respiration (through an increased
pyruvate dehydrogenase kinase expression) [15–18]. In addition, in cancer cells, glycol-
ysis is highly active even when oxygen is available. This phenomenon was described
by Otto Warburg in the early decades of the 1900s and is known as aerobic glycolysis
(or the Warburg effect) [19]. Since aerobic glycolysis is much less efficient than cellular
respiration in terms of energy production (2 and 34 ATP molecules are produced through
glycolysis and through mitochondrial respiration, respectively), the reason why cancer cells
would rely so much on this metabolic process was not of immediate understanding. It was
initially postulated that tumors depend on glycolysis as a result of defective mitochondria.
However, this hypothesis was largely refuted by emerging evidence demonstrating that
mitochondrial machinery is not only intact in several tumors, but also is instrumental in
bolstering tumorigenesis [20–22]. It was only in the late 2000s that it became clear that
glycolysis is exploited by cancer cells to obtain intermediates that can act as building
blocks to support their unchecked growth and proliferation. Considerable amounts of
glycolytic intermediates are funneled toward alternative metabolic pathways (in particular
the pentose phosphate pathway), which are essential to building up the tumor biomass.
Since both an elevated glycolytic flux and the mitochondrial metabolism require NAD+,
cancer cells need to maintain high NAD+ levels compared to their non-transformed coun-
terparts. In addition, it is important to note that tumor cell proliferation and survival can
also be critically influenced by the NAD+-consuming enzymes and the processes that they
coordinate (for example, PARP-mediated DNA damage repair and the sirtuin-dependent
transcriptional and post-transcriptional regulations of P53 and other targets). Moreover,
NAD+ phosphorylation by NAD+ kinase (NADK) produces NADP, which, together with
its reduced form NADPH, acts as a key antioxidant [23,24]. Cancer cells also have increased
demands for NADP(H) (and thus for NAD+) to combat the excessive accumulation of reac-
tive oxygen species (ROS), but also to drive mitochondrial glutamine metabolism through
the TCA cycle (a process called anaplerosis), which in turn, provides building blocks for
other tumor anabolic processes such as lipid biosynthesis [23,24].

Cancer cells are particularly sensitive to NAD+ depletion, which strongly affects cell
metabolism and energy production, and also other critical processes, such as DNA damage
repair, immune escape, the ability to scavenge ROS, pro-oncogenic signaling pathways,
and oncogene expression. Ultimately, these effects result in cancer cell demise. Therefore,
exploiting these liabilities of cancer cells through approaches that deplete NAD+ is now
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considered an appealing therapeutic strategy. The most widely studied strategy to deplete
intracellular NAD+ in cancer cells is to interfere with their NAD+ biosynthetic machinery.

1.2. Mammalian NAD+ Biosynthesis

Mammalian cells can meet their NAD+ requirements through multiple NAD+-generating
metabolic pathways that start from either vitamin B3 or from the essential amino acid tryp-
tophan (Figure 1). Vitamin B3 comprises three different forms, which are NAM, nicotinic
acid (NA), and nicotinamide riboside (NR) [25]. Each of these forms serves as a starting
building block for NAD+ formation through a distinct metabolic route: NAM and NA
generate NAD+ via the salvage pathway and the Preiss-Handler (PH) pathway, respectively,
while their nucleoside forms (i.e., NR and nicotinic acid riboside (NAR)) generate NAD+ via
an alternative nucleoside pathway. Tryptophan generates NAD+ via the de novo pathway
(also known as the kynurenine pathway), which is active mainly in hepatic and renal tis-
sues [26]. Although NAD+ biosynthesis in mammalian cells comprises an intricate network
of precursors and pathways, it generally follows a scheme that consists of two main steps:
(1) the generation of a mononucleotide from a simple NAD+ precursor or building block. In
the NAM salvage pathway, NAM is converted into nicotinamide mononucleotide (NMN)
through the catalytic activity of nicotinamide phosphoribosyltransferase (NAMPT). In
the PH pathway, a parallel enzyme called nicotinate phosphoribosyltransferase (NAPRT)
catalyzes the conversion of NA into nicotinic acid mononucleotide (NAMN) [27,28]. A
third phosphoribosyltransferase enzyme named quinolinate phosphoribosyltransferase
(QPRT) also produces NAMN from quinolinic acid (QA), which is an intermediate that is
obtained from tryptophan metabolism in the de novo pathway. It is worth noting that each
of these phosphoribosyltransferase enzymes is the rate-limiting enzyme of its own NAD+-
generating route. In addition, the enzyme nicotinamide riboside kinase (NMRK) is key
for the cell to be able to utilize NR and NAR as NAD+ precursors: the former is converted
by NMRK into NMN, while the latter, thanks to NMRK activity, becomes NAMN [29,30].
Interestingly, NMN could be cleaved in the extracellular milieu by the ecto-enzyme CD73
to produce NR, which in turn, can enter the cells and eventually support intracellular
NAD+ formation [31,32]. Thus, this metabolic conversion that takes place outside the cells
represents an important mechanism for sustaining NAD+ biosynthesis [31,32]. It is worth
noting that the reduced forms of NR and NMN were recently identified as novel NAD+ pre-
cursors that can elevate cellular and systemic NAD+ levels [33,34]. Adenosine kinase rather
than NMRK mediates the phosphorylation of reduced NR into reduced NMN [35]. (2) The
second step consists of the conversion of the mononucleotide moieties into their respective
dinucleotides: all of the NAD+ metabolic routes intersect at the level of this enzymatic step,
which is catalyzed by the enzymes nicotinamide/nicotinate mononucleotide adenylyltrans-
ferases 1–3 (NMNAT1-3). NMNATs transform NMN into NAD+ and NAMN into nicotinic
acid adenine dinucleotide (NAAD) using ATP as the source of the adenylyl moiety. In
the de novo and in the PH pathways, as well as when NAR is used as a starting block for
NAD+ production, an additional step is necessary for NAD+ formation, i.e., the replace-
ment of the carboxylic group of NAAD with an amide group. This reaction is catalyzed
by the enzyme NAD+ synthetase (NADSYN1) and the amino acid glutamine serves as the
donor of the amide nitrogen in it. NAM is produced by all NAD+-consuming enzymes
as a byproduct and is then either recycled to rebuild NAD+ or modified by nicotinamide
N-methyltransferase (NNMT) to yield 1-methylnicotinamide (MNAM) (particularly in the
liver), which is ultimately excreted in urine [36,37]. NAM reconversion into NAD+ is a
ubiquitous process in mammalian tissues. Accordingly, NAMPT was found to be expressed
in all types of tissues that were investigated, and the NAM salvage pathway is conceived
to be the predominant pathway for NAD+ production. In this review, we will describe the
relevance of these NAD+-producing enzymes as potential targets in cancer, mainly focusing
on the reported molecules that inhibit the activity of NAD+-producing enzymes other than
NAMPT (which has been extensively covered in other recent articles). In addition, the
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potential challenges that might be encountered in the employment of these inhibitors as
drug candidates in oncology will also be highlighted.
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2. Targeting Nicotinamide Phosphoribosyltransferase

Cancer cells primarily depend on the salvage pathway to produce the NAD+ they need
for their proliferation and survival, and thus, they are expected to be vulnerable to NAMPT
inhibition. This notion was substantiated by several studies that reported the overexpres-
sion of NAMPT in a myriad of hematological and solid malignancies [8,9]. Numerous
reports also highlighted an association between high NAMPT levels and poor clinical
outcomes, including worse survival, for different types of cancer [38–40]. Accordingly,
NAMPT is the NAD+-producing enzyme against which the largest number of inhibitors
were developed over the past two decades (Figure 1). NAMPT inhibitors displayed remark-
able anticancer activity in cellular and animal models of cancer [8]. Amongst the identified
NAMPT inhibitors, the prototypical compound FK866 (also known as (E)-Daporinad) [41],
CHS-828 [42,43], and its prodrug GMX1777 [44] were evaluated in cancer patients in early-
phase clinical trials. In these clinical studies, NAMPT inhibitors showed marginal or no
tumor responses as well as side effects such as thrombocytopenia and lymphopenia (in
the case of FK866) or gastrointestinal side effects (in the case of the orally administered
CHS-828) [45–48]. The failure of the first NAMPT inhibitors in the clinic sparked efforts to
optimize the use of these agents, which culminated in a second wave of NAMPT inhibitors
(represented by OT-82 [49] and the dual NAMPT-PAK4 inhibitor KPT9274 [50]) being
recently assessed in clinical trials. Several review articles discuss the medicinal chemistry
aspects of the development of NAMPT inhibitors and also the emerging roles of NAMPT
beyond being an enzyme that generates NAD+ (since NAMPT also exists as an extracel-
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lular form mainly acting as a cytokine that was found to mediate multiple pro-oncogenic
roles) [51–55]. We have also recently reviewed the preclinical and clinical aspects of NAD+-
lowering drugs, with a special focus on NAMPT inhibitors, including their downstream
effects and their optimization strategies [8]. Here, we will just remind the reader that the
last two years have witnessed the emergence of new small-molecule chemical NAMPT
inhibitors that exhibited very potent anticancer activity against hematological malignan-
cies with IC50 values in the picomolar range [56–58]. A synergistic interaction between
FK866 and the antidiabetic drug metformin was also recently reported in pancreatic cancer
cells [59]. In addition to the conventional small-molecule inhibitors that block NAMPT
enzymatic activity, one of the most promising approaches that have recently emerged is to
degrade NAMPT by triggering its ubiquitin-mediated proteolysis. Compounds developed
with this novel technology are named proteolysis-targeting chimeras (PROTACs) [60].
They typically consist of two protein-binding domains (one domain binds to E3 ubiquitin
ligase and the second domain binds to the target protein, which is NAMPT in this case)
connected by a linker. PROTACs B3 and B4 showed efficient NAMPT degradation and
marked in vitro and in vivo anticancer activity against A2780 ovarian cancer cells [61,62].
Two other NAMPT-degrading PROTACs showed superior antileukemia activity compared
to FK866 by targeting both intracellular and extracellular forms of NAMPT [63]. Similarly,
the NAMPT-degrading PROTAC A7 depleted intracellular NAMPT, reduced the levels
of secreted NAMPT, and elicited remarkable antitumor responses in mouse tumor mod-
els [64]. The antitumor effects of PROTAC A7 were mostly achieved through antitumor
immunity activation, which in turn, resulted from dampened activity of tumor-infiltrating
myeloid-derived suppressor cells [64]. Taken together, these results highlight an advantage
of the NAMPT-degrading PROTAC technology compared to the conventional inhibitors,
which is their ability to eliminate both intracellular and secreted NAMPT, thus blocking not
only the enzymatic function of NAMPT but also its extracellular pro-tumorigenic roles (that
are independent of its enzymatic activity [65]). Finally, novel antibody–drug conjugates
with NAMPT inhibitors as payloads have suppressed tumor growth in xenograft models
of breast cancer (HER2-expressing MDA-MB-453 cells) and leukemia (B7H3-expressing
THP-1 cells) [66].

3. Targeting Nicotinate Phosphoribosyltransferase
3.1. NAPRT as a Target in Cancer

Resistance to NAMPT inhibitors is a significant clinical challenge. Some cancer types
can use alternative NAD+-generating pathways and as a consequence maintain sufficient
NAD+ levels when the primary NAM salvage pathway is obstructed. In these tumors,
the cytotoxic activity of NAMPT inhibitors is significantly compromised. Among these
alternative NAD+-producing routes, the PH route appears to be frequently exploited by
tumors. Accordingly, the rate-limiting enzyme of this NAD+ production pathway, NAPRT,
has emerged as a promising target in cancer treatment. NAPRT drives the first enzymatic
step in the PH pathway, by catalyzing the conjugation of the phosphoribosyl group from
phosphoribosyl pyrophosphate (PRPP) to NA, thereby yielding NAMN. In turn, NAMN is
subsequently transformed into NAAD and then, finally, into NAD+. Hara and co-workers
demonstrated that NAPRT expression mediated the effects of NA supplementation on
human cells in terms of raising intracellular NAD+ contents and in terms of protecting
against oxidative stress [67]. The same authors were also able to detect high NAPRT levels
in murine tissues, including the small intestine, liver, and kidney [67]. An extensive study
that later explored NAMPT and NAPRT expression patterns across normal human tissues
and cancer cell lines found that both NAMPT and NAPRT transcripts were widely expressed
across normal human tissues [68]. While in tumors, NAMPT is ubiquitously expressed,
NAPRT expression levels were found to be largely variable with several cancer cell lines
showing either marginal or no NAPRT expression and many other cell lines exhibiting high
NAPRT levels [68]. To investigate how cancer cells select their NAD+ biosynthetic route,
Chowdhry and colleagues conducted a comprehensive analysis of more than 7000 tumors
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and 2600 matched normal samples, spanning 19 tissue types [69]. These authors concluded
that tumors that stem from normal tissues with elevated NAPRT expressions usually
show amplifications in the NAPRT gene and hence become reliant on the PH pathway for
their NAD+ metabolism [69]. Moreover, tumors that are addicted to the NAM salvage
pathway originate from tissues with negligible NAPRT expression [69]. The mechanisms
regulating the NAPRT expression in tumors have been addressed by several studies. In
the first place, as anticipated above, NAPRT gene amplification is well documented in
a wide spectrum of solid tumors, including, but not limited to, ovarian, prostate, and
pancreatic cancer (all showing an amplification frequency between 25% and 35% of the
studied cases), and this correlates with a high expression of NAPRT mRNA [69,70]. In
other tumors, the NAPRT expression is epigenetically modulated, frequently, but not
always, to dampen it. One of the well-established epigenetic mechanisms by which tumors
lose NAPRT expression is through the hypermethylation of the NAPRT promoter’s CpG
islands. This mechanism was first described by Shames and colleagues in a large panel of
cell lines of non-small cell lung cancer [71]. Importantly, this finding unveiled important
therapeutic implications where a synthetic lethal interaction was observed between NAPRT
deficiency and NAMPT inhibition. Consistently, the methylation of the NAPRT promoter
was detected in several chondrosarcoma cell lines and was correlated with a reduced
NAPRT expression that, in turn, was associated with enhanced sensitivity to NAMPT
inhibitors [72]. Further evidence was provided by Lee and colleagues who noted that in
numerous gastric cancer cell lines, the presence of markers of the epithelial-to-mesenchymal
transition (EMT) was associated with a diminished NAPRT expression (again, due to
NAPRT-promoter hypermethylation) [73]. As a result, these NAPRT-deficient cancers
are also particularly vulnerable to FK866 [73]. These authors postulated that NAPRT
loss in these cell lines would drive EMT by activating the Wnt/β-catenin signal [73].
Likewise, an inverse relation between the expressions of EMT markers and NAPRT were
also seen in pancreatic and colorectal cancer cells [74]. Interestingly, NAPRT-promoter
hypermethylation in cancers could result from other specific mutations. For instance,
isocitrate dehydrogenase 1 (IDH1)-mutated gliomas typically show diminished NAPRT
expression due to NAPRT promoter hypermethylation [75]. A similar finding was recently
discovered in pediatric glioma models that harbor mutations in the protein phosphatase
Mg2+/Mn2+ dependent 1D (PPM1D) gene [76]. Again, extreme sensitivity to the NAMPT
inhibitors was illustrated in these two mutated subtypes of brain tumors [75,76]. The
modulation of histone methylation is another epigenetic mechanism that can affect NAPRT
expression in uveal melanoma [77]. In this ocular malignancy, NAPRT expression was
found to be enhanced, instead of reduced, by the methyltransferase, disruptor of telomeric
silencing-1-like (DOT1L), i.e., via enhanced H3 methylation at lysine 79 (H3K79) [77]. In
turn, an increased NAPRT expression was shown to foster malignant transformation by
fueling NAD+ biosynthesis [77]. A recent study illustrated that the chromatin modifier
and epigenetic regulator bromodomain-containing protein 4 (BRD4) plays an important
role in controlling the NAPRT expression in hepatocellular carcinoma (HCC) cells since
NAPRT levels were reduced in HCC cell lines upon treatment with the BRD4 inhibitor
AZD5153 [78].

A NAPRT expression or lack of NAPRT expression in tumors has two types of impli-
cations. In the first place, studies have shown that NAPRT-proficient tumors are highly
reliant on NAPRT-mediated NAD+ biosynthesis, which has pro-oncogenic effects in terms
of promoting protein synthesis, fostering energy production and mitochondrial OXPHOS,
supporting DNA repair (especially in BRCA-deficient cancer cells), and modulating tu-
mor cell responsiveness to DNA-damaging agents and NAMPT inhibitors [70]. In agree-
ment with these insights, the growth of PH-amplified OV4 ovarian cancer xenografts was
completely repressed upon NAPRT depletion [69]. We also demonstrated that NAPRT
silencing sensitized NAPRT-proficient ovarian and pancreatic cancer cell lines to FK866
treatment, whereas the NAPRT-proficient wild-type counterparts were completely refrac-
tory to NAMPT inhibition [70]. Therefore, in NAPRT-proficient tumors, the goal will be
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to inhibit this enzyme in order to make NAMPT inhibitors and possibly other types of
anticancer drugs more active. On the other hand, this lack of NAPRT expression is a
liability of cancer cells that can also be therapeutically exploited: tumors that lack NAPRT
should not be able to utilize NA to replenish their NAD+ content. In these instances,
administering NAMPT inhibitors in combination with NA is postulated to help many
healthy, NAPRT-proficient tissues, but not NAPRT-deficient cancer cells in avoiding the
consequences of NAMPT obstruction. This treatment approach was indeed successful in
several NAPRT-deficient tumor models, expanding the therapeutic window of NAMPT in-
hibitors and mitigating toxicity [43,71,79,80]. A lack of NAPRT expression in tumors serves
as a biomarker that dictates which tumors can benefit from this approach [71,79]. It should
be mentioned that in one study utilizing NA in combination with the NAMPT inhibitor
GNE-617, the antitumor activity of the latter was found to be prevented by the concomitant
NA administration in NAPRT-deficient tumor xenograft models, which was ascribed to
an increased NAM and NAD+ production in the liver with the consequent rise in tumor
NAM and NAD+ levels. Elevated NAM levels inside the tumors might compromise the
antiproliferative activity of competitive NAMPT inhibitors by partially reactivating the
NAMPT-dependent NAD+-generating pathway [81]. Thus, further studies are required
to confirm the usefulness of a combined NAMPT inhibitor plus NA as a treatment for
NAPRT-deficient neoplasms. Obviously, the use of a combined NAMPT inhibitor plus NA
supplementation is not foreseen in the case of PH-amplified tumors since in these instances,
NA supplementation will abrogate the effect of NAMPT inhibitors (rather, in these cases,
NAMPT inhibitors should probably be coupled with NAPRT inhibitors or NA deprivation).
It is also worth noting that a recent study found that NA supplementation ameliorates
cancer cachexia, a condition that is commonly diagnosed in patients with cancer and that
is frequently worsened through chemotherapy [82]. This effect of NA was ascribed to
its ability to boost NAD+ in skeletal muscles and to enhance mitochondrial metabolism,
although whether this effect is mediated directly by activating the PH pathway in skeletal
muscles is not completely clear [82].

3.2. NAPRT Inhibitors

Based on the above insights, there is a justified need for developing NAPRT inhibitors
to be utilized together with NAMPT inhibitors against PH-activated tumors. While the
development of NAMPT inhibitors is proceeding at a fast pace, the identification of drugs
that target NAPRT (and also other NAD+-biosynthetic enzymes) is still in the nascent
stage (Figure 2). Surprisingly, however, inhibitors of the NAPRT enzyme (summarized in
Table 1) were first described much earlier than NAMPT inhibitors. Nearly fifty years ago,
Gaut and Solomon discovered that the accumulation of radioactivity inside the human
blood platelets that were incubated with radiolabeled isotopic NA was suppressed by
several NA analogs [among which 2-hydroxynicotinic acid (2-HNA) was the most potent]
as well as metabolic inhibitors like dinitrophenol, NaF, NaCN, and salicylic acid [83]. In
particular, 2-HNA inhibited the incorporation of radiolabeled NA into NAD+, NAM, and
other unidentified compounds that were presumed to be intermediates of NAD+ biosyn-
thesis, and this effect was concentration-dependent [83]. Shortly after, the same authors
conducted kinetic studies that characterized the incorporation of radiolabeled NA into
NAMN by human platelets lysates with or without the addition of several NA analogs
and found 2-HNA to act as a NAPRT inhibitor with an apparent inhibition constant (Ki)
of 230 µM [84]. Using the same experimental methodology, additional NAPRT inhibitors
were annotated, including pyrazinoic acid (with an apparent Ki of 75 µm), 2-fluoronicotinic
acid (apparent Ki = 280 µm), and several non-steroidal anti-inflammatory drugs (NSAIDs)
such as flufenamic acid (Ki = 46 µM), mefenamic acid (Ki = 76 µM), and salicylic acid and
phenylbutazone (both had an apparent Ki = 160 µM) [84,85]. The identification of NAPRT
inhibitors afterward almost halted for nearly four decades until Galassi and colleagues,
using a human recombinant NAPRT enzyme and an HPLC method to detect NAMN forma-
tion, reported a series of metabolites that inhibited NAPRT enzymatic activity at millimolar
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concentrations [86]. CoA was the most effective NAPRT-inhibiting metabolite (with an IC50
value of around 850 µM) followed by several acyl-CoA derivatives, namely succinyl-CoA,
glutaryl-CoA, and acetyl-CoA [86]. Less pronounced NAPRT inhibitory effects were also
reported with three glycolysis intermediates: fructose 1,6-bisphosphate, phosphoenolpyru-
vate, and glyceraldehyde 3-phosphate (all showing comparable percentages of enzyme
inhibition at 1 mM), whereas dihydroxyacetone phosphate (DHAP) and pyruvate, the
end product of glycolysis, showed a stimulatory effect on NAPRT enzymatic activity [86].
Interestingly, ATP displayed mixed stimulatory and inhibitory effects on NAPRT activity
depending on the substrates’ saturation levels [86]. In the same study, the authors provided
a predicted model for the 3D structure of the human NAPRT enzyme, but the actual 3D
crystal structure of human NAPRT was resolved and revealed only three years later by
Marletta et al. [87]. Until that time, none of these NAPRT-inhibiting molecules had been
tested as agents against tumors. The first evidence of an anticancer activity attributed to
an NAPRT inhibitor was reported by our group in 2017 when we demonstrated that the
prototypical NAPRT inhibitor 2-HNA cooperates with FK866 in blunting NAD+ levels
in the NAPRT-proficient ovarian cancer OVCAR-5 cells. Co-treatment with 2-HNA and
FK866 prompted marked cell death of OVCAR-5 (ovarian cancer) and of Capan-1 (pan-
creatic cancer) cells, which both express NAPRT in abundant amounts (thereby recreating
the effects of NAPRT silencing) [70]. In OVCAR-5 xenograft-bearing mice, combining
FK866 with the sodium salt form of 2-HNA resulted in a significant prolongation of mice
survival that could not be attained in mice treated with FK866 only [70]. Similarly, it has
been recently shown that the antitumor effects of the NAMPT inhibitors GNE-617 and
GMX1778 were enhanced when coupled to 2-HNA in two in vivo models of head and
neck squamous cell carcinomas [88]. Given the emerging relevance of NAPRT inhibitors
in cancer therapy, considerable efforts have been devoted to discovering more molecules
that inhibit NAPRT (summarized in Table 1). We recently described two additional NAPRT
inhibitors through a high-throughput in silico screening of a chemical library composed
of more than 500,000 compounds, taking advantage of the available 3D crystal structure
of human NAPRT [87,89]. The two compounds demonstrated NAPRT inhibitory activity
in enzymatic assays [89]. Further biochemical experiments on the purified recombinant
NAPRT enzyme illustrated that compound 8 (4-hydroxynicotinic acid) acts as a competitive
NAPRT inhibitor, whereas compound 19 is a non-competitive NAPRT inhibitor (the Ki
values of compounds 8 and 19 were 307.5 and 295 µM, respectively) [89]. In cellular models,
the two compounds demonstrated anticancer activity at 0.1 mM in cell growth inhibition
assays, where the sensitivity of FK866 to NAPRT-expressing ovarian cancer (OVCAR-5 and
OVCAR-8) and colorectal cancer (HCT116) cell lines could be restored [89]. Among the two
inhibitors, compound 8 was more effective and demonstrated an ability to sensitize cancer
cells to FK866 that was comparable to that of 2-HNA [89]. In addition, compound 8 showed
favorable pharmacokinetic parameters and drug-like properties as predicted using in silico
tools [89]. A similar approach was adopted by Franco and colleagues who started from
a structure-based computational approach for NAPRT inhibitor identification and found
IM 29 (a compound with a 1,3-benzodioxole structural backbone) as a lead compound from
their screens [90]. In enzymatic and cell-based assays, IM 29 was found to inhibit human
recombinant NAPRT enzyme activity (IC50 of 160 µM) and to cooperate with FK866 in
reducing NAD+ levels in OVCAR-5 cells [90].

A continuous fluorometric enzymatic assay was recently devised and validated,
thereby providing a useful tool to easily and rapidly screen putative NAPRT inhibitors [91].
This assay is based on a fluorometric method that can, in a single step, detect the formation
of NADH starting from the NAPRT-catalyzed reaction product NAMN [91]. In the valida-
tion experiments of this assay, the NAPRT inhibitory activities of 2-HNA, 2-fluoronicotinic
acid, pyrazinoic acid, and salicylic acid (which were previously described as NAPRT in-
hibitors by Gaut and Solomon) were confirmed [91]. According to this assay, the Ki values
of these four NAPRT inhibitors varied between 149 and 215 µM. Interestingly, besides
2-HNA, pyrazinoic acid was also found to sensitize OVCAR-5 cells to FK866 by reducing
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viability and blunting NAD+ levels inside the cells [91]. In the same cellular model, no sig-
nificant effect on cell viability was noted when coupling 2-fluoronicotinic acid with FK866,
while salicylic acid treatment was suggested to elicit an unspecific cytotoxic activity [91].
Shortly after, the same group employed the assay to screen more than 200 small molecules
for their activity on the recombinant NAPRT enzyme and succeeded in identifying a screen-
ing hit, compound 17, that bears a 1,2-dimethylbenzimidazole moiety [92]. Subsequent
medicinal chemistry efforts and structure–activity relationship studies starting from this hit
compound led to the design of several structural analogs, among which compound 18 was
demonstrated to inhibit NAPRT more effectively than its parent, compound 17 (46% and
30% NAPRT inhibition with compound 18 and compound 17, respectively, when both were
used at a 1 mM concentration) [92]. Mechanistically, compound 18 was shown to act via
non-competitive inhibition toward NA (Ki = 338 µM) and through mixed inhibition toward
PRPP (Ki = 134 µM) [92]. In silico docking studies that interrogated the binding mode of
compound 18 were in agreement with the described mode of action [92]. From the perspec-
tive of drug development, compound 18 exhibited favorable pharmacokinetic properties
including high kinetic solubility at physiological pH, low protein binding, good metabolic
stability, and cell permeability [92]. The only reported limitation is that compound 18 is
a P-gp substrate, which may limit its accumulation inside the tumors [92]. Interestingly,
the same study also revealed the first series of NAPRT activators [92]. Given that NAPRT
activity could not suppressed by NAD+ (unlike NAMPT) [67], NAPRT activators could
have potential clinical applications, particularly in conditions where boosting NAD+ is of
therapeutic relevance. Despite these recent efforts, the concentrations at which all the avail-
able NAPRT inhibitors demonstrate activity remain in the 3-digit micromolar-to-millimolar
range, and no NAPRT inhibitor has progressed to clinical studies so far. Therefore, there
remains a critical need to produce more potent NAPRT inhibitors with drug-like features.
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Table 1. Summary of the reported NAPRT inhibitors so far and their characteristics.

Name and Structure Ki/IC50 Mechanism of
Action

Anticancer Activity Due to
NAPRT Inhibition Drug-Like Properties

2-Hydroxynicotinic acid
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Table 1. Cont.

Name and Structure Ki/IC50 Mechanism of
Action

Anticancer Activity Due to
NAPRT Inhibition Drug-Like Properties

4-Hydroxynicotinic acid
(Compound 8)
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4. Targeting Nicotinamide/Nicotinate Mononucleotide Adenylyltransferase
4.1. NMNAT as a Target in Cancer

The second step in the PH pathway of NAD+ generation is governed by the NM-
NAT enzyme, which in mammalian cells, exists in three isomeric forms (i.e., NMNAT1,
2, and 3) [93]. NMNAT mediates the transfer of an adenylyl group from ATP to the
mononucleotides NMN and NAMN, thus converting them into their corresponding dinu-
cleotides, NAD+ and NAAD, respectively. Being the common enzyme that is shared by
all NAD+-generating metabolic routes, NMNAT has the clear potential to entirely halt
NAD+ formation if inhibited (in all of its isoforms). In turn, such complete obstruction of
NAD+ synthesis is anticipated to heavily affect cell metabolism, including, possibly even
to a higher extent, that of cancer cells. One additional advantage of NMNAT inhibition
compared to either NAMPT or NAPRT blockades is that cancer cells would not be able to
adapt to NMNAT inhibition through alternative NAD+-producing routes. In line with this
notion, NMNAT1 deletion has reduced the viability of the acute myeloid leukemia (AML)
cell lines MOLM13 and OCI-AML2, which is not rescued through the supplementation
of the NAD+ precursors NAM, NA, NR, or NMN (that conversely rescued the same cell
lines from FK866) and repressed leukemia progression in two patient-derived xenograft
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models [94]. NMNAT1 depletion in AML cells reduced nuclear NAD+, which in turn
promoted p53 activity presumably by reducing SIRT6/7-mediated P53 deacetylation [94].
Ultimately, NMNAT1 deletion induced AML cell apoptosis and sensitized AML cells to
the BCL2 inhibitor, venetoclax [94]. Importantly, NMNAT1 deletion did not impair normal
hematopoiesis, suggesting that NAD+ biogenesis during hematopoiesis is governed by
other NMNAT isoforms [94]. Although targeting NMNAT in hemato-oncology seems a
viable approach and tumor resistance acquisition (at least via alternative NAD+ production
mechanisms) would not be anticipated, multiple factors should be taken into account
during the development of NMNAT inhibitors.

First, and as mentioned above, NMNAT simultaneously exists in three non-redundant
isoforms inside the cell (i.e., NMNAT1, 2, and 3) [93]. These three isozymes are encoded by
different gene loci and have distinct subcellular localizations and substrate affinities, as well
as different oligomeric conformations (summarized in Table 2) [93,95,96]. NMNAT1 is a
nuclear enzyme and functions as a homohexamer [93,95]. NMNAT2 localizes to the cytosol
and to the Golgi apparatus and acts as a monomer [93,96,97]. NMNAT3 resides in the mito-
chondria (and probably also in the cytosol) and acts as a homotetramer [93,95,98]. NMNAT
isoforms regulate cellular NAD+ in a compartment-specific manner [99]. Nuclear NAD+

levels are tightly compartmentalized and controlled by NMNAT1. NMNAT2 regulates
cytosolic NAD+ levels. A recent study highlighted that NMNAT1 and NMNAT2 compete
for their common substrate NMN during adipocyte differentiation, where the induction
of NMNAT2 expression enhances cytoplasmic NAD+ (which is linked to improved glu-
cose metabolism) and reciprocally reduces nuclear NAD+, affecting the PARP1-mediated
adipogenic gene expression [100]. By contrast, NMNAT3 does not seem to play a criti-
cal role in the maintenance of NAD+ levels inside the mitochondria, which appear to be
more reliant on the import of NAD+ from the cytoplasm, where NAD+ is synthesized by
NMNAT2 [101,102]. Indeed, the depletion of NMNAT2 has been shown to reduce mito-
chondrial NAD+ concentrations in HEK293 and HeLa cells, whereas NMNAT3 depletion
does not alter mitochondrial NAD+ levels in HeLa cells [101]. Consistently, neither a re-
duction in mitochondrial NAD+ concentrations nor impairments of glycolysis or citric acid
cycle have been detected in skeletal muscle tissues of Nmnat3-KO mice [102]. In keeping
with the mitochondrial uptake of cytosolic NAD+, SLC25A51 was recently identified as a
mammalian mitochondrial NAD+ transporter [103,104]. A notable exception to this notion
may be represented by red blood cells, which show a marked dependence on NMNAT3 for
NAD+ formation [105,106]. Erythrocytes indeed express high NMNAT3 but weak or no
NMNAT1 and NMNAT2 levels [105,106]. The genetic ablation of Nmnat3 in mature red
blood cells blunts NAD+ levels, impairs glycolytic flow, and causes hemolytic anemia [106].
However, the degree of contribution of each NMNAT isoform to the different cellular NAD+

pools still requires further investigation. The different cellular localizations of the three
NMNAT isoforms should thus be considered when studying NMNAT inhibitors that may
target one isoform rather than the others in order to achieve the desired antitumor effects
while minimizing adverse events.

Another factor that needs to be taken into consideration when thinking of NMNAT
enzymes as targets for treating cancer is that human tissues display different expression
levels of the three NMNAT isoforms, suggesting that the extent to which each NMNAT
isoform participates in cellular NAD+ pool formation is likely to vary among the different
tissues. In turn, this may affect how tumors arising from different tissues or organs are
sensitive to such agents. NMNAT1 is the most widely expressed NMNAT isoform across
a large number of human tissues/organs, including the heart, kidneys, skeletal muscles,
liver, pancreas, and placenta [93,95]. Although little is known about NMNAT1 expression
in tumors, analyses of cancer genomic databases using the cBioPortal platform showed that
a deep deletion of NMNAT1 has been observed in several tumor types [107]. Consistently,
another study detected downregulated NMNAT1 expression in a subset of lung cancer cell
lines (14 out of 36 cell lines) [108]. This reduction in NMNAT1 expression was suggested
to be mediated through a heterozygous deletion of the NMNAT1 locus, which is located
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in a chromosomal region that is deleted in almost one-fifth of lung cancers (chromosome
1: 9746391-31610219) [108]. Under basal conditions, suppressed NMNAT1 expression
levels among lung cancer cell lines have not been accompanied by proportional reductions
in NAD+ levels, implying that the other two NMNAT isoforms are arguably the main
drivers of total cellular NAD+ levels [108]. However, low NMNAT1-expressing lung cancer
cell lines are more sensitive to the DNA-damaging agent, doxorubicin, compared to high
NMNAT1-expressing lung cancer cell lines [108]. Whether doxorubicin treatment differ-
entially affects total NAD+ levels in low vs. high NMNAT1-expressing lung cancer cells
has not been investigated. However, these findings raise an interesting possibility in that
reducing nuclear NAD+ levels via NMNAT1 inhibition might be sufficient to cause cancer
cell death without actually affecting the total cellular NAD+ content [108]. In MCF-7 breast
cancer cells, NMNAT1 interacts with the nuclear NAD+-consuming enzymes PARP1 and
SIRT1 and supports their ribosylation and deacetylation activities, respectively [109,110].
NMNAT2 is also expressed in several tissues, including the brain (in abundant amounts),
heart, kidneys, skeletal muscles, and pancreas [93]. The involvement of NMNAT2 in tumor
development and progression has been highlighted in several cancer types. Colorectal
cancer tissues show elevated NMNAT2 expression levels compared to adjacent normal
tissues, and the NMNAT2 expression was found to correlate with colorectal cancer TNM
staging and invasiveness [111,112]. The NMNAT2 expression was found to be positively
associated with P53 expression and negatively correlated with SIRT6 levels [111,112]. These
findings suggested that NMNAT2 could be involved in colorectal cancer development
through a P53-mediated mechanism and that NMNAT2 expression could be enhanced
through SIRT6 downregulation (although such a role for SIRT6 in NMNAT2 expression
regulation remains to be confirmed) [111,112]. Similarly, NMNAT2 (and also NMNAT1)
are implicated in promoting glioma proliferation by inhibiting P53-mediated apoptosis
through the regulation of NAD+-dependent post-translational modifications of P53 [107].
NMNAT2 itself was shown to be a direct downstream target of P53, i.e., DNA damaging
agents were found to induce the expression of NMNAT2 in U2-OS osteosarcoma cells
through a P53-dependent mechanism [113]. Notwithstanding, this osteosarcoma cell line
also showed an upregulated NMNAT1 expression in response to DNA damage [108]. Lung
adenocarcinoma shows high expression levels of NMNAT2, and the expression of this
gene in this type of cancer was found to negatively correlate with patient survival in two
different databases [114]. In lung cancer, NMNAT2 expression was shown to be regu-
lated by deoxyguanosine kinase (DGUOK), a critical enzyme for mitochondrial purine
metabolism [114]. DGUOK silencing in lung adenocarcinoma cells reduces the NAD+ levels
and downregulates NMNAT2 expression (both at the mRNA and at the protein level)
through a mechanism that does not depend on mitochondria complex I activity [114]. Ovar-
ian cancer was also shown to markedly upregulate NMNAT2 expression to enhance NAD+

formation and thereby promote the NAD+-dependent mono ADP-ribosylation (MAR) of
ribosomal proteins through the catalytic activity of PARP-16 [115,116]. Ribosome MARyla-
tion, in turn, supports ovarian cancer growth by orchestrating cellular protein homeostasis
mainly by inhibiting uncontrolled translation and preventing the accumulation of toxic
protein aggregates inside the tumor cells [115,116]. Therefore, this study suggested that
targeting NMNAT2 using inhibitors could be a promising strategy for treating ovarian can-
cer [115,116]. Examining NMNAT2 gene alterations in the cBioPortal database revealed that
the NMNAT2 gene is also amplified in tumors such as cholangiocarcinoma, invasive breast
carcinoma, and hepatocellular carcinoma [107]. Taken together, these studies underscore
the pro-oncogenic roles of NMNAT1 and NMNAT2 in several solid tumors, implying that
particularly these two NMNAT isoforms could represent promising therapeutic targets.
NMNAT3 is mainly expressed in the spleen and in red blood cells but very little is known
about its involvement in cancer.

The last point that should be carefully considered is the toxicity that might arise with
NMNAT inhibitors. NMNAT isoforms play fundamental roles in early development as
well as in preserving neuronal integrity and protecting against neurodegeneration [95].
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NMNAT has also been shown to display its neuroprotective effects by acting as a molec-
ular chaperone independent of its enzymatic function in NAD+ biosynthesis [117–120].
Several mechanisms are associated with the neuroprotective effect of NMNATs, includ-
ing the suppression of ROS production, mitochondrial stabilization [120], promotion of
the clearance of hyperphosphorylated Tau protein oligomers [121], autophagic clearance
of amyloid plaques in Alzheimer’s disease models [122], and reduced accumulation of
mutant Huntingtin (Htt) aggregation [123]. Moreover, NMNAT1 is important in retinal
development and physiology, and NMNAT1 mutations are linked to the occurrence of
detrimental retinal degenerative conditions such as Leber congenital amaurosis [124–127].
Nmnat1 gene therapy has shown protective effects against glaucomatous neurodegenera-
tion and Nmnat1-associated retinal degeneration in mice models [128,129]. NMNAT1 was
also reported to be a stress response protein, as its expression was induced after exposure
to hypoxia, heat shock, and oxidative stress [130].

Similar to NMNAT1, NMNAT2 is also a recognized neuroprotective factor that plays
an essential role in maintaining axonal integrity through its NAD+ synthetase catalytic
activity as well as by acting as a molecular chaperone [131]. The suppression of NM-
NAT2 skews the homeostatic balance that is maintained by the NMNAT2–NAD+–SARM1
axis and results in axonal degeneration, an effect that is commonly observed in many
neurodegenerative diseases or as a physiological response to nerve injury (Wallerian de-
generation) [131,132]. NMNAT2 also protects against chemotherapy-induced peripheral
neuropathy [131]. A recent study illustrated that peripheral neuropathy caused by the
chemotherapeutic agents vincristine and bortezomib is also triggered through axonal
NMNAT2 depletion and that the consequent NAD+ loss is induced through SARM1 activa-
tion [133]. The molecular mechanism involves the destruction of the short-lived NMNAT2
in axons, which results in an increased NMN/NAD+ ratio [134]. The NAD+-consuming
enzyme SARM1, which can sense an elevated NMN/NAD+ ratio, is activated and further
degrades NAD+, ultimately triggering a programmed axonal self-destructive program [134].
In line with the notion that skewed NMN/NAD+ can cause peripheral neuropathy, NAMPT
inhibition using the novel agent A4276 was found to protect against Wallerian degenera-
tion (during which NMNAT2 is downregulated) and peripheral neuropathy induced by
vincristine and paclitaxel [74]. Interestingly, paclitaxel-induced peripheral neuropathy has
also been reversed using NAMPT activators [135]. Both NAMPT inhibitors and activa-
tors presumably exert these protective effects through the favorable modulation of the
NMN/NAD+ ratio (by reducing NMN production in the case of inhibitors or replenishing
NAD+ levels in the case of activators) and thereby hampering SARM1 activation [74,135].
Overall, given its potential to skew the NMN/NAD+ ratio, treatment with NMNAT in-
hibitors may cause side effects, such as neuropathies, and clinical studies on such molecules
should carefully monitor these aspects.

4.2. NMNAT Inhibitors

The development of potent and selective NMNAT inhibitors and their application
in cancer therapy is still in its infancy. On one hand, targeting microbial NMNAT has
already gathered considerable attention in the recent past from the perspective of de-
veloping antibiotics and antimalarial drugs. Indeed, the crystal structures of a large
number of bacterial and protozoal NMN/NAMN adenylyltransferases have been already
revealed [136–141]. Studies comparing NMNAT structures from different organisms re-
vealed that bacterial NMN/NAMN adenylyltransferases (known as NadDs) from different
species are structurally close but display significant differences in comparison to their
human counterparts [142–144]. Thus, inhibitors can be developed to selectively target the
bacterial/protozoal NMNAT while sparing the human NMNAT enzyme. On the other
hand, these findings hint that the available bacterial NadD inhibitors would not presumably
inhibit the human NMNAT enzyme, making their usefulness as therapeutic agents against
human diseases, such as cancer, very doubtful.



Int. J. Mol. Sci. 2024, 25, 2092 15 of 33

The primary sequence of human NMNAT1 was reported in the early 2000s, and a
human recombinant NMNAT1 enzyme was characterized in the same study [145]. The
3D crystal structures of human NMNAT1 and NMNAT3 isoforms were resolved later in
both the apo-form and in complex with substrates [98,143,146,147]. By contrast, only a
homology-based structural NMNAT2 model is reported and the actual crystal structure
of NMNAT2 is yet to be resolved [148]. Therefore, utilizing in silico drug design as a tool
to discover selective NMNAT2 inhibitors is envisaged to encounter additional hurdles
compared to the two other isoforms. Overall, developing inhibitors that can effectively
suppress the enzymatic activity of human NMNAT isoforms is expected to be a challenging
process. In the next section, we will summarize the efforts that have been undertaken in
this field.

As of today, a very limited number of NMNAT inhibitors has been identified (sum-
marized in Table 3) and only one compound called Vacor (which was originally used as a
rodenticide) was reported to exhibit antitumor effects that were mediated through NM-
NAT2 inhibition [149]. Vacor is a metabolite that undergoes the same NAD+-biosynthetic
cycle as NAM, being converted into Vacor mononucleotide (VMN). Afterward, NMNAT2
transforms VMN into Vacor adenine dinucleotide (VAD) (which is analogous to NMN’s
transformation into NAD+) [149]. VAD is a toxic metabolite that blocks the activities
of NAMPT, NMNAT, and other NAD+-dependent enzymes, leading to a catastrophic
NAD+ depletion, metabolic impairment, and cancer cell lethality [149]. NMN (1 mM)
was shown to be able to rescue NAD+ levels in SH-SY5Y neuroblastoma cells from FK866
and GMX1778 but not from Vacor [149]. Vacor showed marked in vivo antitumor activity
in NMNAT2-expressing melanoma and neuroblastoma xenografts [149]. The antitumor
activity of Vacor was exclusively limited to NMNAT2-expressing tumors, while tumor cell
lines that showed no NMNAT2 expression were entirely resistant to Vacor [149]. VMN
could also be produced through the Vacor analog Vacor riboside (VR) through the activity
of nicotinamide riboside kinases [150]. However, whether VR also exhibits anticancer
activity against NMNAT2-positive tumors needs to be determined.

Gallotannin is the most well-known pan NMNAT inhibitor with different potencies
toward the three human isozymes: it showed an IC50 of 2 µm against NMNAT3, 10 µM
against NMNAT1, and 55 µm against NMNAT2 [93]. However, NMNAT is not the only
target of gallotannin, which can also inhibit other enzymes, such as poly(ADP-ribose)
glycohydrolase [151]. By contrast, the tannin derivative, epigallocatechin gallate (EGCG),
activates the NMNAT human isozymes with different degrees of enhancement in enzyme
activity [93]. The nucleotides Np3AD, Np4AD, and Nap4AD (which are NAD+ analogs
that contain oligophosphate groups) can also effectively inhibit the three human NMNAT
isoforms [152]. These compounds are geometric multi-substrate NMNAT inhibitors with
inhibition constants in the micromolar range [152]. Np3AD and Np4AD inhibit NMNAT2
more effectively than Nap4AD, which has shown a more pronounced inhibition toward
NMNAT1 and 3 [152]. N-2′-MeAD and Na-2′-MeAD are other NAD+ analogs that can
selectively inhibit the NMNAT3 isoform with IC50 values of 0.19 mM and 1.12 mM,
respectively [153]. The anticancer activities of these NAD+ analogs remain to be elucidated.
Recently, several positive and negative NMNAT2 modulators were identified by screening
1280 compounds using a Meso Scale Discovery (MSD)-based screening platform [154].
Caffeine was found to positively modulate NMNAT2 expression and to protect neurons
against vincristine-induced cell death [154]. By contrast, the negative NMNAT2 modulators,
cantharidin, retinoic acid, and wortmannin reduced NMNAT2 levels in neurons and
exacerbated vincristine-induced neuronal cell death [154]. High-throughput screening of
oncology libraries containing a total of 912 compounds for the NMNAT1-catalyzed reaction
led to the identification of 2,3-Dibromo-1,4-naphthoquinone (DBNQ) as a potent NMNAT1
inhibitor [155]. DBNQ was found to compete with both reaction substrates NMN and
ATP and to inhibit both the forward and reverse reactions with IC50 values of 0.76 and
0.26 µM, respectively [155]. The activities of DBNQ in NMNAT1-expressing cells (including
cancer cells) as well as on the two other isozymes are yet to be established. Notably, the
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bioluminescent NMNAT assay that was devised and employed in that study provided
a starting platform for identifying and characterizing additional NMNAT modulatory
chemotypes [155].

Apart from being a target for inhibition, NMNAT could also be harnessed in cancer
treatment by mediating the activation of prodrugs into their cytotoxic metabolites [156]. For
instance, the prodrug, tiazofurin, can be phosphorylated into tiazofurin 5-monophosphate
(TRMP). Thereafter, NMNAT catalyzes the transformation of TRMP into its active metabo-
lite, thiazole-4-carboxamide adenine dinucleotide (TAD) [157]. TAD is a NAD+ analog
and an excellent inhibitor of inosine 5-monophosphate dehydrogenase (IMPDH), a key
enzyme in guanylate nucleotide synthesis [156]. Indeed, disrupting guanylyl synthesis is
fatal to cancer cells. Colorectal cancer cells with a low NMNAT2 expression have demon-
strated resistance to tiazofurin, which could be reversed by overexpressing NMNAT2 in
tiazofurin-resistant colorectal cancer cell lines [158]. Likewise, NMNAT is also required for
the metabolic activation of similar anticancer agents, such as selenazofurin and benzamide
riboside [159].

As mentioned earlier, in bacteria and in P. falciparum, several NadD/NMNAT in-
hibitors have been identified (with the goal of using them as antibiotics and/or antimalarial
agents). Specifically, most of these inhibitors were discovered through studies on E. coli,
B. anthracis, and P. falciparum, and the best compounds were found to have IC50 values in
the low micromolar range [142,160–164] (summarized in Table 4). It is worth mentioning
that NadD inhibitors compounds 3_02 and 1_02 (Table 4) failed to inhibit the activity of
any human NMNAT homolog [142,160]. In addition, no information about their antitumor
effects is currently available. Future studies should possibly study these molecules that
may offer meaningful cues for developing inhibitors against mammalian NMNATs.

Table 2. Comparison between the three isoforms of human NMNAT.

Point of Comparison NMNAT1 NMNAT2 NMNAT3

Cellular location Nucleus [93]
Cytoplasm and Golgi (anchored
to the cytosolic face of the Golgi
through palmitoylation) [93,96]

Mitochondria mainly, but also
in the cytosol [93,98]
The location differs according to
the cell type

Chromosomal location Chromosome 1 p36.22 Chromosome 1 q25.3 Chromosome 3q23

Tissue expression
(reported as either
mRNA or protein)

Heart, skeletal muscles, kidney,
liver, pancreas, and placenta
(most abundant form) [93]

Brain, heart, skeletal muscles,
and pancreas [93]

Spleen, lung, and kidney [93]
Red blood cells [105]

Structure

Homohexamer Monomer Homotetramer

Crystal structure solved in the
ligand-free form and in complex
with NMN, NAD+, and
NAAD [143,146,147]

The 3D structure is not
solved [97,148]

Crystal structure solved in the
ligand-free form and in complex
with NMN, ATP, and
NAD+ [98]

Enzymatic reaction,
kinetic parameters, and
substrate affinity

ATP binds before NMN [152] ATP binds before NMN [152] NMN binds before ATP [152]

High affinity for NMN and ATP
(Km NMN = 34 µM and Km
ATP = 40 µM) [93]

Lower affinity for ATP (Km
NMN = 32 µM and Km
ATP = 204 µM) [93]

Lower affinity for NMN (Km
NMN = 209 µM and Km
ATP = 29 µM) [93]

Similar preference for NMN
and NAMN [93] Prefers NMN over NAMN [93] Similar preference for NMN

and NAMN [93]

Similar preference for NMN
and NMNH (NAD+/NADH
synthesis is 1.2) [93]

Similar preference for NMN
and NMNH (NAD+/NADH
synthesis is 1.1) [93]

Prefers NMNH over NMN
(NAD+/NADH synthesis is
0.5) [93]
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Table 3. Effects of NMNAT modulators on human NMNAT1-3.

Modulator NMNAT1 NMNAT2 NMNAT3

Gallotannin Inhibitor (IC50 = 10 µM) [93] Inhibitor (IC50 = 55 µM) [93] Inhibitor (IC50 = 2 µM) [93]

Np3AD
Inhibitor (Ki is 89 µM toward
NMN and 56.3 µM toward
ATP) [152]

Inhibitor (Ki is 31.5 µM toward
NMN and 35.9 µM toward
ATP) [152]

Inhibitor (Ki is 66.8 µM toward
NMN and 40.6 µM toward
ATP) [152]

Np4AD
Inhibitor (Ki is 31.1 µM toward
NMN and 49.2 µM toward
ATP) [152]

Inhibitor (Ki is 25.8 µM toward
NMN and 24.2 µM toward
ATP) [152]

Inhibitor (Ki is 73.6 µM toward
NMN and 29.8 µM toward
ATP) [152]

Nap4AD
Inhibitor (Ki is 67.9 µM toward
NMN and 59.1 µM toward
ATP) [152]

Inhibitor (Ki is 328.3 µM toward
NMN and 174.5 µM toward
ATP) [152]

Inhibitor (Ki is 88.3 µM toward
NMN and 32.8 µM toward
ATP) [152]

Na-2′-MeAD Weak inhibitor
(28% inhibition at 1 mM) [153]

Weak inhibitor
(33% inhibition at 1 mM) [153]

Inhibitor (IC50 = 1120 µM)
(81% inhibition at 1 mM) [153]

N-2′-MeAD Very Weak inhibitor
(9% inhibition at 1 mM) [153]

Very Weak inhibitor
(9% inhibition at 1 mM) [153]

Inhibitor (IC50 = 190 µM)
(65% inhibition at 1 mM) [153]

DBNQ
Inhibitor (IC50 is 0.76 µM for the
forward reaction, and 0.26 µM for
the reverse reaction) [155]

N/A N/A

EGCG Activator (1.2 fold activation at
50 µM) [93]

Activator (2.28 fold activation at
50 µM) [93]

Activator (1.42 fold activation at
50 µM) [93]

N/A; Not available.

Table 4. Summary of selected bacterial nicotinate mononucleotide adenylyltransferase (NadD) and
NAD+ synthetase (NadE) inhibitors and their reported activities.

Name and Structure Enzyme Inhibition (IC50/Ki) Antibacterial/Antiparasitic
Activity (MIC)

Antitumor
Activity

Compound 3_02
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Table 4. Cont.
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Table 4. Cont.

Name and Structure Enzyme Inhibition (IC50/Ki) Antibacterial/Antiparasitic
Activity (MIC)

Antitumor
Activity

Compound VD1
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for normal human physiology. Several case reports identified patients with biallelic path-
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cancers show the most striking NADSYN1 amplification frequency, (i.e., 19.23% and 
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methicillin-resistant
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Inhibits NAD+ synthetase of
M. tuberculosis
(IC50 = 90 ± 5 µM) [170]

Reduces the growth of
M. tuberculosis
(MIC = 37 µg/mL in rich
media and 25 µg/mL in
minimal media) [170]

N/A

N/A; Not available.

5. Targeting NAD+ Synthetase

Mammalian NAD+ synthetase (NADSYN1) is an amidotransferase enzyme that is
responsible for the third and last step of NAD+ biogenesis in the PH pathway. In a two-
step reaction that requires Mg+2, NADSYN1 catalyzes the ATP-dependent conversion of
NAAD into NAD+. The amino acid glutamine serves as the nitrogen source for mammalian
NAD+ synthetase (while the bacterial NAD+ synthetase (NadE) can use either ammonia
or glutamine as a nitrogen donor depending on the bacterial species) [171,172]. A second
isoform of the human NAD+ synthase enzyme was initially reported. Its peculiarity was
that it was reportedly able to use ammonia, instead of glutamine, as a nitrogen source.
However, this enzyme, which was named NADSYN2, was later found to be a pseudomonal
NAD+ synthetase [172,173]. A northern blot analysis of mouse tissues revealed that the
NADSYN1 gene is abundantly expressed in the small intestine, kidney, liver, and testis,
whereas skeletal muscle and heart show a very weak NADSYN1 expression [171]. Despite
the occurrence of redundant NAD+ biosynthetic routes in humans, NADSYN1 seems
fundamental for normal human physiology. Several case reports identified patients with
biallelic pathogenic variants of the NADSYN1 gene, which were found to be associated
with a rare, severely debilitating, and potentially lethal condition called congenital NAD+

deficiency disorder [174–178]. Patients suffering from this condition present with severe
cardiac, limb, vertebral, and renal defects [174–178]. NADSYN1 is amplified in many solid
tumors, such as lung, bladder, and breast cancer (Figure 3) [69]. Esophageal and head
and neck cancers show the most striking NADSYN1 amplification frequency, (i.e., 19.23%
and 13.77% of these tumors have amplified NADSYN1 gene expressions, respectively),
implying that the PH pathway is heavily implicated in the pathophysiology of these two
malignancies (Figure 3). In line with this notion, elevated expression levels of NAPRT, the
first enzyme in the PH pathway, were also found to occur in these two cancer types to
support NAD+ biosynthesis [70,88,179]. NAPRT expression was associated with resistance
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of head and neck tumors to NAMPT inhibitors and with increased risk of the development
of esophageal precancerous lesions [88,179].
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Figure 3. NADSYN1 and human cancers. NADSYN1 gene mutations, deletions, amplifications, and 
multiple alterations in human cancer as demonstrated by the cBioPortal for Cancer Genomics 
(hĴp://www.cbioportal.org/ accessed on 26 January 2024). The search engine was adjusted to show 
studies from the TCGA PanCancer Atlas with at least 3% of NADSYN1 alteration frequency. The “+” 
sign shows that samples were profiled for structural variants, mutations, and copy number altera-
tions (CNA). 
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While NAM and NA play the major roles in keeping proper NAD+ levels in healthy 

and neoplastic tissues via the salvage and the PH metabolic pathways, respectively, the 
contribution of other NAD+ precursors, such as tryptophan and NR, as well as our intes-
tinal flora in supporting the NAD+ metabolism must not be overlooked. As aforemen-
tioned, tryptophan catabolism generates NAD+ through the more complex kynurenine (de 
novo) pathway, which involves a chain of multiple enzymatic steps to yield QA, which 
then converges into the PH pathway upon its transformation to NAMN through QPRT. 
Although this pathway is not active in most bodily tissues, in vivo radiolabeling and trac-
ing studies demonstrated that the liver predominantly relies on tryptophan to produce 
NAD+ and that hepatic NAD+ degradation generates NAM, which is released into the cir-
culation and utilized by other tissues to form NAD+ [26]. Multiple enzymes in the de novo 
pathway are interesting therapeutic targets for curing cancer. For instance, indoleamine 
2,3-dioxygenase (IDO1), the first enzyme in this pathway that drives the catabolism of 

Figure 3. NADSYN1 and human cancers. NADSYN1 gene mutations, deletions, amplifications,
and multiple alterations in human cancer as demonstrated by the cBioPortal for Cancer Genomics
(http://www.cbioportal.org/ accessed on 26 January 2024). The search engine was adjusted to show
studies from the TCGA PanCancer Atlas with at least 3% of NADSYN1 alteration frequency. The
“+” sign shows that samples were profiled for structural variants, mutations, and copy number
alterations (CNA).

So far, similar to NMNAT, NAD+ synthetase has mostly been explored as a therapeutic
target to treat infectious diseases. Thus, the goal has been to find inhibitors of micro-
bial NAD+ synthetase, rather than of human NADSYN1. In this area, several inhibitors
of bacterial NadE have been identified, with the best ones showing IC50 values in the
low micromolar range [161,165–170] (summarized in Table 4). One of these inhibitors
of bacterial NadE (i.e., compound 5284) was studied by Chowdhry and colleagues, who
investigated its ability to inhibit the human NADSYN1 enzyme [69]. Indeed, compound
5284 dose-dependently reduced the enzymatic activity of the purified human NADSYN1
enzyme [69]. It markedly blunted NAD+ levels and reduced the viability of several PH-
amplified cancer cell lines (while not affecting normal cells). Similar effects were also
achieved in xenograft-bearing mice, where treatment with compound 5248 suppressed
the growth of PH-amplified OV4 ovarian cancer tumors and hampered NAD+ production
inside these tumors [69]. Noteworthy, this is the first and only study providing experi-

http://www.cbioportal.org/


Int. J. Mol. Sci. 2024, 25, 2092 21 of 33

mental evidence of anticancer activity attributed to NAD+ synthetase inhibitors reflecting
the need to identify more NADSYN1 inhibitors [69]. At the time of that study, the crystal
structure of the human NADSYN1 enzyme was not known. However, it was resolved
one year later [180]. Notably, resolving the crystal structures of the NadE enzyme from
several bacterial species, particularly B.subtilis and B.anthracis, was pivotal in the discovery
of microbial NAD+ synthetase inhibitors [181–183]. Thus, the availability of the crystal
structure of the human NADSYN1 enzyme is expected to pave the way for subsequent
studies that aim at identifying novel chemotypes that specifically target human NADSYN1,
particularly for their potential exploitation in oncology.

6. Alternative NAD+ Precursors and NAD+ Biosynthetic Enzymes

While NAM and NA play the major roles in keeping proper NAD+ levels in healthy
and neoplastic tissues via the salvage and the PH metabolic pathways, respectively, the
contribution of other NAD+ precursors, such as tryptophan and NR, as well as our intesti-
nal flora in supporting the NAD+ metabolism must not be overlooked. As aforementioned,
tryptophan catabolism generates NAD+ through the more complex kynurenine (de novo)
pathway, which involves a chain of multiple enzymatic steps to yield QA, which then
converges into the PH pathway upon its transformation to NAMN through QPRT. Al-
though this pathway is not active in most bodily tissues, in vivo radiolabeling and tracing
studies demonstrated that the liver predominantly relies on tryptophan to produce NAD+

and that hepatic NAD+ degradation generates NAM, which is released into the circula-
tion and utilized by other tissues to form NAD+ [26]. Multiple enzymes in the de novo
pathway are interesting therapeutic targets for curing cancer. For instance, indoleamine
2,3-dioxygenase (IDO1), the first enzyme in this pathway that drives the catabolism of
tryptophan into kynurenine, is expressed in numerous tumors and its expression is as-
sociated with poor prognosis [184,185]. IDO1 inhibitors have shown robust antitumor
activity and are currently assessed in clinical trials as single agents or in combination with
cancer immunotherapies (reviewed in [186,187]). IDO1 inhibitors prevent the tryptophan
deprivation and accumulation of kynurenine (and also its metabolites) in the cells and in
the tumor microenvironment. This, in turn, is a recognized mechanism of tumor immune
evasion, promoting the activity of regulatory T-cells and thereby hampering the activity of
effector T-cells. Whether intra-tumor NAD+ depletion through IDO1 inhibitors might be
an additional mechanism underlying the antitumor activity of these agents remains to be
defined. In support of this notion, first-in-class dual NAMPT-IDO1 inhibitors were recently
discovered and showed potent antiproliferative and antimigration effects in lung cancer
cells [188]. The most promising NAMPT-IDO1 inhibitor compound, 10e (IC50 = 57.7 nM
against recombinant NAMPT and 160 nM against IDO1 in HeLa cells), significantly sup-
pressed the growth of xenografted A549/R cells (an FK866 and taxol-resistant lung cancer
cell line) as a single agent and also markedly sensitized the tumors to taxol [188]. Inhibiting
the activity of alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase (ACMSD),
another gatekeeping enzyme in the kynurenine pathway that diverts tryptophan catabolism
away from NAD+ biosynthesis, improving the mitochondrial function by increasing NAD+

availability, whereas its overexpression in transgenic mice models rendered them addicted
to dietary NA to produce NAD+ and led to NAD+ deficiency upon dietary niacin depri-
vation [189,190]. Lastly, high expression levels of QPRT, the rate-limiting enzyme that
converts QA to NAMN, enhance the migration and invasive properties of breast cancer
cells and are associated with worsened prognoses and clinical outcomes in breast cancer
patients [191–193]. In addition, an elevated QPRT expression in the GMX1778-resistant
HT1080 fibrosarcoma cell line and in the FK866-resistant CCRF-CEM leukemia cell line was
the underlying resistance mechanism to these NAMPT inhibitors (through the activation of
de novo NAD+ biosynthesis) [194,195]. Consistent with these studies, QPRT-expressing
glioma cells were shown to be resistant to concomitant oxidative stress and NAMPT inhibi-
tion through the activation of de novo NAD+ synthesis starting from QA [196]. Interestingly,
although glioma cells can’t synthesize NAD+ starting from tryptophan (because they lack
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the de novo pathway enzyme 3-Hydroxyanthranilate 3,4-Dioxygenase (3-HAO)), they can
still take advantage of the de novo NAD+-production route by utilizing the tryptophan
metabolite QA, which is supplied by infiltrating microglial cells [196]. The other NAD+

precursor, NR, could boost NAD+ levels via the NMRK-mediated nucleoside pathway,
which is of significant relevance in skeletal muscles [197–199]. The NR-NMRK pathway
can mediate resistance to NAMPT inhibition in salvage-dependent tumor cells, which
could be reversed via dual NAMPT and NMRK inhibition [69]. Consistent with these
findings, the pharmacological inhibition or downregulation of CD73 (which mediates the
extracellular conversion of NMN to NR) largely abrogates the rescue effects of NMN in
FK866-treated OVCAR-3 ovarian cancer cells, A549 lung cancer cells, and U87 glioblastoma
cells by impairing the extracellular provision of NR from NMN [32,200]. To our knowledge,
phthalic acid is the only available inhibitor to the human QPRT enzyme, and no NMRK
inhibitors have been reported so far [201].

The commensal bacteria residing in the intestinal lumen significantly influence the
mammalian NAD+ metabolism. Through the catalytic activity of their microbial nicoti-
namidase (PncA) enzyme, the intestinal flora can convert NAM to NA, which, in turn, can
circulate and stimulate NAD+ biosynthesis in mammalian host tissues (presumably also
including neoplastic tissues) that possess a functional PH pathway [202]. This finding also
has therapeutic implications for treatment with NAD+-lowering agents. In mice models
of leukemia, gut flora caused tumor resistance to FK866 when mice were fed with NAM-
enriched diets through the production of NA, and this resistance was reversed through
antibiotic treatment that depleted the intestinal microbiota [203]. Similar results were also
reported in a colorectal cancer xenograft mice model [202]. Interestingly, gut microbiota
can utilize circulating NAM (i.e., NAM produced from the mammalian host tissues most
commonly as a byproduct of NAD+-degradation and secreted into the circulation) to gen-
erate NA [204]. Moreover, oral NR was found to boost NAD+ levels not only via the
NMRK pathway but also through its degradation first into NAM by the enzyme CD157
(also known as BST1 which is present in the small intestine) and then into NA by the gut
flora [205]. Finally, NA promotes tissue NAD+ biosynthesis via the PH pathway [205].
Notably, NR can also be converted to NAR through the base exchange activity of BST1 [205].
Taken together, these results emphasize that NAM, besides being the precursor of the NAM
salvage pathway, can also fuel the activation of the PH pathway in the presence of gut flora
that typically converts it into NA.

Finally, the NAM-metabolizing enzyme NNMT can strongly impact cellular NAD+

homeostasis [37]. By catalyzing the methylation of NAM into MNAM (which is eventually
subjected to further metabolism and/or urinary excretion), NNMT can reduce the free NAM
pool and prevent NAM from entering the salvage pathway to rebuild NAD+ [37]. Indeed,
overexpression of NNMT in SW480 colorectal cancer cells reduces NAD+ levels, whereas
an NNMT downregulation in HT29 cells elevates cellular NAD+ content [206]. Consistently,
the treatment of adipocytes with an NNMT inhibitor has increased NAD+ levels [207]. To
methylate NAM, NNMT consumes methyl units from S-adenosyl-L-methionine (SAM),
yielding S-adenosyl-homocysteine (SAH). Given that SAM serves as a universal methyl
donor for many methyltransferases including histone methyltransferases, NNMT expres-
sion in tumors can remodel their cellular epigenetic landscapes by skewing SAM/SAH
levels and by creating a state of hypomethylated histones [208]. NNMT was also reported
to regulate the expression/activity of SIRT1 in prostate and breast cancer cells by support-
ing SIRT1 stabilization [209,210]. These findings suggest that NNMT can also influence
cellular epigenetics in neoplastic cells by modulating SIRT1-mediated histone deacetylation.
Notably, the upregulation of NNMT has been reported in numerous neoplasms including
gastrointestinal cancers, urological cancers, skin cancers, and head and neck tumors, and
has been proposed as a tumor biomarker (comprehensively reviewed in [211–214]). NNMT
expression was implicated in driving tumorigenesis and aggressiveness since multiple pro-
oncogenic effects were ascribed to NNMT, including the inhibition of apoptosis, promotion
of cancer cell viability, cell cycle progression, and invasiveness and migration, as well as the
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reduction of ROS generation [206,209,215–217]. Furthermore, NNMT expression was associ-
ated with breast cancer resistance to adriamycin and paclitaxel, colorectal cancer resistance
to 5-fluorouracil (5-FU), and melanoma resistance to dacarbazine [210,217,218]. NNMT
downregulation enhances cancer cells’ sensitivity to these chemotherapeutics [210,217,218].
In light of these insights, targeting NNMT with chemical inhibitors is receiving increas-
ing attention in cancer therapy. Notably, a considerable number of NNMT inhibitors
have been recently annotated within the scope of their employment as novel anticancer
agents [219–221]. Whether and how NNMT inhibitors affect the antitumor activity of
NAD+-lowering drugs, including NAMPT inhibitors, remains to be determined.

7. Conclusions and Perspectives

Mounting evidence shows that multiple types of tumors exploit the PH pathway,
particularly upon NAMPT inhibition, to meet their NAD+ requirements. Hence, the three
enzymes that govern NAD+ production through this pathway (i.e., NAPRT, NMNAT,
and NADSYN1) represent a set of promising targets for cancer therapy. The inhibition
of enzymes that mediate the early rate-limiting steps of NAD+ generation (i.e., NAMPT
and NAPRT) is a reasonable intervention. However, in tumors that express both NAMPT
and NAPRT, blocking the activity of one enzyme will be presumably bypassed by the
utilization of the other enzyme, and thus both enzymes should be concomitantly targeted.
On the other hand, blocking the activity of enzymes that control the later steps in NAD+

generation is expected to prevent NAD+ generation from multiple routes/precursors at
the same time. This, in turn, could achieve a more durable intratumor NAD+ depletion.
For instance, NADSYN1 inhibition would block NAD+ generation from NA (through the
PH pathway), NAR (through the nucleoside pathway), tryptophan, and all the kynurenine
metabolites (through the de novo pathway). The fact that NMNAT plays a role in NAD+

synthesis through all pathways implies that its blockade could, in principle, also halt NAD+

biosynthesis from all possible routes. Very few inhibitors of mammalian NADSYN1 and
NMNAT enzymes are available. On the other hand, NADSYN1 and NMNAT have been
largely investigated as targets for developing antibacterial/antiparasitic drugs, raising the
possibility that at least some of these agents with the ability to also obstruct the human
enzymes could be used for treating cancer too. Human and bacterial NADSYN enzymes
seem to be more similar as compared to human vs. bacterial NMNAT enzymes (at least in
the substrate binding sites). A bacterial NADSYN inhibitor was indeed able to inhibit the
functionally equivalent human enzyme, showing anticancer effects against PH pathway-
dependent tumors [69]. On the other hand, the substantial differences that exist between
human and bacterial NMNAT enzymes make exploiting the current bacterial NMNAT
inhibitors in human pathologies extremely challenging. Furthermore, several aspects
should be taken into account while developing human NMNAT inhibitors. These include
(i) its existence in three non-redundant isoforms inside the cell (where each isoform displays
unique characteristics); (ii) the variable expression levels of the three isoforms in normal
tissues as well as in tumors; and (iii) the central roles that NMNAT plays in neuronal
and retinal physiology, which warrants the close monitoring of neurological and retinal
toxicities that might potentially arise upon treatment with NMNAT inhibitors. Another
way to exploit the enzymatic activity of NMNAT enzymes consists in the administration of
prodrugs that are transformed by NMNAT into cytotoxic metabolites, which then display
antitumor effects through diverse mechanisms. This is the case, for instance, of anticancer
agents such as Vacor, tiazofurin, and selenazofurin. Last, but not least, it is important to
note that the potency of the reported inhibitors against all three PH pathway enzymes
lies within the micromolar-to-millimolar range. Moreover, a limited number of these
inhibitors have been associated with an antitumor activity either alone (as in the case of the
NADSYN1 inhibitor compound 5284) or in combination with NAMPT inhibitors (which
is the case with the NAPRT inhibitor 2-HNA). Therefore, overall, there remains a crucial
need to develop more potent and selective NAPRT, NMNAT, and NADSYN1 inhibitors
with optimized drug-like properties. The anticancer activity of these inhibitors should be
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addressed in preclinical and then in clinical studies. Finally, reducing the availability of
dietary and microbiota-derived NA can also hamper the ability of tumors to utilize the PH
pathway to build NAD+ and hence maximize the efficacy of NAD+-depleting agents.
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